job.py 9.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261
  1. import json
  2. import os
  3. import time
  4. import uuid
  5. from typing import Literal, Optional, Tuple
  6. import cv2
  7. import google.generativeai as genai
  8. import requests
  9. import schedule
  10. from google.generativeai.types import (File, GenerateContentResponse,
  11. HarmBlockThreshold, HarmCategory)
  12. from loguru import logger
  13. from common.aliyun_log import AliyunLogger
  14. from common.common_log import Common
  15. from common.feishu_data import Material
  16. from common.redis import SyncRedisHelper
  17. ENV = os.getenv('ENV', 'dev')
  18. API_KEY = os.getenv('API_KEY')
  19. TASK_TYPE = os.getenv('TASK_TYPE')
  20. PROXY_ADDR = 'http://localhost:1081'
  21. CACHE_DIR = '/app/cache/' if ENV == 'prod' else os.path.expanduser('~/Downloads/')
  22. SAMPLE_DATA = {
  23. "一、基础信息": {
  24. "关键维度": "",
  25. "内容选题": "",
  26. "视频主题": "",
  27. "视频关键词":""
  28. },
  29. "二、主体和场景": {
  30. "视频主体": "",
  31. "视频场景": []
  32. },
  33. "三、情感与风格": {
  34. "情感倾向":"",
  35. "视频风格":""
  36. },
  37. "四、视频传播性与画像": {
  38. "片尾引导": {},
  39. "传播性判断": "",
  40. "视频用户画像": {}
  41. },
  42. "五、音画细节": {
  43. "音频细节": {},
  44. "视频水印": {},
  45. "视频字幕": {},
  46. "视频口播": ""
  47. },
  48. "六、封面信息": {
  49. "封面主体": "",
  50. "人物个数": "",
  51. "文字数量": "",
  52. "文字关键字":[],
  53. "封面主题":""
  54. },
  55. "七、人物与场景": {
  56. "知名人物":"",
  57. "人物年龄段":"",
  58. "场景描述": ""
  59. },
  60. "八、时效性与分类": {
  61. "时效性":"",
  62. "视频一级分类": "",
  63. "二级分类": ["品类- 、分数-", "品类- 、分数-", "品类- 、分数-"]
  64. },
  65. "九、标题理解": {
  66. }
  67. }
  68. if ENV == 'dev':
  69. os.environ['http_proxy'] = PROXY_ADDR
  70. os.environ['https_proxy'] = PROXY_ADDR
  71. def get_redis_task(task_type: Literal['recommend', 'top']) -> Optional[bytes]:
  72. redis_key = f'task:video_ai_{task_type}'
  73. redis_task: bytes = SyncRedisHelper().get_client().rpop(redis_key)
  74. if redis_task:
  75. logger.success(f'[+] 获取到 {task_type} 类型任务: {redis_task.decode()}')
  76. else:
  77. logger.error(f'[+] 未获取到 {task_type} 类型任务')
  78. return redis_task
  79. def get_video_duration(video_link: str) -> int:
  80. cap = cv2.VideoCapture(video_link)
  81. if cap.isOpened():
  82. rate = cap.get(5)
  83. frame_num = cap.get(7)
  84. duration = int(frame_num / rate)
  85. return duration
  86. return 0
  87. def download_video(video_link: str) -> Optional[str]:
  88. file_path = os.path.join(CACHE_DIR, f'{str(uuid.uuid4())}.mp4')
  89. for _ in range(3):
  90. try:
  91. response = requests.get(url=video_link, timeout=360)
  92. if response.status_code == 200:
  93. with open(file_path, 'wb') as f:
  94. f.write(response.content)
  95. logger.info(f'[+] 视频链接: {video_link}, 存储地址: {file_path}')
  96. return file_path
  97. except Exception:
  98. time.sleep(1)
  99. continue
  100. return
  101. def upload_video(video_path: str, redis_task) -> Optional[Tuple[File, str]]:
  102. try:
  103. file = genai.upload_file(path=video_path)
  104. while True:
  105. if file.state.name == 'PROCESSING':
  106. time.sleep(1)
  107. file = genai.get_file(name=file.name)
  108. else:
  109. return file, file.state.name
  110. except Exception as e:
  111. AliyunLogger.logging( str( redis_task['video_id'] ), redis_task['title'], redis_task['video_path'], '',
  112. redis_task['type'], redis_task['partition'], f"[+] 上传视频失败: {e}" )
  113. logger.error(f'[+] 上传视频失败: {e}')
  114. return
  115. def create_model_cache(redis_task) -> Optional[genai.GenerativeModel]:
  116. try:
  117. model = genai.GenerativeModel(
  118. model_name='gemini-1.5-flash',
  119. generation_config={'response_mime_type': 'application/json'},
  120. safety_settings={HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT: HarmBlockThreshold.BLOCK_NONE},
  121. )
  122. logger.info('[+] 创建缓存模型成功')
  123. return model
  124. except Exception as e:
  125. AliyunLogger.logging( str( redis_task['video_id'] ), redis_task['title'], redis_task['video_path'], '',
  126. redis_task['type'], redis_task['partition'], f"[+] 视频创建缓存内容,并返回生成模型异常信息: {e}" )
  127. logger.error(f'视频创建缓存内容,并返回生成模型异常信息: {e}')
  128. Common.logger('ai').info(f'视频创建缓存内容,并返回生成模型异常信息: {e}')
  129. return
