|
@@ -21,11 +21,26 @@ column_names = ['曝光占比', 'vov0', '分子', '分母', '1_vov0', '2_vov0',
|
|
|
'4_vov01_分子', '4_vov01_分母', '5_vov01_分子', '5_vov01_分母', '3_vov012_分子', '3_vov012_分母',
|
|
|
'4_vov012_分子', '4_vov012_分母', '5_vov012_分子', '5_vov012_分母']
|
|
|
|
|
|
-# 配置日志格式和日志级别
|
|
|
-logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
|
|
|
-
|
|
|
# 创建一个logger
|
|
|
-logger = logging.getLogger(__name__)
|
|
|
+logger = logging.getLogger("xgboost_train.py")
|
|
|
+logger.setLevel(logging.INFO) # 设置日志级别
|
|
|
+
|
|
|
+# 创建Handler用于输出到文件
|
|
|
+file_handler = logging.FileHandler('xgboost_train.log')
|
|
|
+file_handler.setLevel(logging.INFO) # 设置日志级别为INFO
|
|
|
+
|
|
|
+# 创建Handler用于输出到控制台
|
|
|
+console_handler = logging.StreamHandler()
|
|
|
+console_handler.setLevel(logging.INFO) # 设置日志级别为INFO
|
|
|
+
|
|
|
+# 定义日志格式
|
|
|
+formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
|
|
|
+file_handler.setFormatter(formatter)
|
|
|
+console_handler.setFormatter(formatter)
|
|
|
+
|
|
|
+# 将Handler添加到Logger
|
|
|
+logger.addHandler(file_handler)
|
|
|
+logger.addHandler(console_handler)
|
|
|
|
|
|
|
|
|
def get_partition_df(table, dt):
|
|
@@ -37,89 +52,222 @@ def get_partition_df(table, dt):
|
|
|
# 将所有数据加载到 DataFrame 中
|
|
|
df = pd.concat([batch.to_pandas() for batch in reader])
|
|
|
|
|
|
- logger.info(f"下载结束: {table} -- {dt} 的数据")
|
|
|
+ logger.info(f"下载结束: {table} -- {dt} 的数据, 共计 {df.shape[0]} 条数据")
|
|
|
return df
|
|
|
|
|
|
|
|
|
-def fetch_label_data(label_dt):
|
|
|
+def fetch_label_data(label_datetime: datetime):
|
|
|
"""
|
|
|
获取 label数据
|
|
|
:return:
|
|
|
"""
|
|
|
+ label_dt = label_datetime.strftime("%Y%m%d")
|
|
|
logger.info(f"fetch_label_data.dt: {label_dt}")
|
|
|
|
|
|
- def extract_label(row):
|
|
|
- feature = json.loads(row['feature'])
|
|
|
- return pd.Series({
|
|
|
- 'vid': row['vid'],
|
|
|
- '分母': int(feature['1_vov0_分母']),
|
|
|
- "分子": feature['1_vov0_分子'],
|
|
|
- 'vov0': feature['1_vov0']
|
|
|
+ # 获取数据
|
|
|
+ label_df = get_partition_df("alg_vid_vov_new", label_dt)
|
|
|
+ extracted_data = [
|
|
|
+ {
|
|
|
+ 'vid': int(row['vid']),
|
|
|
+ }
|
|
|
+ for _, row in label_df.iterrows()
|
|
|
+ ]
|
|
|
+ # 构造新的 DataFrame
|
|
|
+ applied_df = pd.DataFrame(extracted_data)
|
|
|
+ # 添加 title 列
|
|
|
+ applied_df['title'] = "title"
|
|
|
+
|
|
|
+ return applied_df
|
|
|
+
|
|
|
+
|
|
|
+def fetch_view_rate_data(view_date: datetime):
|
|
|
+ """
|
|
|
+ 获取曝光数据
|
|
|
+ :return:
|
|
|
+ """
|
|
|
+ view_rate_dt = view_date.strftime("%Y%m%d")
|
|
|
+ logger.info(f"fetch_view_rate_date.dt: {view_rate_dt}")
|
|
|
+ try:
|
|
|
+ # 获取数据
|
|
|
