llm_search_knowledge.py 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361
  1. '''
  2. 基于LLM+search的知识获取模块
  3. 1. 输入:问题
  4. 2. 输出:知识文本
  5. 3. 处理流程:
  6. - 3.1 根据问题构建query,调用大模型生成多个query,prompt 在 llm_search_generate_query_prompt.md 中
  7. - 3.2 根据query调用 utils/qwen_client.py 的 search_and_chat 方法(使用返回中的 'content' 字段即可),获取知识文本
  8. - 3.3 用大模型合并多个query的知识文本,prompt在 llm_search_merge_knowledge_prompt.md 中
  9. - 3.4 返回知识文本
  10. 4. 大模型调用使用uitls/gemini_client.py 的 generate_text 方法
  11. 5. 考虑复用性,尽量把每个步骤封装在一个方法中
  12. '''
  13. import os
  14. import sys
  15. import json
  16. from typing import List
  17. from loguru import logger
  18. # 设置路径以便导入工具类
  19. current_dir = os.path.dirname(os.path.abspath(__file__))
  20. root_dir = os.path.dirname(current_dir)
  21. sys.path.insert(0, root_dir)
  22. from utils.gemini_client import generate_text
  23. from utils.qwen_client import QwenClient
  24. from knowledge_v2.cache_manager import CacheManager
  25. class LLMSearchKnowledge:
  26. """基于LLM+search的知识获取类"""
  27. def __init__(self, use_cache: bool = True):
  28. """
  29. 初始化
  30. Args:
  31. use_cache: 是否启用缓存,默认启用
  32. """
  33. logger.info("=" * 60)
  34. logger.info("初始化 LLMSearchKnowledge")
  35. self.qwen_client = QwenClient()
  36. self.prompt_dir = os.path.join(current_dir, "prompt")
  37. self.use_cache = use_cache
  38. self.cache = CacheManager() if use_cache else None
  39. logger.info(f"缓存状态: {'启用' if use_cache else '禁用'}")
  40. logger.info("=" * 60)
  41. def _load_prompt(self, filename: str) -> str:
  42. """
  43. 加载prompt文件内容
  44. Args:
  45. filename: prompt文件名
  46. Returns:
  47. str: prompt内容
  48. Raises:
  49. FileNotFoundError: 文件不存在时抛出
  50. ValueError: 文件内容为空时抛出
  51. """
  52. prompt_path = os.path.join(self.prompt_dir, filename)
  53. if not os.path.exists(prompt_path):
  54. error_msg = f"Prompt文件不存在: {prompt_path}"
  55. logger.error(error_msg)
  56. raise FileNotFoundError(error_msg)
  57. try:
  58. with open(prompt_path, 'r', encoding='utf-8') as f:
  59. content = f.read().strip()
  60. if not content:
  61. error_msg = f"Prompt文件内容为空: {prompt_path}"
  62. logger.error(error_msg)
  63. raise ValueError(error_msg)
  64. return content
  65. except Exception as e:
  66. error_msg = f"读取prompt文件 {filename} 失败: {e}"
  67. logger.error(error_msg)
  68. raise
  69. def generate_queries(self, question: str) -> List[str]:
  70. """
  71. 根据问题生成多个搜索query
  72. Args:
  73. question: 问题字符串
  74. Returns:
  75. List[str]: query列表
  76. Raises:
  77. Exception: 生成query失败时抛出异常
  78. """
  79. logger.info(f"[步骤1] 生成搜索Query - 问题: {question[:50]}...")
  80. # 尝试从缓存读取
  81. if self.use_cache:
  82. cached_queries = self.cache.get(question, 'llm_search', 'generated_queries.json')
  83. if cached_queries:
  84. logger.info(f"✓ 使用缓存的queries: {cached_queries}")
  85. return cached_queries
  86. try:
  87. # 加载prompt
  88. prompt_template = self._load_prompt("llm_search_generate_query_prompt.md")
  89. # 构建prompt,使用 {question} 作为占位符
  90. prompt = prompt_template.format(question=question)
  91. # 调用gemini生成query
  92. logger.info("→ 调用Gemini生成query...")
  93. response_text = generate_text(prompt=prompt)
  94. # 解析JSON响应
  95. logger.info("→ 解析生成的query...")