  130. def analyze_video(model: genai.GenerativeModel, google_file: File, prompt: str, redis_task, title) -> Optional[GenerateContentResponse]:
  131. try:
  132. session = model.start_chat(history=[])
  133. if title:
  134. content = {
  135. 'parts': [
  136. google_file,
  137. f'{prompt}\n输出返回格式样例:\n{SAMPLE_DATA}',
  138. ],
  139. }
  140. return session.send_message(content=content)
  141. else:
  142. content = {
  143. 'parts': [
  144. google_file,
  145. f'{prompt}\n九、标题理解:请对"{title}"标题进行分析概括3~5个词[]":\n输出返回格式样例:\n{SAMPLE_DATA}',
  146. ],
  147. }
  148. return session.send_message(content=content)
  149. except Exception as e:
  150. AliyunLogger.logging( str( redis_task['video_id'] ), redis_task['title'], redis_task['video_path'], '',
  151. redis_task['type'], redis_task['partition'], f"[+] 视频处理请求失败: {e}" )
  152. logger.error(f'视频处理请求失败: {e}')
  153. Common.logger('ai').info(f'视频处理请求失败: {e}')
  154. return
  155. def run():
  156. if not API_KEY:
  157. logger.error('[+] 请在环境变量中新增 API_KEY')
  158. return
  159. if not TASK_TYPE:
  160. logger.error('[+] 请在环境变量中新增 TASK_TYPE, 可选值: recommend | top')
  161. return
  162. genai.configure(api_key=API_KEY)
  163. redis_task = get_redis_task(task_type=TASK_TYPE)
  164. if not redis_task:
  165. time.sleep(10)
  166. return
  167. redis_task = json.loads(redis_task)
  168. mark, prompt = Material.feishu_list()
  169. video_duration = get_video_duration(video_link=redis_task['video_path'])
  170. if not video_duration:
  171. AliyunLogger.logging( str( redis_task['video_id'] ), redis_task['title'], redis_task['video_path'], "",
  172. redis_task['type'], redis_task['partition'], "[+] 获取视频时长失败, 跳过任务" )
  173. logger.error('[+] 获取视频时长失败, 跳过任务')
  174. return
  175. elif video_duration >= 600:
  176. AliyunLogger.logging( str( redis_task['video_id'] ), redis_task['title'], redis_task['video_path'], "",
  177. redis_task['type'], redis_task['partition'], "[+] 视频时长超过10分钟, 跳过任务" )
  178. logger.error('[+] 视频时长超过10分钟, 跳过任务')
  179. return
  180. video_path = download_video(video_link=redis_task['video_path'])
  181. if not video_path:
  182. AliyunLogger.logging( str( redis_task['video_id'] ), redis_task['title'], redis_task['video_path'], "",
  183. redis_task['type'], redis_task['partition'], "[+] 视频下载失败, 跳过任务" )
  184. logger.error(f'[+] 视频下载失败, 跳过任务')
  185. if os.path.exists(video_path):
  186. os.remove(video_path)
  187. logger.info(f"文件已删除: {video_path}")
  188. return
  189. google_file, google_file_state = upload_video(video_path=video_path, redis_task=redis_task)
  190. if not google_file_state:
  191. return
  192. elif google_file_state != 'ACTIVE':
  193. logger.error('[+] 视频上传状态不为 ACTIVE, 跳过任务')
  194. genai.delete_file(google_file)
  195. if os.path.exists(video_path):
  196. os.remove(video_path)
  197. logger.info(f"文件已删除: {video_path}")
  198. return
  199. model = create_model_cache(redis_task=redis_task)
  200. if isinstance(model, str):
  201. logger.error('[+] 创建模型失败, 跳过任务')
  202. genai.delete_file(google_file)
  203. if os.path.exists(video_path):
  204. os.remove(video_path)
  205. logger.info(f"文件已删除: {video_path}")
  206. return
  207. response = analyze_video(model=model, google_file=google_file, prompt=prompt, redis_task=redis_task, title=redis_task['title'])
  208. if isinstance(response, str):
  209. logger.error('[+] 获取模型响应失败, 跳过任务')
  210. genai.delete_file(google_file)
  211. if os.path.exists(video_path):
  212. os.remove(video_path)
  213. logger.info(f"文件已删除: {video_path}")
  214. return
  215. text = response.text.strip()
  216. cleaned_text = text.replace("```json", '').replace("```", '').strip()
  217. AliyunLogger.logging( str(redis_task['video_id']), redis_task['title'], redis_task['video_path'], str(mark), redis_task['type'], redis_task['partition'], str(cleaned_text))
  218. logger.info(f'[+] 模型响应结果: {text}')
  219. if os.path.exists(video_path):
  220. os.remove(video_path)
  221. logger.info(f"文件已删除: {video_path}")
  222. genai.delete_file(google_file)
  223. if __name__ == '__main__':
  224. logger.info(f'[+] 任务已启动 -> API_KEY: {API_KEY}, TASK_TYPE: {TASK_TYPE}')
  225. schedule.every(interval=1).seconds.do(run)
  226. while True:
  227. try:
  228. schedule.run_pending()
  229. time.sleep(1)
  230. except KeyboardInterrupt:
  231. break
  232. logger.info('[+] 任务已停止')