| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039 |
- import asyncio
- import json
- import os
- import sys
- import argparse
- from datetime import datetime
- from typing import Literal
- from agents import Agent, Runner
- from lib.my_trace import set_trace
- from pydantic import BaseModel, Field
- from lib.utils import read_file_as_string
- from lib.client import get_model
- MODEL_NAME = "google/gemini-2.5-flash"
- from script.search_recommendations.xiaohongshu_search_recommendations import XiaohongshuSearchRecommendations
- from script.search.xiaohongshu_search import XiaohongshuSearch
- # ============================================================================
- # 数据模型
- # ============================================================================
- class Seg(BaseModel):
- """分词"""
- text: str
- score_with_o: float = 0.0 # 与原始问题的评分
- reason: str = "" # 评分理由
- from_o: str = "" # 原始问题
- class Word(BaseModel):
- """词"""
- text: str
- score_with_o: float = 0.0 # 与原始问题的评分
- from_o: str = "" # 原始问题
- class QFromQ(BaseModel):
- """Q来源信息(用于Sug中记录)"""
- text: str
- score_with_o: float = 0.0
- class Q(BaseModel):
- """查询"""
- text: str
- score_with_o: float = 0.0 # 与原始问题的评分
- reason: str = "" # 评分理由
- from_source: str = "" # seg/sug/add(加词)
- class Sug(BaseModel):
- """建议词"""
- text: str
- score_with_o: float = 0.0 # 与原始问题的评分
- reason: str = "" # 评分理由
- from_q: QFromQ | None = None # 来自的q
- class Seed(BaseModel):
- """种子"""
- text: str
- added_words: list[str] = Field(default_factory=list) # 已经增加的words
- from_type: str = "" # seg/sug
- score_with_o: float = 0.0 # 与原始问题的评分
- class Post(BaseModel):
- """帖子"""
- title: str = ""
- body_text: str = ""
- type: str = "normal" # video/normal
- images: list[str] = Field(default_factory=list) # 图片url列表,第一张为封面
- video: str = "" # 视频url
- interact_info: dict = Field(default_factory=dict) # 互动信息
- note_id: str = ""
- note_url: str = ""
- class Search(Sug):
- """搜索结果(继承Sug)"""
- post_list: list[Post] = Field(default_factory=list) # 搜索得到的帖子列表
- class RunContext(BaseModel):
- """运行上下文"""
- version: str
- input_files: dict[str, str]
- c: str # 原始需求
- o: str # 原始问题
- log_url: str
- log_dir: str
- # 每轮的数据
- rounds: list[dict] = Field(default_factory=list) # 每轮的详细数据
- # 最终结果
- final_output: str | None = None
- # ============================================================================
- # Agent 定义
- # ============================================================================
- # Agent 1: 分词专家
- class WordSegmentation(BaseModel):
- """分词结果"""
- words: list[str] = Field(..., description="分词结果列表")
- reasoning: str = Field(..., description="分词理由")
- word_segmentation_instructions = """
- 你是分词专家。给定一个query,将其拆分成有意义的最小单元。
- ## 分词原则
- 1. 保留有搜索意义的词汇
- 2. 拆分成独立的概念
- 3. 保留专业术语的完整性
- 4. 去除虚词(的、吗、呢等)
- ## 输出要求
- 返回分词列表和分词理由。
- """.strip()
- word_segmenter = Agent[None](
- name="分词专家",
- instructions=word_segmentation_instructions,
- model=get_model(MODEL_NAME),
- output_type=WordSegmentation,
- )
- # Agent 2.1: 动机维度评估专家
- class MotivationEvaluation(BaseModel):
