function_knowledge.py 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663
  1. '''
  2. 方法知识获取模块
  3. 1. 输入:问题 + 帖子信息 + 账号人设信息
  4. 2. 将输入的问题转化成query,调用大模型,prompt在 function_knowledge_generate_query_prompt.md 中
  5. 3. 从已有方法工具库中尝试选择合适的方法工具(调用大模型执行,prompt在 function_knowledge_select_tools_prompt.md 中),如果有,则返回选择的方法工具,否则:
  6. - 调用 multi_search_knowledge.py 获取知识
  7. - 返回新的方法工具知识
  8. - 异步从新方法知识中获取新工具(调用大模型执行,prompt在 function_knowledge_generate_new_tool_prompt.md 中),调用工具库系统,接入新的工具
  9. 4. 调用选择的方法工具执行验证,返回工具执行结果
  10. '''
  11. import os
  12. import sys
  13. import json
  14. import threading
  15. from loguru import logger
  16. import re
  17. # 设置路径以便导入工具类
  18. current_dir = os.path.dirname(os.path.abspath(__file__))
  19. root_dir = os.path.dirname(current_dir)
  20. sys.path.insert(0, root_dir)
  21. from utils.qwen_client import QwenClient
  22. from utils.gemini_client import generate_text
  23. from knowledge_v2.tools_library import call_tool, save_tool_info, get_all_tool_infos, get_tool_info, get_tool_params, default_call_hot_tool
  24. from knowledge_v2.multi_search_knowledge import get_knowledge as get_multi_search_knowledge
  25. from knowledge_v2.cache_manager import CacheManager
  26. class FunctionKnowledge:
  27. """方法知识获取类"""
  28. def __init__(self, use_cache: bool = True):
  29. """
  30. 初始化
  31. Args:
  32. use_cache: 是否启用缓存,默认启用
  33. """
  34. logger.info("=" * 80)
  35. logger.info("初始化 FunctionKnowledge - 方法知识获取入口")
  36. self.prompt_dir = os.path.join(current_dir, "prompt")
  37. self.use_cache = use_cache
  38. self.cache = CacheManager() if use_cache else None
  39. logger.info(f"缓存状态: {'启用' if use_cache else '禁用'}")
  40. logger.info("=" * 80)
  41. def _load_prompt(self, filename: str) -> str:
  42. """加载prompt文件内容"""
  43. prompt_path = os.path.join(self.prompt_dir, filename)
  44. if not os.path.exists(prompt_path):
  45. raise FileNotFoundError(f"Prompt文件不存在: {prompt_path}")
  46. with open(prompt_path, 'r', encoding='utf-8') as f:
  47. return f.read().strip()
  48. def call_default_hot_tool(self, combined_question: str, input_info: str) -> str:
  49. """
  50. 调用默认的热榜工具
  51. :param combined_question: 组合问题
  52. :param input_info: 输入的需求信息
  53. :return: 热榜数据分析结果
  54. """
  55. logger.info(f"[步骤0] 调用默认热榜工具...")
  56. try:
  57. # 尝试从缓存获取
  58. if self.use_cache:
  59. cached_data = self.cache.get(combined_question, 'function_knowledge', 'default_hot_tool_result.json')
  60. if cached_data:
  61. result = cached_data.get('analysis_result', cached_data.get('result', ''))
  62. logger.info(f"✓ 使用缓存的热榜分析结果")
  63. return result
  64. # 加载提取参数prompt
  65. extract_params_prompt = self._load_prompt("function_default_hot_tool_extract_params_prompt.md")
  66. extract_params_prompt = extract_params_prompt.replace('{input_info}', input_info)
  67. # 调用大模型生成参数
  68. logger.info(" → 调用Gemini提取热榜工具参数...")
  69. params_text = generate_text(prompt=extract_params_prompt)
  70. params_json_str = self.extract_and_validate_json(params_text)
  71. if not params_json_str:
  72. logger.error("✗ 默认热榜工具参数提取失败")
  73. return "默认热榜工具参数提取失败"
  74. # 解析参数
  75. params = json.loads(params_json_str)
  76. category = params.get('category', '全部')
  77. rankDate = params.get('rankDate')
  78. logger.info(f"✓ 提取参数成功: category={category}, rankDate={rankDate}")
  79. # 调用默认热榜工具
  80. logger.info(" → 调用默认热榜工具...")