+ view_rate_df = get_partition_df("alg_vid_vov_new", view_rate_dt)
|
|
|
+ extracted_data = [
|
|
|
+ {
|
|
|
+ 'vid': int(row['vid']),
|
|
|
+ '分母': int(feature['1_vov0_分母']),
|
|
|
+ '分子': feature['1_vov0_分子'],
|
|
|
+ 'vov0': feature['1_vov0']
|
|
|
+ }
|
|
|
+ for _, row in view_rate_df.iterrows()
|
|
|
+ if (feature := json.loads(row['feature']))
|
|
|
+ ]
|
|
|
+ # 构造新的 DataFrame
|
|
|
+ applied_df = pd.DataFrame(extracted_data)
|
|
|
+ # 计算曝光占比,矢量化操作
|
|
|
+ view_sum = applied_df['分母'].sum()
|
|
|
+ applied_df['曝光占比'] = applied_df['分母'] / view_sum
|
|
|
+
|
|
|
+ return applied_df
|
|
|
+ except Exception as e:
|
|
|
+ return pd.DataFrame({
|
|
|
+ "vid": [-1],
|
|
|
+ "分母": [0],
|
|
|
+ "分子": [0],
|
|
|
+ "vov0": [0],
|
|
|
+ "曝光占比": [0]
|
|
|
})
|
|
|
|
|
|
- train_df = get_partition_df("alg_vid_vov_new", label_dt)
|
|
|
- applied_df = train_df.apply(extract_label, axis=1)
|
|
|
|
|
|
- # 计算曝光占比
|
|
|
- view_sum = applied_df['分母'].sum()
|
|
|
- applied_df['曝光占比'] = round(applied_df['分母'] / view_sum, 6)
|
|
|
- return applied_df
|
|
|
+def fetch_feature_data_dt(dt: str, index):
|
|
|
+ """
|
|
|
+ 查询某一天的特征数据,方便做特征数据时并行处理
|
|
|
+ :param dt:
|
|
|
+ :param index:
|
|
|
+ :return:
|
|
|
+ """
|
|
|
+
|
|
|
+ logger.info(f"开始处理 videoid_vov_base_data -- {dt} 的数据")
|
|
|
+
|
|
|
+ df = get_partition_df("videoid_vov_base_data", dt).fillna(0)
|
|
|
|
|
|
+ today_dist_view_pv = df['today_dist_view_pv'].astype(int)
|
|
|
+ today_return_to_dist_view_pv = df['today_return_to_dist_view_pv'].astype(int)
|
|
|
+ day1_return_to_dist_view_pv = df['day1_return_to_dist_view_pv'].astype(int)
|
|
|
+ day2_return_to_dist_view_pv = df['day2_return_to_dist_view_pv'].astype(int)
|
|
|
|
|
|
-def fetch_feature_data(feature_dt):
|
|
|
+ # all_return_to_dist_view_pv
|
|
|
+ t_1_all_return_to_dist_view_pv = today_return_to_dist_view_pv + day1_return_to_dist_view_pv
|
|
|
+ t_2_all_return_to_dist_view_pv = t_1_all_return_to_dist_view_pv + day2_return_to_dist_view_pv
|
|
|
+
|
|
|
+ # all_vov
|
|
|
+ t_0_all_vov = today_return_to_dist_view_pv / today_dist_view_pv.where(today_dist_view_pv > 0, 1)
|
|
|
+ t_0_all_vov = t_0_all_vov.where(today_dist_view_pv > 0, 0)
|
|
|
+
|
|
|
+ t_1_all_vov = t_1_all_return_to_dist_view_pv / today_dist_view_pv.where(today_dist_view_pv > 0, 1)
|
|
|
+ t_1_all_vov = t_1_all_vov.where(today_dist_view_pv > 0, 0)
|
|
|
+
|
|
|
+ t_2_all_vov = t_2_all_return_to_dist_view_pv / today_dist_view_pv.where(today_dist_view_pv > 0, 1)
|
|
|
+ t_2_all_vov = t_2_all_vov.where(today_dist_view_pv > 0, 0)
|
|
|
+
|
|
|
+ # 构造结果DataFrame
|
|
|
+ result_df = pd.DataFrame({
|
|
|
+ 'vid': df['videoid'],
