| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362 |
- """
- 测试评估V4模块 (LangGraph + Gemini)
- 从现有run_context.json读取帖子,使用V4评估模块重新评估,生成统计报告
- """
- import asyncio
- import json
- import sys
- from pathlib import Path
- from datetime import datetime
- from collections import defaultdict
- # 导入必要的模块
- from knowledge_search_traverse import Post
- from post_evaluator_v4_langgraph import evaluate_post_v4, apply_evaluation_v4_to_post
- async def test_evaluation_v4(run_context_path: str, max_posts: int = 20):
- """
- 测试V4评估模块
- Args:
- run_context_path: run_context.json路径
- max_posts: 最多评估的帖子数量(用于快速测试)
- """
- print(f"\n{'='*80}")
- print(f"📊 评估V4测试 (LangGraph + Gemini) - {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")
- print(f"{'='*80}\n")
- # 读取run_context.json
- print(f"📂 读取: {run_context_path}")
- with open(run_context_path, 'r', encoding='utf-8') as f:
- run_context = json.load(f)
- # 提取原始query
- original_query = run_context.get('o', '')
- print(f"🔍 原始Query: {original_query}\n")
- # 提取所有帖子 (从rounds -> search_results -> post_list)
- post_data_list = []
- rounds = run_context.get('rounds', [])
- for round_idx, round_data in enumerate(rounds):
- search_results = round_data.get('search_results', [])
- for search_idx, search in enumerate(search_results):
- post_list = search.get('post_list', [])
- for post_idx, post_data in enumerate(post_list):
- # 生成唯一ID
- post_id = f"r{round_idx}_s{search_idx}_p{post_idx}"
- post_data_list.append((round_idx, search_idx, post_id, post_data))
- total_posts = len(post_data_list)
- print(f"📝 找到 {total_posts} 个帖子 (来自 {len(rounds)} 轮)")
- # 限制评估数量(快速测试)
- if max_posts and max_posts < total_posts:
- post_data_list = post_data_list[:max_posts]
- print(f"⚡ 快速测试模式: 仅评估前 {max_posts} 个帖子\n")
- else:
- print()
- # 将post_data转换为Post对象
- posts = []
- for round_idx, search_idx, post_id, post_data in post_data_list:
- post = Post(
- note_id=post_data.get('note_id', post_id),
- title=post_data.get('title', ''),
- body_text=post_data.get('body_text', ''),
- images=post_data.get('images', []),
- type=post_data.get('type', 'normal'),
- video=post_data.get('video', '') # 添加video字段
- )
- posts.append((round_idx, search_idx, post_id, post))
- # 批量评估
- print(f"🚀 开始并行评估 (最多{len(posts)}个任务,并发限制: 5)...\n")
- semaphore = asyncio.Semaphore(5)
- tasks = []
- # 1. 创建所有任务
- for round_idx, search_idx, post_id, post in posts:
- task = evaluate_post_v4(post, original_query, semaphore)
- tasks.append((round_idx, search_idx, post_id, post, task))
- # 2. 并行执行所有任务
- task_coroutines = [task for _, _, _, _, task in tasks]
- all_eval_results = await asyncio.gather(*task_coroutines)
- # 3. 处理结果
- results = []
- detailed_reports = [] # 收集详细评估报告
- print(f"📊 处理评估结果...\n")
- for i, ((round_idx, search_idx, post_id, post, _), eval_result) in enumerate(zip(tasks, all_eval_results), 1):
- knowledge_eval, content_eval, purpose_eval, category_eval, final_score, match_level = eval_result
- print(f" [{i}/{len(tasks)}] {post.note_id} - {post.title[:40]}", end="")
- if knowledge_eval:
- if final_score is not None:
- print(f" → {match_level} ({final_score:.1f}分)")
- elif content_eval and not content_eval.is_content_knowledge:
- print(f" → 非内容知识")
- elif knowledge_eval and not knowledge_eval.is_knowledge:
- print(f" → 非知识")
- else:
- print(f" → 评估未完成")
- # 打印详细判断原因
- print(f" 📝 知识评估: {knowledge_eval.conclusion if knowledge_eval.conclusion else '无'}")
- if content_eval and content_eval.is_content_knowledge:
- print(f" 📚 内容知识: {content_eval.summary[:80] if content_eval.summary else '无'}...")
- if purpose_eval:
- print(f" 🎯 目的匹配: {purpose_eval.core_basis[:80] if purpose_eval.core_basis else '无'}...")
- if category_eval:
- print(f" 🏷️ 品类匹配: {category_eval.core_basis[:80] if category_eval.core_basis else '无'}...")