  81. hot_data = default_call_hot_tool(category=category, rankDate=rankDate)
  82. if not hot_data or (isinstance(hot_data, str) and len(hot_data.strip()) == 0):
  83. logger.warning("⚠ 热榜工具返回数据为空")
  84. return "热榜工具返回数据为空,无法进行分析"
  85. logger.info(f"✓ 获取热榜数据成功,数据长度: {len(hot_data)} 字符")
  86. # 分析热榜数据
  87. logger.info(" → 调用Gemini分析热榜数据...")
  88. analyze_prompt = self._load_prompt("function_default_hot_tool_result_analzye_prompt.md")
  89. analyze_prompt = analyze_prompt.replace('{input_info}', input_info).replace('{hot_data}', hot_data)
  90. analysis_result = generate_text(prompt=analyze_prompt)
  91. analysis_result = analysis_result.strip()
  92. logger.info(f"✓ 热榜数据分析完成")
  93. # 保存到缓存
  94. if self.use_cache:
  95. cache_data = {
  96. "extract_params_prompt": extract_params_prompt,
  97. "params": params,
  98. "hot_data": hot_data,
  99. "analyze_prompt": analyze_prompt,
  100. "analysis_result": analysis_result
  101. }
  102. self.cache.set(combined_question, 'function_knowledge', 'default_hot_tool_result.json', cache_data)
  103. return analysis_result
  104. except Exception as e:
  105. logger.error(f"✗ 调用默认热榜工具失败: {e}")
  106. import traceback
  107. logger.error(traceback.format_exc())
  108. return f"调用默认热榜工具失败: {str(e)}"
  109. def generate_query(self, question: str, post_info: str, persona_info: str) -> str:
  110. """
  111. 生成查询语句
  112. Returns:
  113. str: 生成的查询语句
  114. """
  115. logger.info(f"[步骤1] 生成Query...")
  116. # 组合问题的唯一标识
  117. combined_question = f"{question}||{post_info}||{persona_info}"
  118. try:
  119. prompt_template = self._load_prompt("function_generate_query_prompt.md")
  120. prompt = prompt_template.format(
  121. question=question,
  122. post_info=post_info,
  123. persona_info=persona_info
  124. )
  125. # 尝试从缓存读取
  126. if self.use_cache:
  127. cached_data = self.cache.get(combined_question, 'function_knowledge', 'generated_query.json')
  128. if cached_data:
  129. query = cached_data.get('query', cached_data.get('response', ''))
  130. logger.info(f"✓ 使用缓存的Query: {query}")
  131. return query
  132. logger.info("→ 调用Gemini生成Query...")
  133. query = generate_text(prompt=prompt)
  134. query = query.strip()
  135. logger.info(f"✓ 生成Query: {query}")
  136. # 保存到缓存(包含完整的prompt和response)
  137. if self.use_cache:
  138. query_data = {
  139. "prompt": prompt,
  140. "response": query,
  141. "query": query
  142. }
  143. self.cache.set(combined_question, 'function_knowledge', 'generated_query.json', query_data)
  144. return query
  145. except Exception as e:
  146. logger.error(f"✗ 生成Query失败: {e}")
  147. return question # 降级使用原问题
  148. def select_tool(self, combined_question: str, input_info: str) -> str:
  149. """
  150. 选择合适的工具
  151. Returns:
  152. str: 工具名称,如果没有合适的工具则返回"None"
  153. """
  154. logger.info(f"[步骤2] 选择工具...")
  155. try:
  156. all_tool_infos = self._load_prompt("all_tools_infos.md")
  157. if not all_tool_infos:
  158. logger.info(" 工具库为空,无可用工具")
  159. return "None"
  160. prompt_template = self._load_prompt("function_knowledge_select_tools_prompt.md")
  161. prompt = prompt_template.replace("{all_tool_infos}", all_tool_infos).replace("input_info", input_info)
  162. # 尝试从缓存读取
  163. if self.use_cache:
  164. cached_data = self.cache.get(combined_question, 'function_knowledge', 'selected_tool.json')
  165. if cached_data:
  166. result_json = cached_data.get('response', {})
  167. logger.info(f"✓ 使用缓存的工具: {result_json}")
  168. return result_json
  169. logger.info("→ 调用Gemini选择工具...")
