llm_search_knowledge.py 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410
  1. '''
  2. 基于LLM+search的知识获取模块
  3. 1. 输入:问题
  4. 2. 输出:知识文本
  5. 3. 处理流程:
  6. - 3.1 根据问题构建query,调用大模型生成多个query,prompt 在 llm_search_generate_query_prompt.md 中
  7. - 3.2 根据query调用 utils/qwen_client.py 的 search_and_chat 方法(使用返回中的 'content' 字段即可),获取知识文本
  8. - 3.3 用大模型合并多个query的知识文本,prompt在 llm_search_merge_knowledge_prompt.md 中
  9. - 3.4 返回知识文本
  10. 4. 大模型调用使用uitls/gemini_client.py 的 generate_text 方法
  11. 5. 考虑复用性,尽量把每个步骤封装在一个方法中
  12. '''
  13. import os
  14. import sys
  15. import json
  16. from typing import List
  17. from loguru import logger
  18. # 设置路径以便导入工具类
  19. current_dir = os.path.dirname(os.path.abspath(__file__))
  20. root_dir = os.path.dirname(current_dir)
  21. sys.path.insert(0, root_dir)
  22. from utils.gemini_client import generate_text
  23. from utils.qwen_client import QwenClient
  24. from knowledge_v2.cache_manager import CacheManager
  25. class LLMSearchKnowledge:
  26. """基于LLM+search的知识获取类"""
  27. def __init__(self, use_cache: bool = True):
  28. """
  29. 初始化
  30. Args:
  31. use_cache: 是否启用缓存,默认启用
  32. """
  33. logger.info("=" * 60)
  34. logger.info("初始化 LLMSearchKnowledge")
  35. self.qwen_client = QwenClient()
  36. self.prompt_dir = os.path.join(current_dir, "prompt")
  37. self.use_cache = use_cache
  38. self.cache = CacheManager() if use_cache else None
  39. logger.info(f"缓存状态: {'启用' if use_cache else '禁用'}")
  40. logger.info("=" * 60)
  41. def _load_prompt(self, filename: str) -> str:
  42. """
  43. 加载prompt文件内容
  44. Args:
  45. filename: prompt文件名
  46. Returns:
  47. str: prompt内容
  48. Raises:
  49. FileNotFoundError: 文件不存在时抛出
  50. ValueError: 文件内容为空时抛出
  51. """
  52. prompt_path = os.path.join(self.prompt_dir, filename)
  53. if not os.path.exists(prompt_path):
  54. error_msg = f"Prompt文件不存在: {prompt_path}"
  55. logger.error(error_msg)
  56. raise FileNotFoundError(error_msg)
  57. try:
  58. with open(prompt_path, 'r', encoding='utf-8') as f:
  59. content = f.read().strip()
  60. if not content:
  61. error_msg = f"Prompt文件内容为空: {prompt_path}"
  62. logger.error(error_msg)
  63. raise ValueError(error_msg)
  64. return content
  65. except Exception as e:
  66. error_msg = f"读取prompt文件 {filename} 失败: {e}"
  67. logger.error(error_msg)
  68. raise
  69. def generate_queries(self, question: str) -> List[str]:
  70. """
  71. 根据问题生成多个搜索query
  72. Args:
  73. question: 问题字符串
  74. Returns:
  75. List[str]: query列表
  76. Raises:
  77. Exception: 生成query失败时抛出异常
  78. """
  79. logger.info(f"[步骤1] 生成搜索Query - 问题: {question[:50]}...")
  80. # 尝试从缓存读取
  81. if self.use_cache:
  82. cached_data = self.cache.get(question, 'llm_search', 'generated_queries.json')
  83. if cached_data:
  84. # check if it's the new format or old format (list)
  85. if isinstance(cached_data, list):
  86. queries = cached_data
  87. else:
  88. queries = cached_data.get('queries', [])
  89. if queries:
  90. logger.info(f"✓ 使用缓存的queries: {queries}")
  91. return queries
  92. try:
  93. # 加载prompt
  94. prompt_template = self._load_prompt("llm_search_generate_query_prompt.md")
  95. # 构建prompt,使用 {question} 作为占位符
  96. prompt = prompt_template.format(question=question)
  97. # 调用gemini生成query
  98. logger.info("→ 调用Gemini生成query...")
  99. response_text = generate_text(prompt=prompt)
  100. # 解析JSON响应
  101. logger.info("→ 解析生成的query...")