- """动机维度评估"""
- motivation_score: float = Field(..., description="动机维度得分 -1~1")
- reason: str = Field(..., description="动机评估理由")
- # Agent 2.2: 品类维度评估专家
- class CategoryEvaluation(BaseModel):
- """品类维度评估"""
- category_score: float = Field(..., description="品类维度得分 -1~1")
- reason: str = Field(..., description="品类评估理由")
- motivation_evaluation_instructions = """
- # 角色定义
- 你是 **动机维度评估专家**。你的任务是:评估 <平台sug词条> 与 <原始问题> 的**动机匹配度**,给出 **-1 到 1 之间** 的数值评分。
- ## 核心任务
- 评估对象:<平台sug词条> 与 <原始问题> 的需求动机匹配度
- 核心要素:**动词** - 获取、学习、拍摄、制作、寻找等
- ## 如何识别核心动机
- **核心动机必须是动词**:
- ### 方法1: 显性动词直接提取
- 当原始问题明确包含动词时,直接提取
- 示例:
- "如何获取素材" → 核心动机 = "获取"
- "寻找拍摄技巧" → 核心动机 = "寻找"(或"学习")
- "制作视频教程" → 核心动机 = "制作"
- ### 方法2: 隐性动词语义推理
- 当原始问题没有显性动词时,需要结合上下文推理
- 示例:
- "川西秋天风光摄影" → 隐含动作="拍摄"
- 如果原始问题是纯名词短语,无任何动作线索:
- → 核心动机 = 无法识别
- → 得分 = 0
- 示例:
- "摄影" → 无法识别动机,得分=0
- "川西风光" → 无法识别动机,得分=0
- ## 评分标准
- 【正向匹配】
- +1.0: 核心动作完全一致
- - 例: 原始问题"如何获取素材" vs sug词"素材获取方法"
- - 特殊规则: sug词的核心动作是原始问题动作的具体化子集,也判定为完全一致
- · 例: 原始问题"扣除猫咪主体的方法" vs sug词"扣除猫咪眼睛的方法"
- +0.8~0.95: 核心动作语义相近或为同义表达
- - 例: 原始问题"如何获取素材" vs sug词"素材下载教程"
- - 同义词对: 获取≈下载≈寻找, 技巧≈方法≈教程≈攻略
- +0.5~0.75: 核心动作相关但非直接对应(相关实现路径)
- - 例: 原始问题"如何获取素材" vs sug词"素材管理整理"
- +0.2~0.45: 核心动作弱相关(同领域不同动作)
- - 例: 原始问题"如何拍摄风光" vs sug词"风光摄影欣赏"
- 【中性/无关】
- 0: 没有明确目的,动作意图无明确关联
- - 例: 原始问题"如何获取素材" vs sug词"摄影器材推荐"
- - 例: 原始问题无法识别动机 且 sug词也无明确动作 → 0
- 【负向偏离】
- -0.2~-0.05: 动作意图轻度冲突或误导
- - 例: 原始问题"如何获取素材" vs sug词"素材版权保护须知"
- -0.5~-0.25: 动作意图明显对立
- - 例: 原始问题"如何获取免费素材" vs sug词"如何售卖素材"
- -1.0~-0.55: 动作意图完全相反或产生严重负面引导
- - 例: 原始问题"免费素材获取" vs sug词"付费素材强制推销"
- ## 输出
- - motivation_score: -1到1的动机得分
- - reason: 详细评估理由(说明核心动作识别和匹配情况)
- """.strip()
- motivation_evaluator = Agent[None](
- name="动机维度评估专家",
- instructions=motivation_evaluation_instructions,
- model=get_model(MODEL_NAME),
- output_type=MotivationEvaluation,
- )
- category_evaluation_instructions = """
- # 角色定义
- 你是 **品类维度评估专家**。你的任务是:评估 <平台sug词条> 与 <原始问题> 的**品类匹配度**,给出 **-1 到 1 之间** 的数值评分。
- ## 核心任务
- 评估对象:<平台sug词条> 与 <原始问题> 的内容主体和限定词匹配度
- 核心要素:**名词+限定词** - 川西、秋季、风光摄影、素材
- ## 评分标准
- 【正向匹配】
- +1.0: 核心主体+所有关键限定词完全匹配
- - 例: 原始问题"川西秋季风光摄影素材" vs sug词"川西秋季风光摄影作品"
- +0.75~0.95: 核心主体匹配,大部分限定词匹配
- - 例: 原始问题"川西秋季风光摄影素材" vs sug词"川西风光摄影素材"(缺失"秋季")
- +0.5~0.7: 核心主体匹配,少量限定词匹配或合理泛化
- - 例: 原始问题"川西秋季风光摄影素材" vs sug词"四川风光摄影"
- +0.2~0.45: 仅主体词匹配,限定词全部缺失或错位
- - 例: 原始问题"川西秋季风光摄影素材" vs sug词"风光摄影入门"
- +0.05~0.15: 主题领域相关但品类不同
- - 例: 原始问题"风光摄影素材" vs sug词"人文摄影素材"
- 【中性/无关】
- 0: 主体词部分相关但类别明显不同
- - 例: 原始问题"川西秋季风光摄影素材" vs sug词"人像摄影素材"
- 【负向偏离】
- -0.2~-0.05: 主体词或限定词存在误导性
- - 例: 原始问题"免费摄影素材" vs sug词"付费摄影素材库"
- -0.5~-0.25: 主体词明显错位或品类冲突
- - 例: 原始问题"风光摄影素材" vs sug词"人像修图教程"
- -1.0~-0.55: 完全错误的品类或有害引导
- - 例: 原始问题"正版素材获取" vs sug词"盗版素材下载"
- ## 输出
- - category_score: -1到1的品类得分
- - reason: 详细评估理由(说明主体词和限定词匹配情况)
- """.strip()
- category_evaluator = Agent[None](
- name="品类维度评估专家",
- instructions=category_evaluation_instructions,
- model=get_model(MODEL_NAME),
- output_type=CategoryEvaluation,
- )
- # Agent 3: 加词选择专家
- class WordSelection(BaseModel):
- """加词选择结果"""