  170. result = generate_text(prompt=prompt)
  171. result = self.extract_and_validate_json(result)
  172. if not result:
  173. logger.error("✗ 选择工具失败: 无法提取有效JSON")
  174. return "None"
  175. result_json = json.loads(result)
  176. logger.info(f"✓ 选择结果: {result_json.get('工具名', 'None')}")
  177. # 保存到缓存(包含完整的prompt和response)
  178. if self.use_cache:
  179. tool_data = {
  180. "prompt": prompt,
  181. "response": result_json
  182. }
  183. self.cache.set(combined_question, 'function_knowledge', 'selected_tool.json', tool_data)
  184. return result_json
  185. except Exception as e:
  186. logger.error(f"✗ 选择工具失败: {e}")
  187. return "None"
  188. def extract_and_validate_json(self, text: str):
  189. """
  190. 从字符串中提取 JSON 部分,并返回标准的 JSON 字符串。
  191. 如果无法提取或解析失败,返回 None (或者你可以改为抛出异常)。
  192. """
  193. # 1. 使用正则表达式寻找最大的 JSON 块
  194. # r"(\{[\s\S]*\}|\[[\s\S]*\])" 的含义:
  195. # - \{[\s\S]*\} : 匹配以 { 开头,} 结尾的最长字符串([\s\S] 包含换行符)
  196. # - | : 或者
  197. # - \[[\s\S]*\] : 匹配以 [ 开头,] 结尾的最长字符串(处理 JSON 数组)
  198. match = re.search(r"(\{[\s\S]*\}|\[[\s\S]*\])", text)
  199. if match:
  200. json_str = match.group(0)
  201. try:
  202. # 2. 尝试解析提取出的字符串,验证是否为合法 JSON
  203. parsed_json = json.loads(json_str)
  204. # 3. 重新转储为标准字符串 (去除原本可能存在的缩进、多余空格等)
  205. # ensure_ascii=False 保证中文不会变成 \uXXXX
  206. return json.dumps(parsed_json, ensure_ascii=False)
  207. except json.JSONDecodeError as e:
  208. print(f"提取到了类似JSON的片段,但解析失败: {e}")
  209. return None
  210. else:
  211. print("未在文本中发现 JSON 结构")
  212. return None
  213. def extract_tool_params(self, combined_question: str, input_info: str, tool_id: str, tool_instructions: str) -> dict:
  214. """
  215. 根据工具信息和查询提取调用参数
  216. Args:
  217. combined_question: 组合问题(用于缓存)
  218. tool_name: 工具名称
  219. query: 查询内容
  220. Returns:
  221. dict: 提取的参数字典
  222. """
  223. logger.info(f"[步骤3] 提取工具参数...")
  224. try:
  225. # 获取工具信息
  226. tool_params = get_tool_params(tool_id)
  227. if not tool_params:
  228. logger.warning(f" ⚠ 未找到工具 {tool_id} 的信息,使用默认参数")
  229. return {"keyword": input_info}
  230. # 加载prompt
  231. prompt_template = self._load_prompt("function_knowledge_extract_tool_params_prompt.md")
  232. prompt = prompt_template.format(
  233. tool_mcp_name=tool_id,
  234. input_info=input_info,
  235. all_tool_params=tool_params
  236. )
  237. # 尝试从缓存读取
  238. if self.use_cache:
  239. cached_data = self.cache.get(combined_question, 'function_knowledge', 'extracted_params.json')
  240. if cached_data:
  241. params = cached_data.get('params', {})
  242. logger.info(f"✓ 使用缓存的参数: {params}")
  243. return params
  244. # 调用LLM提取参数
  245. logger.info(" → 调用Gemini提取参数...")
  246. response_text = generate_text(prompt=prompt)
  247. # 解析JSON
  248. logger.info(" → 解析参数JSON...")
  249. try:
  250. # 清理可能的markdown标记
  251. response_text = response_text.strip()
  252. if response_text.startswith("```json"):
  253. response_text = response_text[7:]
  254. if response_text.startswith("```"):
  255. response_text = response_text[3:]
  256. if response_text.endswith("```"):
  257. response_text = response_text[:-3]
  258. response_text = response_text.strip()
  259. params = json.loads(response_text)
  260. logger.info(f"✓ 提取参数成功: {params}")
  261. # 保存到缓存(包含完整的prompt和response)
  262. if self.use_cache:
  263. params_data = {
  264. "prompt": prompt,
  265. "response": response_text,
  266. "params": params
  267. }
  268. self.cache.set(combined_question, 'function_knowledge', 'extracted_params.json', params_data)
  269. return params
  270. except json.JSONDecodeError as e:
  271. logger.error(f" ✗ 解析JSON失败: {e}")
  272. logger.error(f" 响应内容: {response_text}")
  273. # 降级:使用input_info作为keyword
  274. default_params = {"keyword": input_info}
  275. logger.warning(f" 使用默认参数: {default_params}")
  276. return default_params
  277. except Exception as e:
  278. logger.error(f"✗ 提取工具参数失败: {e}")
  279. # 降级:使用input_info作为keyword
  280. return {"keyword": input_info}
  281. def save_knowledge_to_file(self, knowledge: str, combined_question: str):
  282. """保存获取到的知识到文件"""
  283. try:
  284. logger.info("[保存知识] 开始保存知识到文件...")