|
|
|
+
|
|
|
+ f'{index}_vov0': t_0_all_vov,
|
|
|
+ f'{index}_vov0_分子': today_return_to_dist_view_pv,
|
|
|
+ f'{index}_vov0_分母': today_dist_view_pv,
|
|
|
+
|
|
|
+ f'{index}_vov01': t_1_all_vov,
|
|
|
+ f'{index}_vov01_分子': t_1_all_return_to_dist_view_pv,
|
|
|
+ f'{index}_vov01_分母': today_dist_view_pv,
|
|
|
+
|
|
|
+ f'{index}_vov012': t_2_all_vov,
|
|
|
+ f'{index}_vov012_分子': t_2_all_return_to_dist_view_pv,
|
|
|
+ f'{index}_vov012_分母': today_dist_view_pv,
|
|
|
+ })
|
|
|
+ logger.info(f"完成处理 videoid_vov_base_data -- {dt} 的数据")
|
|
|
+
|
|
|
+ return result_df
|
|
|
+
|
|
|
+
|
|
|
+def fetch_feature_data(t_1_datetime: datetime):
|
|
|
"""
|
|
|
获取feature数据
|
|
|
:return:
|
|
|
"""
|
|
|
|
|
|
- logger.info(f"fetch_feature_data.dt: {feature_dt}")
|
|
|
+ logger.info(f"fetch_feature_data.label_datetime: {t_1_datetime.strftime('%Y%m%d')}")
|
|
|
+
|
|
|
+ with concurrent.futures.ThreadPoolExecutor(5) as executor:
|
|
|
+ t_1_feature_task = executor.submit(
|
|
|
+ fetch_feature_data_dt, t_1_datetime.strftime("%Y%m%d"), 1
|
|
|
+ )
|
|
|
+ t_2_feature_task = executor.submit(
|
|
|
+ fetch_feature_data_dt, (t_1_datetime - timedelta(days=1)).strftime("%Y%m%d"), 2
|
|
|
+ )
|
|
|
+ t_3_feature_task = executor.submit(
|
|
|
+ fetch_feature_data_dt, (t_1_datetime - timedelta(days=2)).strftime("%Y%m%d"), 3
|
|
|
+ )
|
|
|
+ t_4_feature_task = executor.submit(
|
|
|
+ fetch_feature_data_dt, (t_1_datetime - timedelta(days=3)).strftime("%Y%m%d"), 4
|
|
|
+ )
|
|
|
+ t_5_feature_task = executor.submit(
|
|
|
+ fetch_feature_data_dt, (t_1_datetime - timedelta(days=4)).strftime("%Y%m%d"), 5
|
|
|
+ )
|
|
|
+
|
|
|
+ t_1_feature = t_1_feature_task.result()
|
|
|
+ t_2_feature = t_2_feature_task.result()
|
|
|
+ t_3_feature = t_3_feature_task.result()
|
|
|
+ t_4_feature = t_4_feature_task.result()
|
|
|
+ t_5_feature = t_5_feature_task.result()
|
|
|
+
|
|
|
+ t_1_feature = t_1_feature[['vid', "1_vov0", "1_vov0_分子", "1_vov0_分母"]]
|
|
|
+ t_2_feature = t_2_feature[
|
|
|
+ ['vid', "2_vov0", "2_vov0_分子", "2_vov0_分母", "2_vov01", "2_vov01_分子", "2_vov01_分母"]
|
|
|
+ ]
|
|
|
+
|
|
|
+ return t_1_feature, t_2_feature, t_3_feature, t_4_feature, t_5_feature
|
|
|
+
|
|
|
+
|
|
|
+def fetch_data(label_datetime: datetime, feature_start_datetime: datetime, view_rate_datetime: datetime):
|
|
|
+ with concurrent.futures.ThreadPoolExecutor(3) as executor:
|
|
|
+ label_future = executor.submit(fetch_label_data, label_datetime)
|
|
|
+ feature_future = executor.submit(fetch_feature_data, feature_start_datetime)
|
|
|
+ view_rate_future = executor.submit(fetch_view_rate_data, view_rate_datetime)
|
|