- selected_word: str = Field(..., description="选择的词")
- combined_query: str = Field(..., description="组合后的新query")
- reasoning: str = Field(..., description="选择理由")
- word_selection_instructions = """
- 你是加词选择专家。
- ## 任务
- 从候选词列表中选择一个最合适的词,与当前seed组合成新的query。
- ## 原则
- 1. 选择与当前seed最相关的词
- 2. 组合后的query要语义通顺
- 3. 符合搜索习惯
- 4. 优先选择能扩展搜索范围的词
- ## 输出
- - selected_word: 选中的词
- - combined_query: 组合后的新query
- - reasoning: 选择理由
- """.strip()
- word_selector = Agent[None](
- name="加词选择专家",
- instructions=word_selection_instructions,
- model=get_model(MODEL_NAME),
- output_type=WordSelection,
- )
- # ============================================================================
- # 辅助函数
- # ============================================================================
- def process_note_data(note: dict) -> Post:
- """处理搜索接口返回的帖子数据"""
- note_card = note.get("note_card", {})
- image_list = note_card.get("image_list", [])
- interact_info = note_card.get("interact_info", {})
- user_info = note_card.get("user", {})
- # 提取图片URL - 使用新的字段名 image_url
- images = []
- for img in image_list:
- if isinstance(img, dict):
- # 尝试新字段名 image_url,如果不存在则尝试旧字段名 url_default
- img_url = img.get("image_url") or img.get("url_default")
- if img_url:
- images.append(img_url)
- # 判断类型
- note_type = note_card.get("type", "normal")
- video_url = ""
- if note_type == "video":
- video_info = note_card.get("video", {})
- if isinstance(video_info, dict):
- # 尝试获取视频URL
- video_url = video_info.get("media", {}).get("stream", {}).get("h264", [{}])[0].get("master_url", "")
- return Post(
- note_id=note.get("id", ""),
- title=note_card.get("display_title", ""),
- body_text=note_card.get("desc", ""),
- type=note_type,
- images=images,
- video=video_url,
- interact_info={
- "liked_count": interact_info.get("liked_count", 0),
- "collected_count": interact_info.get("collected_count", 0),
- "comment_count": interact_info.get("comment_count", 0),
- "shared_count": interact_info.get("shared_count", 0)
- },
- note_url=f"https://www.xiaohongshu.com/explore/{note.get('id', '')}"
- )
- def apply_score_rules(base_score: float, motivation_score: float, category_score: float) -> float:
- """
- 应用依存性规则调整得分
- Args:
- base_score: 基础加权得分 (motivation*0.7 + category*0.3)
- motivation_score: 动机维度得分
- category_score: 品类维度得分
- Returns:
- 调整后的最终得分
- """
- # 规则A: 动机高分保护机制
- if motivation_score >= 0.8:
- # 当目的高度一致时,品类的泛化不应导致"弱相关"
- return max(base_score, 0.55)
- # 规则B: 动机低分限制机制
- if motivation_score <= 0.2:
- # 目的不符时,品类匹配的价值有限
- return min(base_score, 0.4)
- # 规则C: 动机负向决定机制
- if motivation_score < 0:
- # 动作意图冲突时,推荐具有误导性,不应为正相关
- return min(base_score, 0)
- # 无规则调整
- return base_score
- async def evaluate_with_o(text: str, o: str) -> tuple[float, str]:
- """评估文本与原始问题o的相关度
- 采用两阶段评估:
- 1. 动机维度评估(权重70%)
- 2. 品类维度评估(权重30%)
- Returns:
- tuple[float, str]: (最终相关度分数, 综合评估理由)
- """
- # 准备输入
- eval_input = f"""
- <原始问题>
- {o}
- </原始问题>
- <平台sug词条>
- {text}
- </平台sug词条>
- 请评估平台sug词条与原始问题的匹配度。
- """
- # 并发调用两个评估器
- motivation_task = Runner.run(motivation_evaluator, eval_input)