  285. # 获取问题hash
  286. import hashlib
  287. question_hash = hashlib.md5(combined_question.encode('utf-8')).hexdigest()[:12]
  288. # 获取缓存目录(和execution_record.json同级)
  289. if self.use_cache and self.cache:
  290. cache_dir = os.path.join(self.cache.base_cache_dir, question_hash)
  291. else:
  292. cache_dir = os.path.join(os.path.dirname(__file__), '.cache', question_hash)
  293. os.makedirs(cache_dir, exist_ok=True)
  294. # 保存到knowledge.txt
  295. knowledge_file = os.path.join(cache_dir, 'knowledge.txt')
  296. with open(knowledge_file, 'w', encoding='utf-8') as f:
  297. f.write(knowledge)
  298. logger.info(f"✓ 知识已保存到: {knowledge_file}")
  299. logger.info(f" 知识长度: {len(knowledge)} 字符")
  300. except Exception as e:
  301. logger.error(f"✗ 保存知识失败: {e}")
  302. def organize_tool_result(self, tool_result: dict) -> dict:
  303. """
  304. 组织工具调用结果,确保包含必要字段
  305. Args:
  306. tool_result: 原始工具调用结果
  307. Returns:
  308. dict: 组织后的工具调用结果
  309. """
  310. prompt_template = self._load_prompt("tool_result_prettify_prompt.md")
  311. prompt = prompt_template.format(
  312. input=tool_result,
  313. )
  314. # qwen_client = QwenClient()
  315. # organized_result = qwen_client.chat(user_prompt=prompt)
  316. # organized_result = generate_text(prompt=prompt)
  317. # organized_result = organized_result.strip()
  318. # return organized_result
  319. try:
  320. result = tool_result.get('result')
  321. if not result:
  322. return tool_result
  323. else:
  324. return result
  325. except Exception as e:
  326. logger.error(f"✗ 组织工具调用结果失败: {e}")
  327. return tool_result
  328. def evaluate_tool_result(self, combined_question: str, input_info: str, tool_result) -> dict:
  329. """
  330. 评估工具执行结果是否可以回答输入的需求
  331. Args:
  332. combined_question: 组合问题(用于缓存)
  333. input_info: 输入的需求信息
  334. tool_result: 工具执行结果(可以是dict、list、str等任意类型)
  335. Returns:
  336. dict: 评估结果,包含"是否可以回答"和"理由"
  337. """
  338. logger.info(f"[步骤5] 评估工具执行结果...")
  339. try:
  340. # 加载prompt
  341. prompt_template = self._load_prompt("function_knowledge_tool_result_eval_prompt.md")
  342. # 将tool_result转换为字符串格式,便于在prompt中使用
  343. if isinstance(tool_result, (dict, list)):
  344. tool_result_str = json.dumps(tool_result, ensure_ascii=False, indent=2)
  345. else:
  346. tool_result_str = str(tool_result)
  347. prompt = prompt_template.replace('{tool_call_result}', tool_result_str).replace('{input_info}', input_info)
  348. # 尝试从缓存读取
  349. if self.use_cache:
  350. cached_data = self.cache.get(combined_question, 'function_knowledge', 'tool_result_eval.json')
  351. if cached_data:
  352. eval_result = cached_data.get('eval_result', {})
  353. logger.info(f"✓ 使用缓存的评估结果: {eval_result}")
  354. return eval_result
  355. # 调用LLM进行评估
  356. logger.info(" → 调用Gemini评估工具执行结果...")
  357. response_text = generate_text(prompt=prompt)
  358. # 解析JSON
  359. logger.info(" → 解析评估结果JSON...")