|
|
|
|
- def extract_feature(row):
|
|
|
- feature = json.loads(row['feature'])
|
|
|
- return pd.Series({
|
|
|
- 'vid': row['vid'],
|
|
|
- **feature
|
|
|
- })
|
|
|
+ label_apply_df = label_future.result()
|
|
|
+ t_1_feature, t_2_feature, t_3_feature, t_4_feature, t_5_feature = feature_future.result()
|
|
|
+ view_rate = view_rate_future.result()
|
|
|
|
|
|
- feature_df = get_partition_df("alg_vid_vov_new", feature_dt)
|
|
|
- return feature_df.apply(extract_feature, axis=1)
|
|
|
+ df = (pd.merge(label_apply_df, view_rate, on="vid", how='left')
|
|
|
+ .merge(t_1_feature, on="vid", how='left')
|
|
|
+ .merge(t_2_feature, on="vid", how='left')
|
|
|
+ .merge(t_3_feature, on="vid", how='left')
|
|
|
+ .merge(t_4_feature, on="vid", how='left')
|
|
|
+ .merge(t_5_feature, on="vid", how='left')
|
|
|
+ )
|
|
|
+ df.fillna(0, inplace=True)
|
|
|
+ df.sort_values(by=['曝光占比'], ascending=False, inplace=True)
|
|
|
|
|
|
+ for col in column_names:
|
|
|
+ df[col] = pd.to_numeric(df[col], errors='coerce')
|
|
|
|
|
|
-def fetch_data(label_datetime: datetime):
|
|
|
- label_dt = label_datetime.strftime("%Y%m%d")
|
|
|
- feature_dt = (label_datetime - timedelta(days=1)).strftime("%Y%m%d")
|
|
|
+ df["12_change"] = df["1_vov0"] - df["2_vov0"]
|
|
|
+ df["23_change"] = df["2_vov0"] - df["3_vov0"]
|
|
|
+ df["34_change"] = df["3_vov0"] - df["4_vov0"]
|
|
|
|
|
|
- with concurrent.futures.ThreadPoolExecutor(2) as executor:
|
|
|
- label_future = executor.submit(fetch_label_data, label_dt)
|
|
|
- feature_future = executor.submit(fetch_feature_data, feature_dt)
|
|
|
- label_apply_df = label_future.result()
|
|
|
- feature_apply_df = feature_future.result()
|
|
|
+ df["label"] = df["vov0"].apply(lambda x: 1 if x > 0.25 else 0)
|
|
|
+
|
|
|
+ return df
|
|
|
|
|
|
- df = pd.merge(label_apply_df, feature_apply_df, on="vid", how='left')
|
|
|
- df.fillna(0, inplace=True)
|
|
|
- df.sort_values(by=['曝光占比'], ascending=False, inplace=True)
|
|
|
|
|
|
- for col in column_names:
|
|
|
- df[col] = pd.to_numeric(df[col], errors='coerce')
|
|
|
+def xgb_multi_dt_data(t_1_label_dt: datetime):
|
|
|
+ with concurrent.futures.ThreadPoolExecutor(3) as executor:
|
|
|
+ logger.info(f"VOV模型特征数据处理:t_1_label_future.label_datetime: {t_1_label_dt.strftime('%Y%m%d')}")
|
|
|
+ t_1_label_future = executor.submit(fetch_data, t_1_label_dt, t_1_label_dt - timedelta(2), t_1_label_dt)
|
|
|
|
|
|
- df["12_change"] = df["1_vov0"] - df["2_vov0"]
|
|
|
- df["23_change"] = df["2_vov0"] - df["3_vov0"]
|
|
|
- df["34_change"] = df["3_vov0"] - df["4_vov0"]
|
|
|
+ t_2_label_dt = t_1_label_dt - timedelta(1)
|
|
|