- print()
- # 收集详细报告
- detailed_report = {
- 'post_index': i,
- 'note_id': post.note_id,
- 'title': post.title,
- 'type': post.type,
- 'final_score': final_score,
- 'match_level': match_level,
- 'is_knowledge': knowledge_eval.is_knowledge if knowledge_eval else None,
- 'is_content_knowledge': content_eval.is_content_knowledge if content_eval else None,
- 'knowledge_score': content_eval.final_score if content_eval else None,
- 'evaluations': {
- 'knowledge': {
- 'conclusion': knowledge_eval.conclusion if knowledge_eval else None,
- 'core_evidence': knowledge_eval.core_evidence if knowledge_eval and hasattr(knowledge_eval, 'core_evidence') else None,
- 'issues': knowledge_eval.issues if knowledge_eval and hasattr(knowledge_eval, 'issues') else None
- },
- 'content_knowledge': {
- 'summary': content_eval.summary if content_eval else None,
- 'final_score': content_eval.final_score if content_eval else None,
- 'level': content_eval.level if content_eval else None
- } if content_eval and content_eval.is_content_knowledge else None,
- 'purpose': {
- 'score': purpose_eval.purpose_score if purpose_eval else None,
- 'core_motivation': purpose_eval.core_motivation if purpose_eval else None,
- 'core_basis': purpose_eval.core_basis if purpose_eval else None,
- 'match_level': purpose_eval.match_level if purpose_eval else None
- } if purpose_eval else None,
- 'category': {
- 'score': category_eval.category_score if category_eval else None,
- 'core_basis': category_eval.core_basis if category_eval else None,
- 'match_level': category_eval.match_level if category_eval else None
- } if category_eval else None
- }
- }
- detailed_reports.append(detailed_report)
- # 应用评估结果
- apply_evaluation_v4_to_post(
- post,
- knowledge_eval,
- content_eval,
- purpose_eval,
- category_eval,
- final_score,
- match_level
- )
- results.append((round_idx, search_idx, post_id, post))
- else:
- print(f" → ❌ 评估失败\n")
- print(f"\n✅ 评估完成: {len(results)}/{len(posts)} 成功\n")
- # 更新run_context.json中的帖子数据
- print("💾 更新 run_context.json...")
- for round_idx, search_idx, post_id, post in results:
- # 定位到对应的post_list
- if round_idx < len(rounds):
- search_results = rounds[round_idx].get('search_results', [])
- if search_idx < len(search_results):
- post_list = search_results[search_idx].get('post_list', [])
- # 找到对应的帖子并更新
- for p in post_list:
- if p.get('note_id') == post.note_id:
- # 更新V4顶层字段
- p['is_knowledge'] = post.is_knowledge
- p['is_content_knowledge'] = post.is_content_knowledge
- p['knowledge_score'] = post.knowledge_score
- p['purpose_score'] = post.purpose_score
- p['category_score'] = post.category_score
- p['final_score'] = post.final_score
- p['match_level'] = post.match_level
- p['evaluation_time'] = post.evaluation_time
- p['evaluator_version'] = post.evaluator_version
- # 更新V4嵌套字段
- p['knowledge_evaluation'] = post.knowledge_evaluation
- p['content_knowledge_evaluation'] = post.content_knowledge_evaluation
- p['purpose_evaluation'] = post.purpose_evaluation
- p['category_evaluation'] = post.category_evaluation
- break
- # 保存更新后的run_context.json
- output_path = run_context_path.replace('.json', '_v4.json')
- with open(output_path, 'w', encoding='utf-8') as f:
- json.dump(run_context, f, ensure_ascii=False, indent=2)
- print(f"✅ 已保存: {output_path}")
- # 保存详细评估报告
- report_path = run_context_path.replace('.json', '_evaluation_report_v4.json')
- evaluation_report = {
- 'metadata': {
- 'original_query': original_query,
- 'total_posts': len(results),
- 'evaluation_time': datetime.now().strftime('%Y-%m-%d %H:%M:%S'),
- 'evaluator_version': 'v4.0_langgraph'
- },
- 'detailed_reports': detailed_reports
- }
- with open(report_path, 'w', encoding='utf-8') as f:
- json.dump(evaluation_report, f, ensure_ascii=False, indent=2)
- print(f"📄 已保存详细评估报告: {report_path}\n")
- # 生成统计报告
- print(f"\n{'='*80}")
- print("📊 统计报告")
- print(f"{'='*80}\n")
- # Prompt1: 是否是知识
- is_knowledge_counts = defaultdict(int)
- for _, _, _, post in results:
- if post.is_knowledge:
- is_knowledge_counts['是知识'] += 1
- else:
- is_knowledge_counts['非知识'] += 1
- total = len(results)
- print("🔍 Prompt1 - 是否是知识:")
