Explorar el Código

feat:修改日志

zhaohaipeng hace 9 meses
padre
commit
1632918991
Se han modificado 1 ficheros con 17 adiciones y 17 borrados
  1. 17 17
      XGB/vov_xgboost_train.py

+ 17 - 17
XGB/vov_xgboost_train.py

@@ -187,11 +187,11 @@ def fetch_feature_data(t_1_datetime: datetime):
 
         logger.info(
             f"fetch_feature_data:"
-            f"\n\t t_1_feature_task.datetime: {t_1_datetime.strftime('%Y%m%d')}"
-            f"\n\t t_2_feature_task.datetime: {t_2_datetime.strftime('%Y%m%d')}"
-            f"\n\t t_3_feature_task.datetime: {t_3_datetime.strftime('%Y%m%d')}"
-            f"\n\t t_4_feature_task.datetime: {t_4_datetime.strftime('%Y%m%d')}"
-            f"\n\t t_5_feature_task.datetime: {t_5_datetime.strftime('%Y%m%d')}"
+            f"\t t_1_feature_task.datetime: {t_1_datetime.strftime('%Y%m%d')}"
+            f"\t t_2_feature_task.datetime: {t_2_datetime.strftime('%Y%m%d')}"
+            f"\t t_3_feature_task.datetime: {t_3_datetime.strftime('%Y%m%d')}"
+            f"\t t_4_feature_task.datetime: {t_4_datetime.strftime('%Y%m%d')}"
+            f"\t t_5_feature_task.datetime: {t_5_datetime.strftime('%Y%m%d')}"
         )
 
         t_1_feature = t_1_feature_task.result()
@@ -250,9 +250,9 @@ def xgb_train_multi_dt_data(t_1_label_dt: datetime):
         t_1_feature_dt = t_1_label_dt - timedelta(1)
         logger.info(
             f"VOV模型特征数据处理 --- t_1_label_future:"
-            f"\n\t label_datetime: {t_1_label_dt.strftime('%Y%m%d')}  "
-            f"\n\t feature_datetime: {t_1_feature_dt.strftime('%Y%m%d')}  "
-            f"\n\t view_rate_datetime: {t_1_label_dt.strftime('%Y%m%d')}  "
+            f"\t label_datetime: {t_1_label_dt.strftime('%Y%m%d')} "
+            f"\t feature_datetime: {t_1_feature_dt.strftime('%Y%m%d')} "
+            f"\t view_rate_datetime: {t_1_label_dt.strftime('%Y%m%d')} "
         )
         t_1_label_future = executor.submit(fetch_data, t_1_label_dt, t_1_feature_dt, t_1_label_dt)
 
@@ -260,9 +260,9 @@ def xgb_train_multi_dt_data(t_1_label_dt: datetime):
         t_2_feature_dt = t_2_label_dt - timedelta(1)
         logger.info(
             f"VOV模型特征数据处理 --- t_2_label_future:"
-            f"\n\t label_datetime: {t_2_label_dt.strftime('%Y%m%d')}  "
-            f"\n\t feature_datetime: {t_2_feature_dt.strftime('%Y%m%d')}  "
-            f"\n\t view_rate_datetime: {t_2_label_dt.strftime('%Y%m%d')}  "
+            f"\t label_datetime: {t_2_label_dt.strftime('%Y%m%d')} "
+            f"\t feature_datetime: {t_2_feature_dt.strftime('%Y%m%d')} "
+            f"\t view_rate_datetime: {t_2_label_dt.strftime('%Y%m%d')} "
         )
         t_2_label_future = executor.submit(fetch_data, t_2_label_dt, t_2_feature_dt, t_2_label_dt)
 
@@ -270,9 +270,9 @@ def xgb_train_multi_dt_data(t_1_label_dt: datetime):
         t_3_feature_dt = t_3_label_dt - timedelta(1)
         logger.info(
             f"VOV模型特征数据处理 --- t_3_label_future:"
-            f"\n\t label_datetime: {t_3_label_dt.strftime('%Y%m%d')}  "
-            f"\n\t feature_datetime: {t_3_feature_dt.strftime('%Y%m%d')}  "
-            f"\n\t view_rate_datetime: {t_3_label_dt.strftime('%Y%m%d')}  "
+            f"\t label_datetime: {t_3_label_dt.strftime('%Y%m%d')} "
+            f"\t feature_datetime: {t_3_feature_dt.strftime('%Y%m%d')} "
+            f"\t view_rate_datetime: {t_3_label_dt.strftime('%Y%m%d')} "
         )
         t_3_label_future = executor.submit(fetch_data, t_3_label_dt, t_3_feature_dt, t_3_label_dt)
 
@@ -292,9 +292,9 @@ def xgb_predict_dt_data(label_datetime: datetime):
     feature_start_datetime = label_datetime
     logger.info(
         f"VOV模型预测数据处理 --- predict_df: "
-        f"label_datetime: {label_datetime.strftime('%Y%m%d')}  "
-        f"feature_datetime: {feature_start_datetime.strftime('%Y%m%d')}  "
-        f"view_rate_datetime: {label_datetime.strftime('%Y%m%d')}  "
+        f"\t label_datetime: {label_datetime.strftime('%Y%m%d')} "
+        f"\t feature_datetime: {feature_start_datetime.strftime('%Y%m%d')} "
+        f"\t view_rate_datetime: {label_datetime.strftime('%Y%m%d')} "
     )
     return fetch_data(label_datetime, feature_start_datetime, label_datetime)