llm_search_knowledge.py 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453
  1. '''
  2. 基于LLM+search的知识获取模块
  3. 1. 输入:问题
  4. 2. 输出:知识文本
  5. 3. 处理流程:
  6. - 3.1 根据问题构建query,调用大模型生成多个query,prompt 在 llm_search_generate_query_prompt.md 中
  7. - 3.2 根据query调用 utils/qwen_client.py 的 search_and_chat 方法(使用返回中的 'content' 字段即可),获取知识文本
  8. - 3.3 用大模型合并多个query的知识文本,prompt在 llm_search_merge_knowledge_prompt.md 中
  9. - 3.4 返回知识文本
  10. 4. 大模型调用使用uitls/gemini_client.py 的 generate_text 方法
  11. 5. 考虑复用性,尽量把每个步骤封装在一个方法中
  12. '''
  13. import os
  14. import sys
  15. import json
  16. from typing import List
  17. from loguru import logger
  18. # 设置路径以便导入工具类
  19. current_dir = os.path.dirname(os.path.abspath(__file__))
  20. root_dir = os.path.dirname(current_dir)
  21. sys.path.insert(0, root_dir)
  22. from utils.gemini_client import generate_text
  23. from utils.qwen_client import QwenClient
  24. from knowledge_v2.cache_manager import CacheManager
  25. class LLMSearchKnowledge:
  26. """基于LLM+search的知识获取类"""
  27. def __init__(self, use_cache: bool = True):
  28. """
  29. 初始化
  30. Args:
  31. use_cache: 是否启用缓存,默认启用
  32. """
  33. logger.info("=" * 60)
  34. logger.info("初始化 LLMSearchKnowledge")
  35. self.qwen_client = QwenClient()
  36. self.prompt_dir = os.path.join(current_dir, "prompt")
  37. self.use_cache = use_cache
  38. self.cache = CacheManager() if use_cache else None
  39. # 执行详情收集
  40. self.execution_detail = {
  41. "generate_queries": None,
  42. "search_results": [],
  43. "merge_detail": None,
  44. "execution_time": 0,
  45. "cache_hits": []
  46. }
  47. logger.info(f"缓存状态: {'启用' if use_cache else '禁用'}")
  48. logger.info("=" * 60)
  49. def _load_prompt(self, filename: str) -> str:
  50. """
  51. 加载prompt文件内容
  52. Args:
  53. filename: prompt文件名
  54. Returns:
  55. str: prompt内容
  56. Raises:
  57. FileNotFoundError: 文件不存在时抛出
  58. ValueError: 文件内容为空时抛出
  59. """
  60. prompt_path = os.path.join(self.prompt_dir, filename)
  61. if not os.path.exists(prompt_path):
  62. error_msg = f"Prompt文件不存在: {prompt_path}"
  63. logger.error(error_msg)
  64. raise FileNotFoundError(error_msg)
  65. try:
  66. with open(prompt_path, 'r', encoding='utf-8') as f:
  67. content = f.read().strip()
  68. if not content:
  69. error_msg = f"Prompt文件内容为空: {prompt_path}"
  70. logger.error(error_msg)
  71. raise ValueError(error_msg)
  72. return content
  73. except Exception as e:
  74. error_msg = f"读取prompt文件 {filename} 失败: {e}"
  75. logger.error(error_msg)
  76. raise
  77. def generate_queries(self, question: str) -> List[str]:
  78. """
  79. 根据问题生成多个搜索query
  80. Args:
  81. question: 问题字符串
  82. Returns:
  83. List[str]: query列表
  84. Raises:
  85. Exception: 生成query失败时抛出异常
  86. """
  87. logger.info(f"[步骤1] 生成搜索Query - 问题: {question[:50]}...")
