analyze_video.py 1.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748
  1. import uvicorn
  2. from fastapi import FastAPI
  3. from pydantic import BaseModel
  4. from google_ai.generativeai_video import main
  5. app = FastAPI()
  6. api_keys = ["AIzaSyB2kjF2-S2B5cJiosx_LpApd227w33CVvs", "AIzaSyCor0q5w37Dy6fGxloLlCT7KqyEFU3PWP8"]
  7. api_key_index = 0 # 初始化索引
  8. class VideoRequest(BaseModel):
  9. video_path: str
  10. prompt: str
  11. mark: str
  12. sample_data: str
  13. @app.post("/process_video/")
  14. async def process_video(request: VideoRequest):
  15. """处理视频请求"""
  16. global api_key_index # 引用全局索引
  17. video_path = request.video_path
  18. prompt = request.prompt
  19. mark = request.mark
  20. sample_data = request.sample_data
  21. api_key = api_keys[api_key_index]
  22. api_key_index = (api_key_index + 1) % len(api_keys)
  23. try:
  24. print("来一个请求,使用 API key:", api_key)
  25. result, mark = await main(video_path, api_key, prompt, mark, sample_data)
  26. return {
  27. "code": 0,
  28. "message": "视频处理成功",
  29. "result": result,
  30. "mark": mark
  31. }
  32. except Exception as e:
  33. print(f"视频处理失败: {str(e)}")
  34. return {
  35. "code": 1,
  36. "message": f"视频处理失败: {e}",
  37. "result": f"视频处理失败: {e}",
  38. "mark": f"视频处理失败: {e}"
  39. }
  40. if __name__ == "__main__":
  41. uvicorn.run(app, host="0.0.0.0", port=8081)