+ logger.info(f"VOV模型特征数据处理:t_2_label_future.label_datetime: {t_2_label_dt.strftime('%Y%m%d')}")
|
|
|
+ t_2_label_future = executor.submit(fetch_data, t_2_label_dt, t_2_label_dt - timedelta(1), t_2_label_dt)
|
|
|
|
|
|
- feature_array = df[features_name].values
|
|
|
- df["label"] = df["vov0"].apply(lambda x: 1 if x > 0.25 else 0)
|
|
|
- label_array = df["label"].values
|
|
|
+ t_3_label_dt = t_1_label_dt - timedelta(2)
|
|
|
+ logger.info(f"VOV模型特征数据处理:t_3_label_future.label_datetime: {t_3_label_dt.strftime('%Y%m%d')}")
|
|
|
+ t_3_label_future = executor.submit(fetch_data, t_3_label_dt, t_3_label_dt - timedelta(1), t_3_label_dt)
|
|
|
+ t_1_label_df = t_1_label_future.result()
|
|
|
+ t_2_label_df = t_2_label_future.result()
|
|
|
+ t_3_label_df = t_3_label_future.result()
|
|
|
|
|
|
- return df, feature_array, label_array
|
|
|
+ return pd.concat([t_1_label_df, t_2_label_df, t_3_label_df], ignore_index=True)
|
|
|
|
|
|
|
|
|
def _main():
|
|
|
logger.info(f"XGB模型训练")
|
|
|
+ train_df = xgb_multi_dt_data((datetime.now() - timedelta(days=2)))
|
|
|
+ trains_array = train_df[features_name].values
|
|
|
+ trains_label_array = train_df['label'].values
|
|
|
|
|
|
- df, trains_array, trains_label_array = fetch_data((datetime.now() - timedelta(days=2)))
|
|
|
- logger.info("特征获取完成,开始训练")
|
|
|
+ logger.info(f"特征获取完成,开始训练。 训练使用的数据量: {train_df.shape[0]}")
|
|
|
model = xgb.XGBClassifier(
|
|
|
- n_estimators=100,
|
|
|
+ n_estimators=1000,
|
|
|
learning_rate=0.01,
|
|
|
max_depth=5,
|
|
|
min_child_weight=1,
|
|
@@ -132,22 +280,35 @@ def _main():
|
|
|
random_state=2024,
|
|
|
seed=2024,
|
|
|
)
|
|
|
- model.fit(trains_array, trains_label_array, verbose=True)
|
|
|
+ model.fit(trains_array, trains_label_array)
|
|
|
|
|
|
logger.info("获取评测数据")
|
|
|
- df_test, tests_array, _ = fetch_data(datetime.now() - timedelta(days=1))
|
|
|
- y_pred = model.predict_proba(tests_array)[:, 1]
|
|
|
- df_test["y_pred"] = y_pred
|
|
|
+ start_label_datetime = datetime.now() - timedelta(days=1)
|
|
|
+ feature_start_datetime = start_label_datetime - timedelta(1)
|
|
|
|
|
|
- condition_choose = ((df_test['y_pred'] <= 0.2)
|
|
|
- # & ((df_test['1_vov0_分母'] > 50) | (df_test['2_vov0_分母'] > 50) | (df_test['3_vov0_分母'] > 50))
|
|
|
- & (df_test.index <= 10000)
|
|
|
- )
|
|
|
+ predict_df = fetch_data(start_label_datetime, feature_start_datetime, start_label_datetime)
|
|
|
+ tests_array = predict_df[features_name].values
|
|
|
+ y_pred = model.predict_proba(tests_array)[:, 1]
|
|
|
+ predict_df["y_pred"] = y_pred
|
|
|
+ condition_choose = (
|
|
|
+ (predict_df['y_pred'] <= 0.1) &
|
|
|
+ (
|
|
|
