| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627 |
- import asyncio
- import json
- import os
- import argparse
- from datetime import datetime
- from agents import Agent, Runner
- from lib.my_trace import set_trace
- from typing import Literal
- from pydantic import BaseModel, Field
- from lib.utils import read_file_as_string
- from script.search_recommendations.xiaohongshu_search_recommendations import XiaohongshuSearchRecommendations
- class RunContext(BaseModel):
- version: str = Field(..., description="当前运行的脚本版本(文件名)")
- input_files: dict[str, str] = Field(..., description="输入文件路径映射")
- q_with_context: str
- q_context: str
- q: str
- log_url: str
- log_dir: str
- # 探索阶段记录
- keywords: list[str] | None = Field(default=None, description="提取的关键词")
- exploration_levels: list[dict] = Field(default_factory=list, description="每一层的探索结果")
- level_analyses: list[dict] = Field(default_factory=list, description="每一层的主Agent分析")
- # 最终结果
- final_candidates: list[str] | None = Field(default=None, description="最终选出的候选query")
- evaluation_results: list[dict] | None = Field(default=None, description="候选query的评估结果")
- optimization_result: dict | None = Field(default=None, description="最终优化结果对象")
- final_output: str | None = Field(default=None, description="最终输出结果(格式化文本)")
- # ============================================================================
- # Agent 1: 关键词提取专家
- # ============================================================================
- keyword_extraction_instructions = """
- 你是关键词提取专家。给定一个搜索问题(含上下文),提取出**最细粒度的关键概念**。
- ## 提取原则
- 1. **细粒度优先**:拆分成最小的有意义单元
- - 不要保留完整的长句
- - 拆分成独立的、有搜索意义的词或短语
- 2. **保留核心维度**:
- - 地域/对象
- - 时间
- - 行为/意图:获取、教程、推荐、如何等
- - 主题/领域
- - 质量/属性
- 3. **去掉无意义的虚词**:的、吗、呢等
- 4. **保留领域专有词**:不要过度拆分专业术语
- - 如果是常见的组合词,保持完整
- ## 输出要求
- 输出关键词列表,按重要性排序(最核心的在前)。
- """.strip()
- class KeywordList(BaseModel):
- """关键词列表"""
- keywords: list[str] = Field(..., description="提取的关键词,按重要性排序")
- reasoning: str = Field(..., description="提取理由")
- keyword_extractor = Agent[None](
- name="关键词提取专家",
- instructions=keyword_extraction_instructions,
- output_type=KeywordList,
- )
- # ============================================================================
- # Agent 2: 层级探索分析专家
- # ============================================================================
- level_analysis_instructions = """
- 你是搜索空间探索分析专家。基于当前层级的探索结果,决定下一步行动。
- ## 你的任务
- 分析当前已探索的词汇空间,判断:
- 1. **发现了什么有价值的信号?**
- 2. **是否已经可以评估候选了?**
- 3. **如果还不够,下一层应该探索什么组合?**
- ## 分析维度
- ### 1. 信号识别(最重要)
- 看推荐词里**出现了什么主题**:
- **关键问题:**
- - 哪些推荐词**最接近原始需求**?
- - 哪些推荐词**揭示了有价值的方向**(即使不完全匹配)?
- - 哪些推荐词可以作为**下一层探索的桥梁**?
- - 系统对哪些概念理解得好?哪些理解偏了?
- ### 2. 组合策略
- 基于发现的信号,设计下一层探索:
- **组合类型:**
- a) **关键词直接组合**
- - 两个关键词组合成新query
- b) **利用推荐词作为桥梁**(重要!)
- - 发现某个推荐词很有价值 → 直接探索这个推荐词
- - 或在推荐词基础上加其他关键词
- c) **跨层级组合**
- - 结合多层发现的有价值推荐词
- - 组合成更复杂的query
- ### 3. 停止条件
- **何时可以评估候选?**
- 满足以下之一:
- - 推荐词中出现了**明确包含原始需求多个核心要素的query**
- - 已经探索到**足够复杂的组合**(3-4个关键词),且推荐词相关
- - 探索了**3-4层**,信息已经足够丰富
- **何时继续探索?**
- - 当前推荐词太泛,没有接近原始需求
- - 发现了有价值的信号,但需要进一步组合验证
- - 层数还少(< 3层)
- ## 输出要求
- ### 1. key_findings
- 总结当前层发现的关键信息,包括:
- - 哪些推荐词最有价值?