  88. # 尝试从缓存读取
  89. if self.use_cache:
  90. cached_queries = self.cache.get(question, 'llm_search', 'generated_queries.json')
  91. if cached_queries:
  92. logger.info(f"✓ 使用缓存的queries: {cached_queries}")
  93. # 记录缓存命中
  94. self.execution_detail["generate_queries"] = {
  95. "cached": True,
  96. "queries_count": len(cached_queries)
  97. }
  98. self.execution_detail["cache_hits"].append("generated_queries")
  99. return cached_queries
  100. try:
  101. # 加载prompt
  102. prompt_template = self._load_prompt("llm_search_generate_query_prompt.md")
  103. # 构建prompt,使用 {question} 作为占位符
  104. prompt = prompt_template.format(question=question)
  105. # 调用gemini生成query
  106. logger.info("→ 调用Gemini生成query...")
  107. response_text = generate_text(prompt=prompt)
  108. # 解析JSON响应
  109. logger.info("→ 解析生成的query...")
  110. try:
  111. # 尝试提取JSON部分(去除可能的markdown代码块标记)
  112. response_text = response_text.strip()
  113. if response_text.startswith("```json"):
  114. response_text = response_text[7:]
  115. if response_text.startswith("```"):
  116. response_text = response_text[3:]
  117. if response_text.endswith("```"):
  118. response_text = response_text[:-3]
  119. response_text = response_text.strip()
  120. result = json.loads(response_text)
  121. queries = result.get("queries", [])
  122. if not queries:
  123. raise ValueError("生成的query列表为空")
  124. logger.info(f"✓ 成功生成 {len(queries)} 个query:")
  125. for i, q in enumerate(queries, 1):
  126. logger.info(f" {i}. {q}")
  127. # 记录执行详情
  128. self.execution_detail["generate_queries"] = {
  129. "cached": False,
  130. "prompt": prompt,
  131. "response": response_text,
  132. "queries_count": len(queries),
  133. "queries": queries
  134. }
  135. # 写入缓存
  136. if self.use_cache:
  137. self.cache.set(question, 'llm_search', 'generated_queries.json', queries)
  138. return queries
  139. except json.JSONDecodeError as e:
  140. logger.error(f"✗ 解析JSON失败: {e}")
  141. logger.error(f"响应内容: {response_text}")
  142. raise ValueError(f"无法解析模型返回的JSON: {e}")
  143. except Exception as e:
  144. logger.error(f"✗ 生成query失败: {e}")
  145. raise
  146. def search_knowledge(self, question: str, query: str, query_index: int = 0) -> str:
  147. """
  148. 根据单个query搜索知识
  149. Args:
  150. question: 原始问题(用于缓存)
  151. query: 搜索query
  152. query_index: query索引(用于缓存文件名)
  153. Returns:
  154. str: 搜索到的知识文本(content字段)
  155. Raises:
  156. Exception: 搜索失败时抛出异常
  157. """
  158. logger.info(f" [{query_index}] 搜索Query: {query}")
  159. # 尝试从缓存读取
  160. if self.use_cache:
  161. cache_filename = f"search_result_{query_index:03d}.txt"
  162. cached_result = self.cache.get(question, 'llm_search/search_results', cache_filename)
  163. if cached_result:
  164. logger.info(f" ✓ 使用缓存结果 (长度: {len(cached_result)})")
  165. # 记录缓存命中
  166. self.execution_detail["search_results"].append({
  167. "query": query,
  168. "query_index": query_index,
  169. "cached": True,
  170. "result_length": len(cached_result)
  171. })
  172. self.execution_detail["cache_hits"].append(f"search_result_{query_index:03d}")
  173. return cached_result
  174. try:
  175. # 调用qwen_client的search_and_chat方法
  176. logger.info(f" → 调用搜索引擎...")
