|
@@ -0,0 +1,183 @@
|
|
|
+import argparse
|
|
|
+import gzip
|
|
|
+import os.path
|
|
|
+from collections import OrderedDict
|
|
|
+
|
|
|
+import pandas as pd
|
|
|
+from hdfs import InsecureClient
|
|
|
+
|
|
|
+client = InsecureClient("http://master-1-1.c-7f31a3eea195cb73.cn-hangzhou.emr.aliyuncs.com:9870", user="spark")
|
|
|
+
|
|
|
+SEGMENT_BASE_PATH = "/dw/recommend/model/36_score_calibration_file"
|
|
|
+
|
|
|
+
|
|
|
+def read_predict_from_local_txt(txt_file) -> list:
|
|
|
+ result = []
|
|
|
+ with open(txt_file, "r") as f:
|
|
|
+ for line in f.readlines():
|
|
|
+ sp = line.replace("\n", "").split("\t")
|
|
|
+ if len(sp) == 4:
|
|
|
+ label = int(sp[0])
|
|
|
+ cid = sp[3].split("_")[0]
|
|
|
+ score = float(sp[2].replace("[", "").replace("]", "").split(",")[1])
|
|
|
+ result.append({
|
|
|
+ "label": label,
|
|
|
+ "cid": cid,
|
|
|
+ "score": score
|
|
|
+ })
|
|
|
+ return result
|
|
|
+
|
|
|
+
|
|
|
+def read_predict_from_hdfs(hdfs_path: str) -> list:
|
|
|
+ if not hdfs_path.endswith("/"):
|
|
|
+ hdfs_path += "/"
|
|
|
+ result = []
|
|
|
+ for file in client.list(hdfs_path):
|
|
|
+ with client.read(hdfs_path + file) as reader:
|
|
|
+ with gzip.GzipFile(fileobj=reader, mode="rb") as gz_file:
|
|
|
+ for line in gz_file.read().decode("utf-8").split("\n"):
|
|
|
+ split = line.split("\t")
|
|
|
+ if len(split) == 4:
|
|
|
+ cid = split[3].split("_")[0]
|
|
|
+ label = int(split[0])
|
|
|
+ score = float(split[2].replace("[", "").replace("]", "").split(",")[1])
|
|
|
+ result.append({
|
|
|
+ "cid": cid,
|
|
|
+ "label": label,
|
|
|
+ "score": score
|
|
|
+ })
|
|
|
+
|
|
|
+ return result
|
|
|
+
|
|
|
+
|
|
|
+def _segment_v1(scores, step):
|
|
|
+ bins = []
|
|
|
+ for i in range(0, len(scores), int((len(scores) / step))):
|
|
|
+ if i == 0:
|
|
|
+ bins.append(0)
|
|
|
+ else:
|
|
|
+ bins.append(scores[i])
|
|
|
+ bins.append(1)
|
|
|
+ return list(OrderedDict.fromkeys(bins))
|
|
|
+
|
|
|
+
|
|
|
+def segment_calc_diff_rate_by_score(df: pd.DataFrame, segment_file_path: str, step=100) -> [pd.DataFrame, pd.DataFrame]:
|
|
|
+ sored_df = df.sort_values(by=['score'])
|
|
|
+ # 评估分数分段
|
|
|
+ scores = sored_df['score'].values
|
|
|
+
|
|
|
+ bins = _segment_v1(scores, step)
|
|
|
+
|
|
|
+ # 等分分桶
|
|
|
+ # split_indices = np.array_split(np.arange(len(scores)), step)
|
|
|
+ # bins = [scores[index[0]] for index in split_indices] + [scores[split_indices[-1][-1]]]
|
|
|
+
|
|
|
+ sored_df['score_segment'] = pd.cut(sored_df['score'], bins=bins)
|
|
|
+
|
|
|
+ # 计算分段内分数的差异
|
|
|
+ group_df = sored_df.groupby("score_segment", observed=True).agg(
|
|
|
+ segment_label_sum=('label', 'sum'),
|
|
|
+ segment_label_cnt=('label', 'count'),
|
|
|
+ segment_score_avg=('score', 'mean'),
|
|
|
+ ).reset_index()
|
|
|
+ group_df['segment_true_score'] = group_df['segment_label_sum'] / group_df['segment_label_cnt']
|
|
|
+ group_df['segment_diff_rate'] = (group_df['segment_score_avg'] / group_df['segment_true_score'] - 1).mask(group_df['segment_true_score'] == 0, 0)
|
|
|
+
|
|
|
+ # 完整的分段文件保存
|
|
|
+ csv_data = group_df.to_csv(sep="\t", index=False)
|
|
|
+ with client.write(segment_file_path, encoding='utf-8', overwrite=True) as writer:
|
|
|
+ writer.write(csv_data)
|
|
|
+
|
|
|
+ filtered_df = group_df[(abs(group_df['segment_diff_rate']) >= 0.2) & (group_df['segment_label_cnt'] >= 1000)]
|
|
|
+ filtered_df = filtered_df[['score_segment', 'segment_diff_rate']]
|
|
|
+ # 每条曝光数据添加对应分数的diff
|
|
|
+ merged_df = pd.merge(sored_df, filtered_df, on="score_segment", how="left")
|
|
|
+
|
|
|
+ merged_df['segment_diff_rate'] = merged_df['segment_diff_rate'].fillna(0)
|
|
|
+ return merged_df, filtered_df
|
|
|
+
|
|
|
+
|
|
|
+def read_and_calibration_predict(predict_path: str, step=100) -> [pd.DataFrame, pd.DataFrame]:
|
|
|
+ """
|
|
|
+ 读取评估结果,并进行校准
|
|
|
+ """
|
|
|
+ # 本地调试使用
|
|
|