  102. try:
  103. # 尝试提取JSON部分(去除可能的markdown代码块标记)
  104. response_text = response_text.strip()
  105. if response_text.startswith("```json"):
  106. response_text = response_text[7:]
  107. if response_text.startswith("```"):
  108. response_text = response_text[3:]
  109. if response_text.endswith("```"):
  110. response_text = response_text[:-3]
  111. response_text = response_text.strip()
  112. result = json.loads(response_text)
  113. queries = result.get("queries", [])
  114. if not queries:
  115. raise ValueError("生成的query列表为空")
  116. logger.info(f"✓ 成功生成 {len(queries)} 个query:")
  117. for i, q in enumerate(queries, 1):
  118. logger.info(f" {i}. {q}")
  119. # 保存到缓存(包含完整的prompt和response)
  120. if self.use_cache:
  121. queries_data = {
  122. "prompt": prompt,
  123. "response": response_text,
  124. "queries": queries
  125. }
  126. self.cache.set(question, 'llm_search', 'generated_queries.json', queries_data)
  127. return queries
  128. except json.JSONDecodeError as e:
  129. logger.error(f"✗ 解析JSON失败: {e}")
  130. logger.error(f"响应内容: {response_text}")
  131. raise ValueError(f"无法解析模型返回的JSON: {e}")
  132. except Exception as e:
  133. logger.error(f"✗ 生成query失败: {e}")
  134. raise
  135. def search_knowledge(self, question: str, query: str, query_index: int = 0) -> str:
  136. """
  137. 根据单个query搜索知识
  138. Args:
  139. question: 原始问题(用于缓存)
  140. query: 搜索query
  141. query_index: query索引(用于缓存文件名)
  142. Returns:
  143. str: 搜索到的知识文本(content字段)
  144. Raises:
  145. Exception: 搜索失败时抛出异常
  146. """
  147. logger.info(f" [{query_index}] 搜索Query: {query}")
  148. # 尝试从缓存读取
  149. if self.use_cache:
  150. cache_filename = f"search_result_{query_index:03d}.json"
  151. cached_data = self.cache.get(question, 'llm_search/search_results', cache_filename)
  152. if cached_data:
  153. content = cached_data.get('content', '')
  154. logger.info(f" ✓ 使用缓存结果 (长度: {len(content)})")
  155. return content
  156. try:
  157. # 调用qwen_client的search_and_chat方法
  158. logger.info(f" → 调用搜索引擎...")
  159. result = self.qwen_client.search_and_chat(
  160. user_prompt=query,
  161. search_strategy="agent"
  162. )
  163. # 提取content字段
  164. knowledge_text = result.get("content", "")
  165. if not knowledge_text:
  166. logger.warning(f" ⚠ query '{query}' 的搜索结果为空")
  167. return ""
  168. logger.info(f" ✓ 获取知识文本 (长度: {len(knowledge_text)})")
  169. # 记录搜索结果详情并保存
  170. if self.use_cache:
  171. result_data = {
  172. "query": query,
  173. "content": knowledge_text
  174. }
  175. cache_filename = f"search_result_{query_index:03d}.json"
  176. self.cache.set(question, 'llm_search/search_results', cache_filename, result_data)
  177. return knowledge_text
  178. except Exception as e:
  179. logger.error(f" ✗ 搜索知识失败,query: {query}, 错误: {e}")
  180. raise
  181. def search_knowledge_batch(self, question: str, queries: List[str]) -> List[str]:
  182. """
  183. 批量搜索知识
  184. Args:
  185. question: 原始问题(用于缓存)
  186. queries: query列表
  187. Returns:
  188. List[str]: 知识文本列表
  189. """
  190. logger.info(f"[步骤2] 批量搜索 - 共 {len(queries)} 个Query")
  191. knowledge_texts = []
  192. for i, query in enumerate(queries, 1):
  193. try:
  194. knowledge_text = self.search_knowledge(question, query, i)
  195. knowledge_texts.append(knowledge_text)
  196. except Exception as e:
  197. logger.error(f" ✗ 搜索第 {i} 个query失败,跳过: {e}")
  198. # 失败时添加空字符串,保持索引对应
  199. knowledge_texts.append("")
  200. logger.info(f"✓ 批量搜索完成,获得 {len([k for k in knowledge_texts if k])} 个有效结果")
  201. return knowledge_texts
  202. def merge_knowledge(self, question: str, knowledge_texts: List[str]) -> str:
  203. """
  204. 合并多个知识文本
  205. Args:
  206. question: 原始问题(用于缓存)
  207. knowledge_texts: 知识文本列表
  208. Returns:
  209. str: 合并后的知识文本
  210. Raises:
  211. Exception: 合并失败时抛出异常
  212. """
  213. logger.info(f"[步骤3] 合并知识 - 共 {len(knowledge_texts)} 个文本")
  214. # 尝试从缓存读取
  215. if self.use_cache:
  216. cached_data = self.cache.get(question, 'llm_search', 'merged_knowledge_detail.json')
  217. if cached_data:
  218. merged_text = cached_data.get('response', '') or cached_data.get('merged_text', '')
  219. logger.info(f"✓ 使用缓存的合并知识 (长度: {len(merged_text)})")
  220. return merged_text
  221. try:
  222. # 过滤空文本
  223. valid_texts = [text for text in knowledge_texts if text.strip()]
  224. logger.info(f" 有效文本数量: {len(valid_texts)}/{len(knowledge_texts)}")
  225. if not valid_texts:
  226. logger.warning(" ⚠ 所有知识文本都为空,返回空字符串")
  227. return ""
  228. if len(valid_texts) == 1:
  229. logger.info(" 只有一个有效知识文本,直接返回")
  230. result = valid_texts[0]
  231. if self.use_cache:
  232. self.cache.set(question, 'llm_search', 'merged_knowledge.txt', result)
  233. return result
  234. # 加载prompt
  235. prompt_template = self._load_prompt("llm_search_merge_knowledge_prompt.md")
  236. # 构建prompt,将多个知识文本格式化
  237. knowledge_sections = []
  238. for i, text in enumerate(valid_texts, 1):
  239. knowledge_sections.append(f"【知识文本 {i}】\n{text}")
  240. knowledge_texts_str = "\n\n".join(knowledge_sections)
  241. prompt = prompt_template.format(knowledge_texts=knowledge_texts_str)
  242. # 调用gemini合并知识
  243. logger.info(" → 调用Gemini合并知识文本...")