- - 系统对哪些概念理解得好/不好?
- - 发现了什么意外的方向?
- ### 2. promising_signals
- 列出最有价值的推荐词(来自任何已探索的query),每个说明为什么有价值
- 格式:[{"query": "...", "from_level": 1, "reason": "..."}]
- ### 3. should_evaluate_now
- 是否已经可以开始评估候选了?true/false
- ### 4. candidates_to_evaluate
- 如果should_evaluate_now=true,列出应该评估的候选query
- - 可以是推荐词
- - 可以是自己构造的组合
- ### 5. next_combinations
- 如果should_evaluate_now=false,列出下一层应该探索的query组合
- ### 6. reasoning
- 详细的推理过程
- ## 重要原则
- 1. **不要过早评估**:至少探索2层,除非第一层就发现了完美匹配
- 2. **充分利用推荐词**:推荐词是系统给的提示,要善用
- 3. **保持探索方向的多样性**:不要只盯着一个方向
- 4. **识别死胡同**:如果某个方向的推荐词一直不相关,果断放弃
- """.strip()
- class LevelAnalysis(BaseModel):
- """层级分析结果"""
- key_findings: str = Field(..., description="当前层的关键发现")
- promising_signals: list[dict] = Field(..., description="有价值的推荐词信号,格式:[{\"query\": \"...\", \"from_level\": 1, \"reason\": \"...\"}]")
- should_evaluate_now: bool = Field(..., description="是否应该开始评估候选")
- candidates_to_evaluate: list[str] = Field(default_factory=list, description="如果should_evaluate_now=true,要评估的候选query列表")
- next_combinations: list[str] = Field(default_factory=list, description="如果should_evaluate_now=false,下一层要探索的query组合")
- reasoning: str = Field(..., description="详细的推理过程")
- level_analyzer = Agent[None](
- name="层级探索分析专家",
- instructions=level_analysis_instructions,
- output_type=LevelAnalysis,
- )
- # ============================================================================
- # Agent 3: 评估专家(复用v5_3的评估逻辑)
- # ============================================================================
- eval_instructions = """
- 你是搜索query评估专家。给定原始问题和推荐query,评估三个分数。
- ## 评估目标
- 用这个推荐query搜索,能否找到满足原始需求的内容?
- ## 三层评分
- ### 1. essence_score(本质/意图)= 0 或 1
- 推荐query的本质/意图是否与原问题一致?
- **判断标准:**
- - 原问题的核心意图是什么?(找方法、找教程、找作品、找工具、找资源等)
- - 推荐词是否明确表达了相同的意图?
- **评分原则:**
- - 1 = 本质一致,推荐词**明确表达**相同意图
- - 0 = 本质改变或**不够明确**
- ### 2. hard_score(硬性约束)= 0 或 1
- 在本质一致的前提下,是否满足所有硬性约束?
- **硬性约束**:地域、时间、对象、工具等客观可验证的限定
- **评分:**
- - 1 = 所有硬性约束都满足
- - 0 = 任一硬性约束不满足
- ### 3. soft_score(软性修饰)= 0-1
- 软性修饰词(质量、特色、美观等主观评价)保留了多少?
- **评分参考:**
- - 1.0 = 完整保留
- - 0.7-0.9 = 保留核心
- - 0.4-0.6 = 部分丢失
- - 0-0.3 = 大量丢失
- ## 注意
- - essence=0 直接拒绝,不管hard/soft多高
- - essence=1, hard=0 也要拒绝
- - essence=1, hard=1 才看soft_score
- """.strip()
- class EvaluationFeedback(BaseModel):
- """评估反馈模型 - 三层评分"""
- essence_score: Literal[0, 1] = Field(..., description="本质/意图匹配度,0或1")
- hard_score: Literal[0, 1] = Field(..., description="硬性约束匹配度,0或1")
- soft_score: float = Field(..., description="软性修饰完整度,0-1")
- reason: str = Field(..., description="评估理由")
- evaluator = Agent[None](
- name="评估专家",
- instructions=eval_instructions,
- output_type=EvaluationFeedback,
- )
- # ============================================================================
- # 核心函数
- # ============================================================================
- async def extract_keywords(q_with_context: str) -> KeywordList:
- """提取关键词"""
- print("\n正在提取关键词...")