+ # predicts = read_predict_from_local_txt(predict_path)
|
|
|
+ predicts = read_predict_from_hdfs(predict_path)
|
|
|
+ df = pd.DataFrame(predicts)
|
|
|
+
|
|
|
+ # 模型分分段计算与真实ctcvr的dff_rate
|
|
|
+ predict_basename = os.path.basename(predict_path)
|
|
|
+ if predict_basename.endswith("/"):
|
|
|
+ predict_basename = predict_basename[:-1]
|
|
|
+ df, segment_df = segment_calc_diff_rate_by_score(df, segment_file_path=f"{SEGMENT_BASE_PATH}/{predict_basename}.txt", step=100)
|
|
|
+
|
|
|
+ # 生成校准后的分数
|
|
|
+ df['score_2'] = df['score'] / (1 + df['segment_diff_rate'])
|
|
|
+
|
|
|
+ # 按CID统计真实ctcvr和校准前后的平均模型分
|
|
|
+ grouped_df = df.groupby("cid").agg(
|
|
|
+ view=('cid', 'size'),
|
|
|
+ conv=('label', 'sum'),
|
|
|
+ score_avg=('score', lambda x: round(x.mean(), 6)),
|
|
|
+ score_2_avg=('score_2', lambda x: round(x.mean(), 6)),
|
|
|
+ ).reset_index()
|
|
|
+ grouped_df['true_ctcvr'] = grouped_df['conv'] / grouped_df['view']
|
|
|
+
|
|
|
+ return grouped_df, segment_df
|
|
|
+
|
|
|
+
|
|
|
+def _main(old_predict_path: str, new_predict_path: str, calibration_file: str, analyse_file: str):
|
|
|
+ old_group_df, old_segment_df = read_and_calibration_predict(old_predict_path)
|
|
|
+ new_group_df, new_segment_df = read_and_calibration_predict(new_predict_path)
|
|
|
+
|
|
|
+ # 分段文件保存, 此处保留的最后使用的分段文件,不是所有的分段
|
|
|
+ new_segment_df.to_csv(calibration_file, sep='\t', index=False, header=False)
|
|
|
+
|
|
|
+ # 字段重命名,和列过滤
|
|
|
+ old_group_df.rename(columns={'score_avg': 'old_score_avg', 'score_2_avg': 'old_score_2_avg'}, inplace=True)
|
|
|
+ new_group_df.rename(columns={'score_avg': 'new_score_avg', 'score_2_avg': 'new_score_2_avg'}, inplace=True)
|
|
|
+ old_group_df = old_group_df[['cid', 'view', 'conv', 'true_ctcvr', 'old_score_avg', 'old_score_2_avg']]
|
|
|
+ new_group_df = new_group_df[['cid', 'new_score_avg', 'new_score_2_avg']]
|
|
|
+
|
|
|
+ merged = pd.merge(old_group_df, new_group_df, on='cid', how='left')
|
|
|
+
|
|
|
+ # 计算与真实ctcvr的差异值
|
|
|
+ merged["(new-true)/true"] = (merged['new_score_avg'] / merged['true_ctcvr'] - 1).mask(merged['true_ctcvr'] == 0, 0)
|
|
|
+ merged["(old-true)/true"] = (merged['old_score_avg'] / merged['true_ctcvr'] - 1).mask(merged['true_ctcvr'] == 0, 0)
|
|
|
+
|
|
|
+ # 计算校准后的模型分与ctcvr的差异值
|
|
|
+ merged["(new2-true)/true"] = (merged['new_score_2_avg'] / merged['true_ctcvr'] - 1).mask(merged['true_ctcvr'] == 0, 0)
|
|
|
+ merged["(old2-true)/true"] = (merged['old_score_2_avg'] / merged['true_ctcvr'] - 1).mask(merged['true_ctcvr'] == 0, 0)
|
|
|
+
|
|
|
+ # 按照曝光排序,写入本地文件
|
|
|
+ merged = merged.sort_values(by=['view'], ascending=False)
|
|
|
+ merged = merged[[
|
|
|
+ 'cid', 'view', "conv", "true_ctcvr",
|
|
|
+ "old_score_avg", "new_score_avg", "(old-true)/true", "(new-true)/true",
|
|
|
+ "old_score_2_avg", "new_score_2_avg", "(old2-true)/true", "(new2-true)/true",
|
|
|
+ ]]
|
|
|
+
|
|
|
+ # 根据文件名保存不同的格式
|
|
|
+ if analyse_file.endswith(".csv"):
|
|
|
+ merged.to_csv(analyse_file, index=False)
|
|
|
+ else:
|
|
|
+ with open(analyse_file, "w") as writer:
|
|
|
+ writer.write(merged.to_string(index=False))
|
|
|
+ print("0")
|
|
|
+
|
|
|
+
|
|
|
+if __name__ == '__main__':
|
|
|
+ parser = argparse.ArgumentParser(description="model_predict_analyse.py")
|
|
|
+ parser.add_argument("-op", "--old_predict_path", required=True, help="老模型评估结果")
|
|
|
+ parser.add_argument("-np", "--new_predict_path", required=True, help="新模型评估结果")
|
|
|
+ parser.add_argument("-af", "--analyse_file", required=True, help="最后计算结果的保存路径")
|
|
|
+ parser.add_argument("-cf", "--calibration_file", required=True, help="线上使用的segment文件保存路径")
|
|
|
+ args = parser.parse_args()
|
|
|
+
|
|
|
+ _main(
|
|
|
+ old_predict_path=args.old_predict_path,
|
|
|
+ new_predict_path=args.new_predict_path,
|
|
|
+ calibration_file=args.calibration_file,
|
|
|
+ analyse_file=args.analyse_file
|
|
|
+ )
|