  96. try:
  97. # 尝试提取JSON部分(去除可能的markdown代码块标记)
  98. response_text = response_text.strip()
  99. if response_text.startswith("```json"):
  100. response_text = response_text[7:]
  101. if response_text.startswith("```"):
  102. response_text = response_text[3:]
  103. if response_text.endswith("```"):
  104. response_text = response_text[:-3]
  105. response_text = response_text.strip()
  106. result = json.loads(response_text)
  107. queries = result.get("queries", [])
  108. if not queries:
  109. raise ValueError("生成的query列表为空")
  110. logger.info(f"✓ 成功生成 {len(queries)} 个query:")
  111. for i, q in enumerate(queries, 1):
  112. logger.info(f" {i}. {q}")
  113. # 写入缓存
  114. if self.use_cache:
  115. self.cache.set(question, 'llm_search', 'generated_queries.json', queries)
  116. return queries
  117. except json.JSONDecodeError as e:
  118. logger.error(f"✗ 解析JSON失败: {e}")
  119. logger.error(f"响应内容: {response_text}")
  120. raise ValueError(f"无法解析模型返回的JSON: {e}")
  121. except Exception as e:
  122. logger.error(f"✗ 生成query失败: {e}")
  123. raise
  124. def search_knowledge(self, question: str, query: str, query_index: int = 0) -> str:
  125. """
  126. 根据单个query搜索知识
  127. Args:
  128. question: 原始问题(用于缓存)
  129. query: 搜索query
  130. query_index: query索引(用于缓存文件名)
  131. Returns:
  132. str: 搜索到的知识文本(content字段)
  133. Raises:
  134. Exception: 搜索失败时抛出异常
  135. """
  136. logger.info(f" [{query_index}] 搜索Query: {query}")
  137. # 尝试从缓存读取
  138. if self.use_cache:
  139. cache_filename = f"search_result_{query_index:03d}.txt"
  140. cached_result = self.cache.get(question, 'llm_search/search_results', cache_filename)
  141. if cached_result:
  142. logger.info(f" ✓ 使用缓存结果 (长度: {len(cached_result)})")
  143. return cached_result
  144. try:
  145. # 调用qwen_client的search_and_chat方法
  146. logger.info(f" → 调用搜索引擎...")
  147. result = self.qwen_client.search_and_chat(
  148. user_prompt=query,
  149. search_strategy="agent"
  150. )
  151. # 提取content字段
  152. knowledge_text = result.get("content", "")
  153. if not knowledge_text:
  154. logger.warning(f" ⚠ query '{query}' 的搜索结果为空")
  155. return ""
  156. logger.info(f" ✓ 获取知识文本 (长度: {len(knowledge_text)})")
  157. # 写入缓存
  158. if self.use_cache:
  159. cache_filename = f"search_result_{query_index:03d}.txt"
  160. self.cache.set(question, 'llm_search/search_results', cache_filename, knowledge_text)
  161. return knowledge_text
  162. except Exception as e:
  163. logger.error(f" ✗ 搜索知识失败,query: {query}, 错误: {e}")
  164. raise
  165. def search_knowledge_batch(self, question: str, queries: List[str]) -> List[str]:
  166. """
  167. 批量搜索知识
  168. Args:
  169. question: 原始问题(用于缓存)
  170. queries: query列表
  171. Returns:
  172. List[str]: 知识文本列表
  173. """
  174. logger.info(f"[步骤2] 批量搜索 - 共 {len(queries)} 个Query")
  175. knowledge_texts = []
  176. for i, query in enumerate(queries, 1):
  177. try:
  178. knowledge_text = self.search_knowledge(question, query, i)
  179. knowledge_texts.append(knowledge_text)
  180. except Exception as e:
  181. logger.error(f" ✗ 搜索第 {i} 个query失败,跳过: {e}")
  182. # 失败时添加空字符串,保持索引对应
  183. knowledge_texts.append("")
  184. logger.info(f"✓ 批量搜索完成,获得 {len([k for k in knowledge_texts if k])} 个有效结果")
  185. return knowledge_texts