- result = await Runner.run(keyword_extractor, q_with_context)
- keyword_list: KeywordList = result.final_output
- print(f"提取的关键词:{keyword_list.keywords}")
- print(f"提取理由:{keyword_list.reasoning}")
- return keyword_list
- async def explore_level(queries: list[str], level_num: int, context: RunContext) -> dict:
- """探索一个层级(并发获取所有query的推荐词)"""
- print(f"\n{'='*60}")
- print(f"Level {level_num} 探索:{len(queries)} 个query")
- print(f"{'='*60}")
- xiaohongshu_api = XiaohongshuSearchRecommendations()
- # 并发获取所有推荐词
- async def get_single_sug(query: str):
- print(f" 探索: {query}")
- suggestions = xiaohongshu_api.get_recommendations(keyword=query)
- print(f" → {len(suggestions) if suggestions else 0} 个推荐词")
- return {
- "query": query,
- "suggestions": suggestions or []
- }
- results = await asyncio.gather(*[get_single_sug(q) for q in queries])
- level_data = {
- "level": level_num,
- "timestamp": datetime.now().isoformat(),
- "queries": results
- }
- context.exploration_levels.append(level_data)
- return level_data
- async def analyze_level(level_data: dict, all_levels: list[dict], original_question: str, context: RunContext) -> LevelAnalysis:
- """分析当前层级,决定下一步"""
- print(f"\n正在分析 Level {level_data['level']}...")
- # 构造输入
- analysis_input = f"""
- <原始问题>
- {original_question}
- </原始问题>
- <已探索的所有层级>
- {json.dumps(all_levels, ensure_ascii=False, indent=2)}
- </已探索的所有层级>
- <当前层级>
- Level {level_data['level']}
- {json.dumps(level_data['queries'], ensure_ascii=False, indent=2)}
- </当前层级>
- 请分析当前探索状态,决定下一步行动。
- """
- result = await Runner.run(level_analyzer, analysis_input)
- analysis: LevelAnalysis = result.final_output
- print(f"\n分析结果:")
- print(f" 关键发现:{analysis.key_findings}")
- print(f" 有价值的信号:{len(analysis.promising_signals)} 个")
- print(f" 是否评估:{analysis.should_evaluate_now}")
- if analysis.should_evaluate_now:
- print(f" 候选query:{analysis.candidates_to_evaluate}")
- else:
- print(f" 下一层探索:{analysis.next_combinations}")
- # 保存分析结果
- context.level_analyses.append({
- "level": level_data['level'],
- "timestamp": datetime.now().isoformat(),
- "analysis": analysis.model_dump()
- })
- return analysis
- async def evaluate_candidates(candidates: list[str], original_question: str, context: RunContext) -> list[dict]:
- """评估候选query"""
- print(f"\n{'='*60}")
- print(f"评估 {len(candidates)} 个候选query")
- print(f"{'='*60}")
- xiaohongshu_api = XiaohongshuSearchRecommendations()
- async def evaluate_single_candidate(candidate: str):
- print(f"\n评估候选:{candidate}")
- # 1. 获取推荐词
- suggestions = xiaohongshu_api.get_recommendations(keyword=candidate)
- print(f" 获取到 {len(suggestions) if suggestions else 0} 个推荐词")
- if not suggestions:
- return {
- "candidate": candidate,
- "suggestions": [],
- "evaluations": []
- }
- # 2. 评估每个推荐词
- async def eval_single_sug(sug: str):
- eval_input = f"""
- <原始问题>
- {original_question}
- </原始问题>
- <待评估的推荐query>
- {sug}
- </待评估的推荐query>
- 请评估该推荐query的三个分数:
- 1. essence_score: 本质/意图是否一致(0或1)
- 2. hard_score: 硬性约束是否满足(0或1)
- 3. soft_score: 软性修饰保留程度(0-1)
- 4. reason: 详细的评估理由
- """
- result = await Runner.run(evaluator, eval_input)
- evaluation: EvaluationFeedback = result.final_output
- return {
- "query": sug,
- "essence_score": evaluation.essence_score,
- "hard_score": evaluation.hard_score,
- "soft_score": evaluation.soft_score,
- "reason": evaluation.reason,
- }