  360. try:
  361. # 清理可能的markdown标记
  362. response_text = response_text.strip()
  363. if response_text.startswith("```json"):
  364. response_text = response_text[7:]
  365. if response_text.startswith("```"):
  366. response_text = response_text[3:]
  367. if response_text.endswith("```"):
  368. response_text = response_text[:-3]
  369. response_text = response_text.strip()
  370. # 使用extract_and_validate_json提取JSON
  371. json_str = self.extract_and_validate_json(response_text)
  372. if json_str:
  373. eval_result = json.loads(json_str)
  374. else:
  375. # 如果提取失败,尝试直接解析
  376. eval_result = json.loads(response_text)
  377. logger.info(f"✓ 评估完成: {eval_result.get('是否可以回答', '未知')}")
  378. # 保存到缓存(包含完整的prompt和response)
  379. if self.use_cache:
  380. eval_data = {
  381. "prompt": prompt,
  382. "response": response_text,
  383. "eval_result": eval_result
  384. }
  385. self.cache.set(combined_question, 'function_knowledge', 'tool_result_eval.json', eval_data)
  386. return eval_result
  387. except json.JSONDecodeError as e:
  388. logger.error(f" ✗ 解析JSON失败: {e}")
  389. logger.error(f" 响应内容: {response_text}")
  390. # 降级:返回默认评估结果
  391. default_eval = {
  392. "是否可以回答": "未知",
  393. "理由": f"评估失败,无法解析LLM响应: {str(e)}"
  394. }
  395. logger.warning(f" 使用默认评估结果: {default_eval}")
  396. return default_eval
  397. except Exception as e:
  398. logger.error(f"✗ 评估工具执行结果失败: {e}")
  399. # 降级:返回默认评估结果
  400. return {
  401. "是否可以回答": "未知",
  402. "理由": f"评估过程出错: {str(e)}"
  403. }
  404. def get_knowledge(self, input_info: str) -> dict:
  405. """
  406. 获取方法知识的主流程(重构后)
  407. Returns:
  408. dict: 完整的执行记录
  409. """
  410. import time
  411. timestamp = time.strftime("%Y-%m-%d %H:%M:%S")
  412. start_time = time.time()
  413. logger.info("=" * 80)
  414. logger.info(f"Function Knowledge - 开始处理")
  415. logger.info(f"输入: {input_info}")
  416. logger.info("=" * 80)
  417. # 组合问题的唯一标识
  418. combined_question = input_info
  419. try:
  420. # 步骤0: 调用默认的热榜工具
  421. default_hot_result = self.call_default_hot_tool(combined_question, input_info)
  422. logger.info(f"✓ 默认热榜工具结果: {default_hot_result}")
  423. # 步骤1: 生成Query
  424. # query = self.generate_query(question, post_info, persona_info)
  425. # 步骤2: 选择工具
  426. tool_info = self.select_tool(combined_question, input_info)
  427. # tool_name = tool_info.get("工具名")
  428. tool_id = tool_info.get("工具调用ID")
  429. # tool_instructions = tool_info.get("使用方法")
  430. if tool_id and len(tool_id) > 0:
  431. # 路径A: 使用工具
  432. # 步骤3: 提取参数
  433. arguments = self.extract_tool_params(combined_question, input_info, tool_id, None)
  434. # 步骤4: 调用工具
  435. logger.info(f"[步骤4] 调用工具: {tool_id}")
  436. # 检查工具调用缓存
  437. if self.use_cache:
  438. cached_tool_call = self.cache.get(combined_question, 'function_knowledge', 'tool_call.json')
  439. if cached_tool_call:
  440. logger.info(f"✓ 使用缓存的工具调用结果")
  441. response = cached_tool_call.get('response', {})
  442. tool_result = self.organize_tool_result(response)
  443. # 保存工具调用信息(包含工具名、入参、结果)
  444. tool_call_data = {
  445. "tool_name": tool_id,
  446. "arguments": arguments,
  447. "result": tool_result,
  448. "response": response
  449. }
  450. self.cache.set(combined_question, 'function_knowledge', 'tool_call.json', tool_call_data)
  451. else:
  452. logger.info(f" → 调用工具,参数: {arguments}")
  453. rs = call_tool(tool_id, arguments)
  454. tool_result = self.organize_tool_result(rs)
  455. # 保存工具调用信息(包含工具名、入参、结果)
  456. tool_call_data = {
  457. "tool_name": tool_id,
  458. "arguments": arguments,
  459. "result": tool_result,
  460. "response": rs
  461. }
  462. self.cache.set(combined_question, 'function_knowledge', 'tool_call.json', tool_call_data)
  463. else:
  464. logger.info(f" → 调用工具,参数: {arguments}")
  465. rs = call_tool(tool_id, arguments)
  466. tool_result = self.organize_tool_result(rs)
  467. logger.info(f"✓ 工具调用完成")
  468. # 步骤5: 评估工具执行结果
  469. eval_result = self.evaluate_tool_result(combined_question, input_info, tool_result)
  470. logger.info(f" 评估结果: {eval_result.get('是否可以回答', '未知')}")
  471. if eval_result.get('理由'):
  472. logger.info(f" 评估理由: {eval_result.get('理由')}")
  473. else:
  474. # 路径B: 知识搜索
  475. logger.info("[步骤4] 未找到合适工具,调用 MultiSearch...")