  186. def merge_knowledge(self, question: str, knowledge_texts: List[str]) -> str:
  187. """
  188. 合并多个知识文本
  189. Args:
  190. question: 原始问题(用于缓存)
  191. knowledge_texts: 知识文本列表
  192. Returns:
  193. str: 合并后的知识文本
  194. Raises:
  195. Exception: 合并失败时抛出异常
  196. """
  197. logger.info(f"[步骤3] 合并知识 - 共 {len(knowledge_texts)} 个文本")
  198. # 尝试从缓存读取
  199. if self.use_cache:
  200. cached_merged = self.cache.get(question, 'llm_search', 'merged_knowledge.txt')
  201. if cached_merged:
  202. logger.info(f"✓ 使用缓存的合并知识 (长度: {len(cached_merged)})")
  203. return cached_merged
  204. try:
  205. # 过滤空文本
  206. valid_texts = [text for text in knowledge_texts if text.strip()]
  207. logger.info(f" 有效文本数量: {len(valid_texts)}/{len(knowledge_texts)}")
  208. if not valid_texts:
  209. logger.warning(" ⚠ 所有知识文本都为空,返回空字符串")
  210. return ""
  211. if len(valid_texts) == 1:
  212. logger.info(" 只有一个有效知识文本,直接返回")
  213. result = valid_texts[0]
  214. if self.use_cache:
  215. self.cache.set(question, 'llm_search', 'merged_knowledge.txt', result)
  216. return result
  217. # 加载prompt
  218. prompt_template = self._load_prompt("llm_search_merge_knowledge_prompt.md")
  219. # 构建prompt,将多个知识文本格式化
  220. knowledge_sections = []
  221. for i, text in enumerate(valid_texts, 1):
  222. knowledge_sections.append(f"【知识文本 {i}】\n{text}")
  223. knowledge_texts_str = "\n\n".join(knowledge_sections)
  224. prompt = prompt_template.format(knowledge_texts=knowledge_texts_str)
  225. # 调用gemini合并知识
  226. logger.info(" → 调用Gemini合并知识文本...")
  227. merged_text = generate_text(prompt=prompt)
  228. logger.info(f"✓ 成功合并知识文本 (长度: {len(merged_text)})")
  229. # 写入缓存
  230. if self.use_cache:
  231. self.cache.set(question, 'llm_search', 'merged_knowledge.txt', merged_text.strip())
  232. return merged_text.strip()
  233. except Exception as e:
  234. logger.error(f"✗ 合并知识文本失败: {e}")
  235. raise
  236. def get_knowledge(self, question: str) -> str:
  237. """
  238. 主方法:根据问题获取知识文本
  239. Args:
  240. question: 问题字符串
  241. Returns:
  242. str: 最终的知识文本
  243. Raises:
  244. Exception: 处理过程中出现错误时抛出异常
  245. """
  246. try:
  247. logger.info(f"{'='*60}")
  248. logger.info(f"LLM Search - 开始处理问题: {question[:50]}...")
  249. logger.info(f"{'='*60}")
  250. # 步骤1: 生成多个query
  251. queries = self.generate_queries(question)
  252. # 步骤2: 对每个query搜索知识
  253. knowledge_texts = self.search_knowledge_batch(question, queries)
  254. # 步骤3: 合并多个知识文本
  255. merged_knowledge = self.merge_knowledge(question, knowledge_texts)
  256. logger.info(f"{'='*60}")
  257. logger.info(f"✓ LLM Search 完成 (最终长度: {len(merged_knowledge)})")
  258. logger.info(f"{'='*60}\n")
  259. return merged_knowledge
  260. except Exception as e:
  261. logger.error(f"✗ 获取知识文本失败,问题: {question[:50]}..., 错误: {e}")
  262. raise
  263. def get_knowledge(question: str) -> str:
  264. """
  265. 便捷函数:根据问题获取知识文本
  266. Args:
  267. question: 问题字符串
  268. Returns:
  269. str: 最终的知识文本
  270. """
  271. agent = LLMSearchKnowledge()
  272. return agent.get_knowledge(question)
  273. if __name__ == "__main__":
  274. # 测试代码
  275. test_question = "关于猫咪和墨镜的服装造型元素"
  276. try:
  277. result = get_knowledge(test_question)
  278. print("=" * 50)
  279. print("最终知识文本:")
  280. print("=" * 50)
  281. print(result)
  282. except Exception as e:
  283. logger.error(f"测试失败: {e}")