- evaluations = await asyncio.gather(*[eval_single_sug(s) for s in suggestions])
- return {
- "candidate": candidate,
- "suggestions": suggestions,
- "evaluations": evaluations
- }
- results = await asyncio.gather(*[evaluate_single_candidate(c) for c in candidates])
- context.evaluation_results = results
- return results
- def find_qualified_queries(evaluation_results: list[dict], min_soft_score: float = 0.7) -> list[dict]:
- """查找所有合格的query"""
- all_qualified = []
- for result in evaluation_results:
- for eval_item in result.get("evaluations", []):
- if (eval_item['essence_score'] == 1
- and eval_item['hard_score'] == 1
- and eval_item['soft_score'] >= min_soft_score):
- all_qualified.append({
- "from_candidate": result["candidate"],
- **eval_item
- })
- # 按soft_score降序排列
- return sorted(all_qualified, key=lambda x: x['soft_score'], reverse=True)
- # ============================================================================
- # 主流程
- # ============================================================================
- async def progressive_exploration(context: RunContext, max_levels: int = 4) -> dict:
- """
- 渐进式广度探索流程
- Args:
- context: 运行上下文
- max_levels: 最大探索层数,默认4
- 返回格式:
- {
- "success": True/False,
- "results": [...],
- "message": "..."
- }
- """
- # 阶段1:提取关键词
- keyword_result = await extract_keywords(context.q_with_context)
- context.keywords = keyword_result.keywords
- # 阶段2:渐进式探索
- current_level = 1
- # Level 1:单个关键词
- level_1_queries = context.keywords[:7] # 限制最多7个关键词
- level_1_data = await explore_level(level_1_queries, current_level, context)
- # 分析Level 1
- analysis_1 = await analyze_level(level_1_data, context.exploration_levels, context.q, context)
- if analysis_1.should_evaluate_now:
- # 直接评估
- eval_results = await evaluate_candidates(analysis_1.candidates_to_evaluate, context.q, context)
- qualified = find_qualified_queries(eval_results, min_soft_score=0.7)
- if qualified:
- return {
- "success": True,
- "results": qualified,
- "message": f"Level 1 即找到 {len(qualified)} 个合格query"
- }
- # Level 2 及以后:迭代探索
- for level_num in range(2, max_levels + 1):
- # 获取上一层的分析结果
- prev_analysis: LevelAnalysis = context.level_analyses[-1]["analysis"]
- prev_analysis = LevelAnalysis(**prev_analysis) # 转回对象
- if not prev_analysis.next_combinations:
- print(f"\nLevel {level_num-1} 分析后无需继续探索")
- break
- # 探索当前层
- level_data = await explore_level(prev_analysis.next_combinations, level_num, context)
- # 分析当前层
- analysis = await analyze_level(level_data, context.exploration_levels, context.q, context)
- if analysis.should_evaluate_now:
- # 评估候选
- eval_results = await evaluate_candidates(analysis.candidates_to_evaluate, context.q, context)
- qualified = find_qualified_queries(eval_results, min_soft_score=0.7)
- if qualified:
- return {
- "success": True,
- "results": qualified,
- "message": f"Level {level_num} 找到 {len(qualified)} 个合格query"
- }
- # 所有层探索完,降低标准
- print(f"\n{'='*60}")
- print(f"探索完 {max_levels} 层,降低标准(soft_score >= 0.5)")
- print(f"{'='*60}")
- if context.evaluation_results:
- acceptable = find_qualified_queries(context.evaluation_results, min_soft_score=0.5)
- if acceptable:
- return {
- "success": True,
- "results": acceptable,
- "message": f"找到 {len(acceptable)} 个可接受query(soft_score >= 0.5)"
- }
- # 完全失败
- return {
- "success": False,
- "results": [],
- "message": "探索完所有层级,未找到合格的推荐词"