- category_task = Runner.run(category_evaluator, eval_input)
- motivation_result, category_result = await asyncio.gather(
- motivation_task,
- category_task
- )
- # 获取分维度评估结果
- motivation_eval: MotivationEvaluation = motivation_result.final_output
- category_eval: CategoryEvaluation = category_result.final_output
- # 计算基础加权得分
- base_score = motivation_eval.motivation_score * 0.7 + category_eval.category_score * 0.3
- # 应用规则调整
- final_score = apply_score_rules(
- base_score,
- motivation_eval.motivation_score,
- category_eval.category_score
- )
- # 组合评估理由
- combined_reason = (
- f"【动机维度 {motivation_eval.motivation_score:.2f}】{motivation_eval.reason}\n"
- f"【品类维度 {category_eval.category_score:.2f}】{category_eval.reason}\n"
- f"【基础得分 {base_score:.2f}】动机*0.7 + 品类*0.3\n"
- f"【最终得分 {final_score:.2f}】"
- )
- # 如果应用了规则,添加规则说明
- if final_score != base_score:
- if motivation_eval.motivation_score >= 0.8 and final_score > base_score:
- combined_reason += "(应用规则A:动机高分保护)"
- elif motivation_eval.motivation_score <= 0.2 and final_score < base_score:
- combined_reason += "(应用规则B:动机低分限制)"
- elif motivation_eval.motivation_score < 0 and final_score < base_score:
- combined_reason += "(应用规则C:动机负向决定)"
- return final_score, combined_reason
- # ============================================================================
- # 核心流程函数
- # ============================================================================
- async def initialize(o: str, context: RunContext) -> tuple[list[Seg], list[Word], list[Q], list[Seed]]:
- """
- 初始化阶段
- Returns:
- (seg_list, word_list_1, q_list_1, seed_list)
- """
- print(f"\n{'='*60}")
- print(f"初始化阶段")
- print(f"{'='*60}")
- # 1. 分词:原始问题(o) ->分词-> seg_list
- print(f"\n[步骤1] 分词...")
- result = await Runner.run(word_segmenter, o)
- segmentation: WordSegmentation = result.final_output
- seg_list = []
- for word in segmentation.words:
- seg_list.append(Seg(text=word, from_o=o))
- print(f"分词结果: {[s.text for s in seg_list]}")
- print(f"分词理由: {segmentation.reasoning}")
- # 2. 分词评估:seg_list -> 每个seg与o进行评分(并发)
- print(f"\n[步骤2] 评估每个分词与原始问题的相关度...")
- async def evaluate_seg(seg: Seg) -> Seg:
- seg.score_with_o, seg.reason = await evaluate_with_o(seg.text, o)
- return seg
- if seg_list:
- eval_tasks = [evaluate_seg(seg) for seg in seg_list]
- await asyncio.gather(*eval_tasks)
- for seg in seg_list:
- print(f" {seg.text}: {seg.score_with_o:.2f}")
- # 3. 构建word_list_1: seg_list -> word_list_1
- print(f"\n[步骤3] 构建word_list_1...")
- word_list_1 = []
- for seg in seg_list:
- word_list_1.append(Word(
- text=seg.text,
- score_with_o=seg.score_with_o,
- from_o=o
- ))
- print(f"word_list_1: {[w.text for w in word_list_1]}")
- # 4. 构建q_list_1:seg_list 作为 q_list_1
- print(f"\n[步骤4] 构建q_list_1...")
- q_list_1 = []
- for seg in seg_list:
- q_list_1.append(Q(
- text=seg.text,
- score_with_o=seg.score_with_o,
- reason=seg.reason,
- from_source="seg"
- ))
- print(f"q_list_1: {[q.text for q in q_list_1]}")
- # 5. 构建seed_list: seg_list -> seed_list
- print(f"\n[步骤5] 构建seed_list...")