  177. result = self.qwen_client.search_and_chat(
  178. user_prompt=query,
  179. search_strategy="agent"
  180. )
  181. # 提取content字段
  182. knowledge_text = result.get("content", "")
  183. if not knowledge_text:
  184. logger.warning(f" ⚠ query '{query}' 的搜索结果为空")
  185. return ""
  186. logger.info(f" ✓ 获取知识文本 (长度: {len(knowledge_text)})")
  187. # 记录搜索结果详情
  188. self.execution_detail["search_results"].append({
  189. "query": query,
  190. "query_index": query_index,
  191. "cached": False,
  192. "result_length": len(knowledge_text)
  193. })
  194. # 写入缓存
  195. if self.use_cache:
  196. cache_filename = f"search_result_{query_index:03d}.txt"
  197. self.cache.set(question, 'llm_search/search_results', cache_filename, knowledge_text)
  198. return knowledge_text
  199. except Exception as e:
  200. logger.error(f" ✗ 搜索知识失败,query: {query}, 错误: {e}")
  201. raise
  202. def search_knowledge_batch(self, question: str, queries: List[str]) -> List[str]:
  203. """
  204. 批量搜索知识
  205. Args:
  206. question: 原始问题(用于缓存)
  207. queries: query列表
  208. Returns:
  209. List[str]: 知识文本列表
  210. """
  211. logger.info(f"[步骤2] 批量搜索 - 共 {len(queries)} 个Query")
  212. knowledge_texts = []
  213. for i, query in enumerate(queries, 1):
  214. try:
  215. knowledge_text = self.search_knowledge(question, query, i)
  216. knowledge_texts.append(knowledge_text)
  217. except Exception as e:
  218. logger.error(f" ✗ 搜索第 {i} 个query失败,跳过: {e}")
  219. # 失败时添加空字符串,保持索引对应
  220. knowledge_texts.append("")
  221. logger.info(f"✓ 批量搜索完成,获得 {len([k for k in knowledge_texts if k])} 个有效结果")
  222. return knowledge_texts
  223. def merge_knowledge(self, question: str, knowledge_texts: List[str]) -> str:
  224. """
  225. 合并多个知识文本
  226. Args:
  227. question: 原始问题(用于缓存)
  228. knowledge_texts: 知识文本列表
  229. Returns:
  230. str: 合并后的知识文本
  231. Raises:
  232. Exception: 合并失败时抛出异常
  233. """
  234. logger.info(f"[步骤3] 合并知识 - 共 {len(knowledge_texts)} 个文本")
  235. # 尝试从缓存读取
  236. if self.use_cache:
  237. cached_merged = self.cache.get(question, 'llm_search', 'merged_knowledge.txt')
  238. if cached_merged:
  239. logger.info(f"✓ 使用缓存的合并知识 (长度: {len(cached_merged)})")
  240. return cached_merged
  241. try:
  242. # 过滤空文本
  243. valid_texts = [text for text in knowledge_texts if text.strip()]
  244. logger.info(f" 有效文本数量: {len(valid_texts)}/{len(knowledge_texts)}")
  245. if not valid_texts:
  246. logger.warning(" ⚠ 所有知识文本都为空,返回空字符串")
  247. return ""
  248. if len(valid_texts) == 1:
  249. logger.info(" 只有一个有效知识文本,直接返回")
  250. result = valid_texts[0]
  251. if self.use_cache:
  252. self.cache.set(question, 'llm_search', 'merged_knowledge.txt', result)
  253. return result
  254. # 加载prompt
  255. prompt_template = self._load_prompt("llm_search_merge_knowledge_prompt.md")
  256. # 构建prompt,将多个知识文本格式化
  257. knowledge_sections = []
  258. for i, text in enumerate(valid_texts, 1):
  259. knowledge_sections.append(f"【知识文本 {i}】\n{text}")
  260. knowledge_texts_str = "\n\n".join(knowledge_sections)
  261. prompt = prompt_template.format(knowledge_texts=knowledge_texts_str)
  262. # 调用gemini合并知识
  263. logger.info(" → 调用Gemini合并知识文本...")