- }
- # ============================================================================
- # 输出格式化
- # ============================================================================
- def format_output(optimization_result: dict, context: RunContext) -> str:
- """格式化输出结果"""
- results = optimization_result.get("results", [])
- output = f"原始问题:{context.q}\n"
- output += f"提取的关键词:{', '.join(context.keywords or [])}\n"
- output += f"探索层数:{len(context.exploration_levels)}\n"
- output += f"状态:{optimization_result['message']}\n\n"
- if optimization_result["success"] and results:
- output += "合格的推荐query(按soft_score降序):\n"
- for i, result in enumerate(results, 1):
- output += f"\n{i}. {result['query']}\n"
- output += f" - 来自候选:{result['from_candidate']}\n"
- output += f" - 本质匹配度:{result['essence_score']} (1=本质一致)\n"
- output += f" - 硬性约束匹配度:{result['hard_score']} (1=所有约束满足)\n"
- output += f" - 软性修饰完整度:{result['soft_score']:.2f} (0-1)\n"
- output += f" - 评估理由:{result['reason']}\n"
- else:
- output += "结果:未找到合格推荐query\n"
- if context.level_analyses:
- last_analysis = context.level_analyses[-1]["analysis"]
- output += f"\n最后一层分析:\n{last_analysis.get('key_findings', 'N/A')}\n"
- return output.strip()
- # ============================================================================
- # 主函数
- # ============================================================================
- async def main(input_dir: str, max_levels: int = 4):
- current_time, log_url = set_trace()
- # 从目录中读取固定文件名
- input_context_file = os.path.join(input_dir, 'context.md')
- input_q_file = os.path.join(input_dir, 'q.md')
- q_context = read_file_as_string(input_context_file)
- q = read_file_as_string(input_q_file)
- q_with_context = f"""
- <需求上下文>
- {q_context}
- </需求上下文>
- <当前问题>
- {q}
- </当前问题>
- """.strip()
- # 获取当前文件名作为版本
- version = os.path.basename(__file__)
- version_name = os.path.splitext(version)[0]
- # 日志保存目录
- log_dir = os.path.join(input_dir, "output", version_name, current_time)
- run_context = RunContext(
- version=version,
- input_files={
- "input_dir": input_dir,
- "context_file": input_context_file,
- "q_file": input_q_file,
- },
- q_with_context=q_with_context,
- q_context=q_context,
- q=q,
- log_dir=log_dir,
- log_url=log_url,
- )
- # 执行渐进式探索
- optimization_result = await progressive_exploration(run_context, max_levels=max_levels)
- # 格式化输出
- final_output = format_output(optimization_result, run_context)
- print(f"\n{'='*60}")
- print("最终结果")
- print(f"{'='*60}")
- print(final_output)
- # 保存结果
- run_context.optimization_result = optimization_result
- run_context.final_output = final_output
- # 保存 RunContext 到 log_dir
- os.makedirs(run_context.log_dir, exist_ok=True)
- context_file_path = os.path.join(run_context.log_dir, "run_context.json")
- with open(context_file_path, "w", encoding="utf-8") as f:
- json.dump(run_context.model_dump(), f, ensure_ascii=False, indent=2)
- print(f"\nRunContext saved to: {context_file_path}")
- if __name__ == "__main__":
- parser = argparse.ArgumentParser(description="搜索query优化工具 - 渐进式广度探索版")
- parser.add_argument(
- "--input-dir",
- type=str,
- default="input/简单扣图",
- help="输入目录路径,默认: input/简单扣图"
- )
- parser.add_argument(
- "--max-levels",
- type=int,
- default=4,
- help="最大探索层数,默认: 4"
- )
- args = parser.parse_args()
- asyncio.run(main(args.input_dir, max_levels=args.max_levels))
|