  476. knowledge = get_multi_search_knowledge(input_info, cache_key=combined_question)
  477. # 异步保存知识到文件
  478. logger.info("[后台任务] 保存知识到文件...")
  479. threading.Thread(target=self.save_knowledge_to_file, args=(knowledge, combined_question)).start()
  480. # 计算执行时间
  481. execution_time = time.time() - start_time
  482. # 收集所有执行记录
  483. logger.info("=" * 80)
  484. logger.info("收集执行记录...")
  485. logger.info("=" * 80)
  486. from knowledge_v2.execution_collector import collect_and_save_execution_record
  487. execution_record = collect_and_save_execution_record(
  488. combined_question,
  489. input_info
  490. )
  491. logger.info("=" * 80)
  492. logger.info(f"✓ Function Knowledge 完成")
  493. logger.info(f" 执行时间: {execution_record.get('metadata', {}).get('execution_time', 0):.2f}秒")
  494. logger.info("=" * 80 + "\n")
  495. return execution_record
  496. except Exception as e:
  497. logger.error(f"✗ 执行失败: {e}")
  498. import traceback
  499. logger.error(traceback.format_exc())
  500. # 即使失败也尝试收集记录
  501. try:
  502. execution_time = time.time() - start_time
  503. from knowledge_v2.execution_collector import collect_and_save_execution_record
  504. execution_record = collect_and_save_execution_record(
  505. combined_question,
  506. input_info
  507. )
  508. return execution_record
  509. except Exception as collect_error:
  510. logger.error(f"收集执行记录也失败: {collect_error}")
  511. # 返回基本错误信息
  512. return {
  513. "input": f"{input_info}",
  514. "result": {
  515. "type": "error",
  516. "content": f"执行失败: {str(e)}"
  517. },
  518. "metadata": {
  519. "errors": [str(e)]
  520. }
  521. }
  522. if __name__ == "__main__":
  523. # 测试代码
  524. input_info = """账号背景
  525. - 账号品类:宠物表情包账号
  526. - 选题模式:
  527. - 模式1:聚焦于拟人化穿搭内容灵感,借助拟人化主体与视觉构图版式的关键特征,最终实现趣味分享意图并呈现萌宠主题内容。
  528. - 模式2:以校园学生人设为内容灵感,运用场景化产品植入的方式,以实现商业推广意图和商业产品推广为主要目的。
  529. - 模式3:聚焦于日常生活演绎,借助图文叙事结构的表现形式,以呈现萌宠主题内容及实现趣味分享意图为核心导向。
  530. - 模式4:以视觉隐喻作为主要的内容灵感来源,结合视觉构图版式的关键特征进行呈现,最终达成趣味分享意图与多元生活趣闻的内容目的。
  531. 帖子解构信息
  532. - 灵感点:猫咪考试祝福
  533. - 目的点:推广餐饮品牌、互动特定人群、饺子品牌、考试祝福
  534. - 关键点:拟人化猫咪形象、表情包式视觉风格、强关联场景植入、祈福式指令文案
  535. - 创作日期:2025-11-07"""
  536. try:
  537. agent = FunctionKnowledge()
  538. execution_result = agent.get_knowledge(input_info=input_info)
  539. print("=" * 50)
  540. print("执行结果:")
  541. print("=" * 50)
  542. print(json.dumps(execution_result, ensure_ascii=False, indent=2))
  543. print(f"\n完整JSON已保存到缓存目录")
  544. except Exception as e:
  545. logger.error(f"测试失败: {e}")