  264. merged_text = generate_text(prompt=prompt)
  265. logger.info(f"✓ 成功合并知识文本 (长度: {len(merged_text)})")
  266. # 写入缓存
  267. if self.use_cache:
  268. self.cache.set(question, 'llm_search', 'merged_knowledge.txt', merged_text.strip())
  269. return merged_text.strip()
  270. except Exception as e:
  271. logger.error(f"✗ 合并知识文本失败: {e}")
  272. raise
  273. def _save_execution_detail(self, cache_key: str):
  274. """
  275. 保存执行详情到缓存
  276. Args:
  277. cache_key: 缓存键
  278. """
  279. if not self.use_cache or not self.cache:
  280. return
  281. try:
  282. import hashlib
  283. question_hash = hashlib.md5(cache_key.encode('utf-8')).hexdigest()[:12]
  284. detail_dir = os.path.join(
  285. self.cache.base_cache_dir,
  286. question_hash,
  287. 'llm_search'
  288. )
  289. os.makedirs(detail_dir, exist_ok=True)
  290. detail_file = os.path.join(detail_dir, 'execution_detail.json')
  291. with open(detail_file, 'w', encoding='utf-8') as f:
  292. json.dump(self.execution_detail, f, ensure_ascii=False, indent=2)
  293. logger.info(f"✓ 执行详情已保存: {detail_file}")
  294. except Exception as e:
  295. logger.error(f"✗ 保存执行详情失败: {e}")
  296. def get_knowledge(self, question: str, cache_key: str = None) -> str:
  297. """
  298. 主方法:根据问题获取知识文本
  299. Args:
  300. question: 问题字符串
  301. cache_key: 可选的缓存键,用于与主流程共享同一缓存目录
  302. Returns:
  303. str: 最终的知识文本
  304. Raises:
  305. Exception: 处理过程中出现错误时抛出异常
  306. """
  307. # 使用cache_key或question作为缓存键
  308. actual_cache_key = cache_key if cache_key is not None else question
  309. import time
  310. start_time = time.time()
  311. try:
  312. logger.info(f"{'='*60}")
  313. logger.info(f"LLM Search - 开始处理问题: {question[:50]}...")
  314. logger.info(f"{'='*60}")
  315. # 步骤1: 生成多个query
  316. queries = self.generate_queries(actual_cache_key)
  317. # 步骤2: 对每个query搜索知识
  318. knowledge_texts = self.search_knowledge_batch(actual_cache_key, queries)
  319. # 步骤3: 合并多个知识文本
  320. merged_knowledge = self.merge_knowledge(actual_cache_key, knowledge_texts)
  321. logger.info(f"{'='*60}")
  322. logger.info(f"✓ LLM Search 完成 (最终长度: {len(merged_knowledge)})")
  323. logger.info(f"{'='*60}\n")
  324. # 计算执行时间并保存详情
  325. self.execution_detail["execution_time"] = time.time() - start_time
  326. self._save_execution_detail(actual_cache_key)
  327. return merged_knowledge
  328. except Exception as e:
  329. logger.error(f"✗ 获取知识文本失败,问题: {question[:50]}..., 错误: {e}")
  330. # 即使失败也保存执行详情
  331. self.execution_detail["execution_time"] = time.time() - start_time
  332. self._save_execution_detail(actual_cache_key)
  333. raise
  334. def get_knowledge(question: str, cache_key: str = None) -> str:
  335. """
  336. 便捷函数:根据问题获取知识文本
  337. Args:
  338. question: 问题字符串
  339. cache_key: 可选的缓存键
  340. Returns:
  341. str: 最终的知识文本
  342. """
  343. agent = LLMSearchKnowledge()
  344. return agent.get_knowledge(question, cache_key=cache_key)
  345. if __name__ == "__main__":
  346. # 测试代码
  347. test_question = "关于猫咪和墨镜的服装造型元素"
  348. try:
  349. result = get_knowledge(test_question)
  350. print("=" * 50)
  351. print("最终知识文本:")
  352. print("=" * 50)
  353. print(result)
  354. except Exception as e:
  355. logger.error(f"测试失败: {e}")
  356. print("=" * 50)
  357. print("最终知识文本:")
  358. print("=" * 50)
  359. print(result)
  360. except Exception as e:
  361. logger.error(f"测试失败: {e}")