- seed_list = []
- for seg in seg_list:
- seed_list.append(Seed(
- text=seg.text,
- added_words=[],
- from_type="seg",
- score_with_o=seg.score_with_o
- ))
- print(f"seed_list: {[s.text for s in seed_list]}")
- return seg_list, word_list_1, q_list_1, seed_list
- async def run_round(
- round_num: int,
- q_list: list[Q],
- word_list: list[Word],
- seed_list: list[Seed],
- o: str,
- context: RunContext,
- xiaohongshu_api: XiaohongshuSearchRecommendations,
- xiaohongshu_search: XiaohongshuSearch,
- sug_threshold: float = 0.7
- ) -> tuple[list[Word], list[Q], list[Seed], list[Search]]:
- """
- 运行一轮
- Args:
- round_num: 轮次编号
- q_list: 当前轮的q列表
- word_list: 当前的word列表
- seed_list: 当前的seed列表
- o: 原始问题
- context: 运行上下文
- xiaohongshu_api: 建议词API
- xiaohongshu_search: 搜索API
- sug_threshold: suggestion的阈值
- Returns:
- (word_list_next, q_list_next, seed_list_next, search_list)
- """
- print(f"\n{'='*60}")
- print(f"第{round_num}轮")
- print(f"{'='*60}")
- round_data = {
- "round_num": round_num,
- "input_q_list": [{"text": q.text, "score": q.score_with_o} for q in q_list],
- "input_word_list_size": len(word_list),
- "input_seed_list_size": len(seed_list)
- }
- # 1. 请求sug:q_list -> 每个q请求sug接口 -> sug_list_list
- print(f"\n[步骤1] 为每个q请求建议词...")
- sug_list_list = [] # list of list
- for q in q_list:
- print(f"\n 处理q: {q.text}")
- suggestions = xiaohongshu_api.get_recommendations(keyword=q.text)
- q_sug_list = []
- if suggestions:
- print(f" 获取到 {len(suggestions)} 个建议词")
- for sug_text in suggestions:
- sug = Sug(
- text=sug_text,
- from_q=QFromQ(text=q.text, score_with_o=q.score_with_o)
- )
- q_sug_list.append(sug)
- else:
- print(f" 未获取到建议词")
- sug_list_list.append(q_sug_list)
- # 2. sug评估:sug_list_list -> 每个sug与o进评分(并发)
- print(f"\n[步骤2] 评估每个建议词与原始问题的相关度...")
- # 2.1 收集所有需要评估的sug,并记录它们所属的q
- all_sugs = []
- sug_to_q_map = {} # 记录每个sug属于哪个q
- for i, q_sug_list in enumerate(sug_list_list):
- if q_sug_list:
- q_text = q_list[i].text
- for sug in q_sug_list:
- all_sugs.append(sug)
- sug_to_q_map[id(sug)] = q_text
- # 2.2 并发评估所有sug
- async def evaluate_sug(sug: Sug) -> Sug:
- sug.score_with_o, sug.reason = await evaluate_with_o(sug.text, o)
- return sug
- if all_sugs:
- eval_tasks = [evaluate_sug(sug) for sug in all_sugs]
- await asyncio.gather(*eval_tasks)
- # 2.3 打印结果并组织到sug_details
- sug_details = {} # 保存每个Q对应的sug列表
- for i, q_sug_list in enumerate(sug_list_list):
- if q_sug_list:
- q_text = q_list[i].text
- print(f"\n 来自q '{q_text}' 的建议词:")
- sug_details[q_text] = []
- for sug in q_sug_list:
- print(f" {sug.text}: {sug.score_with_o:.2f}")
- # 保存到sug_details
- sug_details[q_text].append({
- "text": sug.text,
- "score": sug.score_with_o,
- "reason": sug.reason
- })
- # 3. search_list构建
- print(f"\n[步骤3] 构建search_list(阈值>{sug_threshold})...")
- search_list = []
- high_score_sugs = [sug for sug in all_sugs if sug.score_with_o > sug_threshold]
- if high_score_sugs:
- print(f" 找到 {len(high_score_sugs)} 个高分建议词")
- # 并发搜索
- async def search_for_sug(sug: Sug) -> Search:
- print(f" 搜索: {sug.text}")
- try:
- search_result = xiaohongshu_search.search(keyword=sug.text)
- result_str = search_result.get("result", "{}")
- if isinstance(result_str, str):
- result_data = json.loads(result_str)
- else:
- result_data = result_str
- notes = result_data.get("data", {}).get("data", [])
- post_list = []
- for note in notes[:10]: # 只取前10个
- post = process_note_data(note)
- post_list.append(post)
- print(f" → 找到 {len(post_list)} 个帖子")
- return Search(
- text=sug.text,
- score_with_o=sug.score_with_o,
- from_q=sug.from_q,
- post_list=post_list
- )
- except Exception as e:
- print(f" ✗ 搜索失败: {e}")
- return Search(
- text=sug.text,
- score_with_o=sug.score_with_o,
- from_q=sug.from_q,
- post_list=[]
- )
- search_tasks = [search_for_sug(sug) for sug in high_score_sugs]
- search_list = await asyncio.gather(*search_tasks)
- else:
- print(f" 没有高分建议词,search_list为空")
- # 4. 构建word_list_next: word_list -> word_list_next(先直接复制)
- print(f"\n[步骤4] 构建word_list_next(暂时直接复制)...")