  244. merged_text = generate_text(prompt=prompt)
  245. logger.info(f"✓ 成功合并知识文本 (长度: {len(merged_text)})")
  246. # 写入缓存
  247. if self.use_cache:
  248. merge_data = {
  249. "prompt": prompt,
  250. "response": merged_text,
  251. "sources_count": len(valid_texts)
  252. }
  253. self.cache.set(question, 'llm_search', 'merged_knowledge_detail.json', merge_data)
  254. return merged_text.strip()
  255. except Exception as e:
  256. logger.error(f"✗ 合并知识文本失败: {e}")
  257. raise
  258. def get_knowledge(self, question: str, cache_key: str = None) -> str:
  259. """
  260. 主方法:根据问题获取知识文本
  261. Args:
  262. question: 问题字符串
  263. cache_key: 可选的缓存键,用于与主流程共享同一缓存目录
  264. Returns:
  265. str: 最终的知识文本
  266. Raises:
  267. Exception: 处理过程中出现错误时抛出异常
  268. """
  269. # 使用cache_key或question作为缓存键
  270. actual_cache_key = cache_key if cache_key is not None else question
  271. import time
  272. start_time = time.time()
  273. try:
  274. logger.info(f"{'='*60}")
  275. logger.info(f"LLM Search - 开始处理问题: {question[:50]}...")
  276. logger.info(f"{'='*60}")
  277. # 步骤1: 生成多个query
  278. queries = self.generate_queries(actual_cache_key)
  279. # 步骤2: 对每个query搜索知识
  280. knowledge_texts = self.search_knowledge_batch(actual_cache_key, queries)
  281. # 步骤3: 合并多个知识文本
  282. merged_knowledge = self.merge_knowledge(actual_cache_key, knowledge_texts)
  283. logger.info(f"{'='*60}")
  284. logger.info(f"✓ LLM Search 完成 (最终长度: {len(merged_knowledge)})")
  285. logger.info(f"{'='*60}\n")
  286. # 计算执行时间并保存详情
  287. execution_time = time.time() - start_time
  288. return merged_knowledge
  289. except Exception as e:
  290. logger.error(f"✗ 获取知识文本失败,问题: {question[:50]}..., 错误: {e}")
  291. # 即使失败也保存执行详情
  292. # 即使失败也保存执行详情
  293. execution_time = time.time() - start_time
  294. raise
  295. def get_knowledge(question: str, cache_key: str = None) -> str:
  296. """
  297. 便捷函数:根据问题获取知识文本
  298. Args:
  299. question: 问题字符串
  300. cache_key: 可选的缓存键
  301. Returns:
  302. str: 最终的知识文本
  303. """
  304. agent = LLMSearchKnowledge()
  305. return agent.get_knowledge(question, cache_key=cache_key)
  306. if __name__ == "__main__":
  307. # 测试代码
  308. test_question = "关于猫咪和墨镜的服装造型元素"
  309. try:
  310. result = get_knowledge(test_question)
  311. print("=" * 50)
  312. print("最终知识文本:")
  313. print("=" * 50)
  314. print(result)
  315. except Exception as e:
  316. logger.error(f"测试失败: {e}")
  317. print("=" * 50)
  318. print("最终知识文本:")
  319. print("=" * 50)
  320. print(result)
  321. except Exception as e:
  322. logger.error(f"测试失败: {e}")