- print(f" 是知识: {is_knowledge_counts['是知识']:3d} / {total} ({is_knowledge_counts['是知识']/total*100:.1f}%)")
- print(f" 非知识: {is_knowledge_counts['非知识']:3d} / {total} ({is_knowledge_counts['非知识']/total*100:.1f}%)")
- print()
- # Prompt2: 是否是内容知识
- is_content_knowledge_counts = defaultdict(int)
- knowledge_scores = []
- for _, _, _, post in results:
- if post.is_content_knowledge is not None:
- if post.is_content_knowledge:
- is_content_knowledge_counts['是内容知识'] += 1
- else:
- is_content_knowledge_counts['非内容知识'] += 1
- if post.knowledge_score is not None:
- knowledge_scores.append(post.knowledge_score)
- if is_content_knowledge_counts:
- content_total = sum(is_content_knowledge_counts.values())
- print("📚 Prompt2 - 是否是内容知识:")
- print(f" 是内容知识: {is_content_knowledge_counts['是内容知识']:3d} / {content_total} ({is_content_knowledge_counts['是内容知识']/content_total*100:.1f}%)")
- if is_content_knowledge_counts['非内容知识'] > 0:
- print(f" 非内容知识: {is_content_knowledge_counts['非内容知识']:3d} / {content_total} ({is_content_knowledge_counts['非内容知识']/content_total*100:.1f}%)")
- print()
- if knowledge_scores:
- avg_score = sum(knowledge_scores) / len(knowledge_scores)
- print(f" 知识平均得分: {avg_score:.1f}分")
- print(f" 知识最高得分: {max(knowledge_scores):.0f}分")
- print(f" 知识最低得分: {min(knowledge_scores):.0f}分")
- print()
- # Prompt3 & Prompt4: 目的性和品类匹配
- purpose_scores = []
- category_scores = []
- final_scores = []
- match_level_counts = defaultdict(int)
- for _, _, _, post in results:
- if post.purpose_score is not None:
- purpose_scores.append(post.purpose_score)
- if post.category_score is not None:
- category_scores.append(post.category_score)
- if post.final_score is not None:
- final_scores.append(post.final_score)
- if post.match_level:
- match_level_counts[post.match_level] += 1
- if purpose_scores:
- avg_purpose = sum(purpose_scores) / len(purpose_scores)
- print("🎯 Prompt3 - 目的性匹配:")
- print(f" 平均得分: {avg_purpose:.1f}分")
- print(f" 最高得分: {max(purpose_scores):.0f}分")
- print(f" 最低得分: {min(purpose_scores):.0f}分")
- print()
- if category_scores:
- avg_category = sum(category_scores) / len(category_scores)
- print("🏷️ Prompt4 - 品类匹配:")
- print(f" 平均得分: {avg_category:.1f}分")
- print(f" 最高得分: {max(category_scores):.0f}分")
- print(f" 最低得分: {min(category_scores):.0f}分")
- print()
- if final_scores:
- avg_final = sum(final_scores) / len(final_scores)
- print("🔥 综合得分 (目的性50% + 品类50%):")
- print(f" 平均得分: {avg_final:.2f}分")
- print(f" 最高得分: {max(final_scores):.2f}分")
- print(f" 最低得分: {min(final_scores):.2f}分")
- print()
- if match_level_counts:
- print("📊 匹配等级分布:")
- for level in ['高度匹配', '基本匹配', '部分匹配', '弱匹配', '不匹配']:
- count = match_level_counts.get(level, 0)
- if count > 0:
- bar = '█' * int(count / total * 50)
- print(f" {level:8s}: {count:3d} / {total} ({count/total*100:.1f}%) {bar}")
- print()
- # 综合分析
- print("🌟 高质量内容统计:")
- # 是知识 + 是内容知识
- is_quality_knowledge = sum(
- 1 for _, _, _, post in results
- if post.is_knowledge and post.is_content_knowledge
- )
- print(f" 知识内容: {is_quality_knowledge} / {total} ({is_quality_knowledge/total*100:.1f}%)")
- # 是知识 + 是内容知识 + 高度匹配
- high_match = sum(
- 1 for _, _, _, post in results
- if post.is_knowledge and post.is_content_knowledge and post.match_level == '高度匹配'
- )
- print(f" 高度匹配: {high_match} / {total} ({high_match/total*100:.1f}%)")
- # 是知识 + 是内容知识 + 综合得分>=70
- high_score = sum(
- 1 for _, _, _, post in results
- if post.is_knowledge and post.is_content_knowledge and post.final_score and post.final_score >= 70
- )
- print(f" 得分≥70: {high_score} / {total} ({high_score/total*100:.1f}%)")
- print()
- print(f"{'='*80}\n")
- return results
- if __name__ == "__main__":
- if len(sys.argv) < 2:
- print("用法: python3 test_evaluation_v4.py <run_context.json路径> [最大评估数量]")
- print()
- print("示例:")
- print(" python3 test_evaluation_v4.py input/test_case/output/knowledge_search_traverse/20251114/005215_b1/run_context.json")
- print(" python3 test_evaluation_v4.py input/test_case/output/knowledge_search_traverse/20251114/005215_b1/run_context.json 20")
- sys.exit(1)
- run_context_path = sys.argv[1]
- max_posts = int(sys.argv[2]) if len(sys.argv) > 2 else 20 # 默认20条
- asyncio.run(test_evaluation_v4(run_context_path, max_posts))
|