- word_list_next = word_list.copy()
- # 5. 构建q_list_next
- print(f"\n[步骤5] 构建q_list_next...")
- q_list_next = []
- add_word_details = {} # 保存每个seed对应的组合词列表
- # 5.1 对于seed_list中的每个seed,从word_list_next中选一个未加过的词
- print(f"\n 5.1 为每个seed加词...")
- for seed in seed_list:
- print(f"\n 处理seed: {seed.text}")
- # 简单过滤:找出不在seed.text中且未被添加过的词
- candidate_words = []
- for word in word_list_next:
- # 检查词是否已在seed中
- if word.text in seed.text:
- continue
- # 检查词是否已被添加过
- if word.text in seed.added_words:
- continue
- candidate_words.append(word)
- if not candidate_words:
- print(f" 没有可用的候选词")
- continue
- print(f" 候选词: {[w.text for w in candidate_words]}")
- # 使用Agent选择最合适的词
- selection_input = f"""
- <原始问题>
- {o}
- </原始问题>
- <当前Seed>
- {seed.text}
- </当前Seed>
- <候选词列表>
- {', '.join([w.text for w in candidate_words])}
- </候选词列表>
- 请从候选词中选择一个最合适的词,与当前seed组合成新的query。
- """
- result = await Runner.run(word_selector, selection_input)
- selection: WordSelection = result.final_output
- # 验证选择的词是否在候选列表中
- if selection.selected_word not in [w.text for w in candidate_words]:
- print(f" ✗ Agent选择的词 '{selection.selected_word}' 不在候选列表中,跳过")
- continue
- print(f" ✓ 选择词: {selection.selected_word}")
- print(f" ✓ 新query: {selection.combined_query}")
- print(f" 理由: {selection.reasoning}")
- # 评估新query
- new_q_score, new_q_reason = await evaluate_with_o(selection.combined_query, o)
- print(f" 新query评分: {new_q_score:.2f}")
- # 创建新的q
- new_q = Q(
- text=selection.combined_query,
- score_with_o=new_q_score,
- reason=new_q_reason,
- from_source="add"
- )
- q_list_next.append(new_q)
- # 更新seed的added_words
- seed.added_words.append(selection.selected_word)
- # 保存到add_word_details
- if seed.text not in add_word_details:
- add_word_details[seed.text] = []
- add_word_details[seed.text].append({
- "text": selection.combined_query,
- "score": new_q_score,
- "reason": new_q_reason,
- "selected_word": selection.selected_word
- })
- # 5.2 对于sug_list_list中,每个sug大于来自的query分数,加到q_list_next
- print(f"\n 5.2 将高分sug加入q_list_next...")
- for sug in all_sugs:
- if sug.from_q and sug.score_with_o > sug.from_q.score_with_o:
- new_q = Q(
- text=sug.text,
- score_with_o=sug.score_with_o,
- reason=sug.reason,
- from_source="sug"
- )
- q_list_next.append(new_q)
- print(f" ✓ {sug.text} (分数: {sug.score_with_o:.2f} > {sug.from_q.score_with_o:.2f})")
- # 6. 更新seed_list
- print(f"\n[步骤6] 更新seed_list...")