+ (predict_df['4_vov0_分母'] > 50) |
|
|
|
+ (predict_df['2_vov0_分母'] > 50) |
|
|
|
+ (predict_df['3_vov0_分母'] > 50)
|
|
|
+ ) &
|
|
|
+ (
|
|
|
+ (predict_df['1_vov0'] - predict_df['2_vov0'] <= 0.1)
|
|
|
+ )
|
|
|
+ )
|
|
|
profit_threshold = 0.3
|
|
|
- condition_choose_real = condition_choose & (df_test['vov0'] <= profit_threshold)
|
|
|
- df_test["condition_choose"] = condition_choose
|
|
|
- df_test[["vid", "曝光占比", "vov0", "condition_choose"]].to_csv(
|
|
|
- "new_" + (datetime.now() - timedelta(days=1)).strftime("%Y%m%d"), sep="\t", index=False)
|
|
|
+ condition_choose_real = condition_choose & (predict_df['vov0'] <= profit_threshold)
|
|
|
+ predict_df["condition_choose"] = condition_choose
|
|
|
+ predict_df[["vid", "曝光占比", "vov0", "condition_choose"]].to_csv(
|
|
|
+ "new_" + (datetime.now() - timedelta(days=1)).strftime("%Y%m%d"),
|
|
|
+ sep="\t",
|
|
|
+ index=False
|
|
|
+ )
|
|
|
|
|
|
choose_bad = condition_choose.sum()
|
|
|
choose_bad_real_bad = condition_choose_real.sum()
|
|
@@ -156,21 +317,21 @@ def _main():
|
|
|
f"acc:{acc} "
|
|
|
f"分子={choose_bad_real_bad} "
|
|
|
f"分母={choose_bad} "
|
|
|
- f"总视频数={df_test.size} "
|
|
|
+ f"总视频数={predict_df.shape[0]} "
|
|
|
f"盈利计算标注vov0大于:{profit_threshold}"
|
|
|
)
|
|
|
|
|
|
- surface = df_test.loc[condition_choose, '曝光占比'].sum()
|
|
|
- surface_income = df_test.loc[condition_choose_real, '曝光占比'].sum()
|
|
|
+ surface = predict_df.loc[condition_choose, '曝光占比'].sum()
|
|
|
+ surface_income = predict_df.loc[condition_choose_real, '曝光占比'].sum()
|
|
|
logger.info(
|
|
|
f"总影响面:{round(surface, 6)} "
|
|
|
f"盈利影响面:{round(surface_income, 6)} "
|
|
|
f"亏损影响面:{round(surface - surface_income, 6)}"
|
|
|
)
|
|
|
|
|
|
- df_test["profit_loss_value"] = df_test['分母'] * (df_test['vov0'] - profit_threshold)
|
|
|
- profit_loss_value = df_test.loc[condition_choose, 'profit_loss_value'].sum()
|
|
|
- profit_value = df_test.loc[condition_choose_real, 'profit_loss_value'].sum()
|
|
|
+ predict_df["profit_loss_value"] = predict_df['分母'] * (predict_df['vov0'] - profit_threshold)
|
|
|
+ profit_loss_value = predict_df.loc[condition_choose, 'profit_loss_value'].sum()
|
|
|
+ profit_value = predict_df.loc[condition_choose_real, 'profit_loss_value'].sum()
|
|
|
logger.info(
|
|
|
f"总盈亏:{round(profit_loss_value, 1)} "
|
|
|
f"纯盈利:{round(profit_value, 1)} "
|
|
@@ -178,6 +339,9 @@ def _main():
|
|
|
f"盈利效率:{round(profit_loss_value / profit_value, 6)}"
|
|
|
)
|
|
|
|
|
|
+ filtered_vid = predict_df.loc[condition_choose_real, 'vid'].unique()
|
|
|
+ print(f"要过滤掉的视频ID为: {filtered_vid}")
|
|
|
+
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
try:
|