- seed_list_next = seed_list.copy() # 保留原有的seed
- # 对于sug_list_list中,每个sug分数大于来源query分数的,且没在seed_list中出现过的,加入
- existing_seed_texts = {seed.text for seed in seed_list_next}
- for sug in all_sugs:
- # 新逻辑:sug分数 > 对应query分数
- if sug.from_q and sug.score_with_o > sug.from_q.score_with_o and sug.text not in existing_seed_texts:
- new_seed = Seed(
- text=sug.text,
- added_words=[],
- from_type="sug",
- score_with_o=sug.score_with_o
- )
- seed_list_next.append(new_seed)
- existing_seed_texts.add(sug.text)
- print(f" ✓ 新seed: {sug.text} (分数: {sug.score_with_o:.2f} > 来源query: {sug.from_q.score_with_o:.2f})")
- # 序列化搜索结果数据(包含帖子详情)
- search_results_data = []
- for search in search_list:
- search_results_data.append({
- "text": search.text,
- "score_with_o": search.score_with_o,
- "post_list": [
- {
- "note_id": post.note_id,
- "note_url": post.note_url,
- "title": post.title,
- "body_text": post.body_text,
- "images": post.images,
- "interact_info": post.interact_info
- }
- for post in search.post_list
- ]
- })
- # 记录本轮数据
- round_data.update({
- "sug_count": len(all_sugs),
- "high_score_sug_count": len(high_score_sugs),
- "search_count": len(search_list),
- "total_posts": sum(len(s.post_list) for s in search_list),
- "q_list_next_size": len(q_list_next),
- "seed_list_next_size": len(seed_list_next),
- "word_list_next_size": len(word_list_next),
- "output_q_list": [{"text": q.text, "score": q.score_with_o, "reason": q.reason, "from": q.from_source} for q in q_list_next],
- "seed_list_next": [{"text": seed.text, "from": seed.from_type, "score": seed.score_with_o} for seed in seed_list_next], # 下一轮种子列表
- "sug_details": sug_details, # 每个Q对应的sug列表
- "add_word_details": add_word_details, # 每个seed对应的组合词列表
- "search_results": search_results_data # 搜索结果(包含帖子详情)
- })
- context.rounds.append(round_data)
- print(f"\n本轮总结:")
- print(f" 建议词数量: {len(all_sugs)}")
- print(f" 高分建议词: {len(high_score_sugs)}")
- print(f" 搜索数量: {len(search_list)}")
- print(f" 帖子总数: {sum(len(s.post_list) for s in search_list)}")
- print(f" 下轮q数量: {len(q_list_next)}")
- print(f" seed数量: {len(seed_list_next)}")
- return word_list_next, q_list_next, seed_list_next, search_list
- async def iterative_loop(
- context: RunContext,
- max_rounds: int = 2,
- sug_threshold: float = 0.7
- ):
- """主迭代循环"""
- print(f"\n{'='*60}")
- print(f"开始迭代循环")
- print(f"最大轮数: {max_rounds}")
- print(f"sug阈值: {sug_threshold}")
- print(f"{'='*60}")
- # 初始化
- seg_list, word_list, q_list, seed_list = await initialize(context.o, context)
- # API实例
- xiaohongshu_api = XiaohongshuSearchRecommendations()
- xiaohongshu_search = XiaohongshuSearch()
- # 保存初始化数据
- context.rounds.append({
- "round_num": 0,
- "type": "initialization",
- "seg_list": [{"text": s.text, "score": s.score_with_o, "reason": s.reason} for s in seg_list],
- "word_list_1": [{"text": w.text, "score": w.score_with_o} for w in word_list],
- "q_list_1": [{"text": q.text, "score": q.score_with_o, "reason": q.reason} for q in q_list],
- "seed_list": [{"text": s.text, "from_type": s.from_type, "score": s.score_with_o} for s in seed_list]
- })
- # 收集所有搜索结果
- all_search_list = []
- # 迭代
- round_num = 1
- while q_list and round_num <= max_rounds:
- word_list, q_list, seed_list, search_list = await run_round(
- round_num=round_num,
- q_list=q_list,
- word_list=word_list,
- seed_list=seed_list,
- o=context.o,
- context=context,
- xiaohongshu_api=xiaohongshu_api,
- xiaohongshu_search=xiaohongshu_search,
- sug_threshold=sug_threshold
- )
- all_search_list.extend(search_list)
- round_num += 1
- print(f"\n{'='*60}")
- print(f"迭代完成")
- print(f" 总轮数: {round_num - 1}")
- print(f" 总搜索次数: {len(all_search_list)}")
- print(f" 总帖子数: {sum(len(s.post_list) for s in all_search_list)}")
- print(f"{'='*60}")
- return all_search_list
- # ============================================================================
- # 主函数
- # ============================================================================
- async def main(input_dir: str, max_rounds: int = 2, sug_threshold: float = 0.7, visualize: bool = False):
- """主函数"""
- current_time, log_url = set_trace()
- # 读取输入
- input_context_file = os.path.join(input_dir, 'context.md')
- input_q_file = os.path.join(input_dir, 'q.md')
- c = read_file_as_string(input_context_file) # 原始需求
- o = read_file_as_string(input_q_file) # 原始问题
- # 版本信息
- version = os.path.basename(__file__)
- version_name = os.path.splitext(version)[0]
- # 日志目录
- log_dir = os.path.join(input_dir, "output", version_name, current_time)
- # 创建运行上下文
- run_context = RunContext(
- version=version,
- input_files={
- "input_dir": input_dir,
- "context_file": input_context_file,
- "q_file": input_q_file,
- },
- c=c,
- o=o,
- log_dir=log_dir,
- log_url=log_url,
- )
- # 执行迭代
- all_search_list = await iterative_loop(
- run_context,
- max_rounds=max_rounds,
- sug_threshold=sug_threshold
- )
- # 格式化输出
- output = f"原始需求:{run_context.c}\n"
- output += f"原始问题:{run_context.o}\n"
- output += f"总搜索次数:{len(all_search_list)}\n"
- output += f"总帖子数:{sum(len(s.post_list) for s in all_search_list)}\n"
- output += "\n" + "="*60 + "\n"
- if all_search_list:
- output += "【搜索结果】\n\n"
- for idx, search in enumerate(all_search_list, 1):
- output += f"{idx}. 搜索词: {search.text} (分数: {search.score_with_o:.2f})\n"
- output += f" 帖子数: {len(search.post_list)}\n"
- if search.post_list:
- for post_idx, post in enumerate(search.post_list[:3], 1): # 只显示前3个
- output += f" {post_idx}) {post.title}\n"
- output += f" URL: {post.note_url}\n"
- output += "\n"
- else:
- output += "未找到搜索结果\n"
- run_context.final_output = output
- print(f"\n{'='*60}")
- print("最终结果")
- print(f"{'='*60}")
- print(output)
- # 保存日志
- os.makedirs(run_context.log_dir, exist_ok=True)
- context_file_path = os.path.join(run_context.log_dir, "run_context.json")
- context_dict = run_context.model_dump()
- with open(context_file_path, "w", encoding="utf-8") as f:
- json.dump(context_dict, f, ensure_ascii=False, indent=2)
- print(f"\nRunContext saved to: {context_file_path}")
- # 保存详细的搜索结果
- search_results_path = os.path.join(run_context.log_dir, "search_results.json")
- search_results_data = [s.model_dump() for s in all_search_list]
- with open(search_results_path, "w", encoding="utf-8") as f:
- json.dump(search_results_data, f, ensure_ascii=False, indent=2)
- print(f"Search results saved to: {search_results_path}")
- # 可视化
- if visualize:
- import subprocess
- output_html = os.path.join(run_context.log_dir, "visualization.html")
- print(f"\n🎨 生成可视化HTML...")
- # 获取绝对路径
- abs_context_file = os.path.abspath(context_file_path)
- abs_output_html = os.path.abspath(output_html)
- # 运行可视化脚本
- result = subprocess.run([
- "node",
- "visualization/sug_v6_1_2_8/index.js",
- abs_context_file,
- abs_output_html
- ])
- if result.returncode == 0:
- print(f"✅ 可视化已生成: {output_html}")
- else:
- print(f"❌ 可视化生成失败")
- if __name__ == "__main__":
- parser = argparse.ArgumentParser(description="搜索query优化工具 - v6.1.2.8 轮次迭代版")
- parser.add_argument(
- "--input-dir",
- type=str,
- default="input/旅游-逸趣玩旅行/如何获取能体现川西秋季特色的高质量风光摄影素材?",
- help="输入目录路径,默认: input/旅游-逸趣玩旅行/如何获取能体现川西秋季特色的高质量风光摄影素材?"
- )
- parser.add_argument(
- "--max-rounds",
- type=int,
- default=4,
- help="最大轮数,默认: 2"
- )
- parser.add_argument(
- "--sug-threshold",
- type=float,
- default=0.7,
- help="suggestion阈值,默认: 0.7"
- )
- parser.add_argument(
- "--visualize",
- action="store_true",
- default=True,
- help="运行完成后自动生成可视化HTML"
- )
- args = parser.parse_args()
- asyncio.run(main(args.input_dir, max_rounds=args.max_rounds, sug_threshold=args.sug_threshold, visualize=args.visualize))
|