test_evaluation_v3.py 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298
  1. """
  2. 测试评估V3模块
  3. 从现有run_context.json读取帖子,使用V3评估模块重新评估,生成统计报告
  4. """
  5. import asyncio
  6. import json
  7. import sys
  8. from pathlib import Path
  9. from datetime import datetime
  10. from collections import defaultdict
  11. # 导入必要的模块
  12. from knowledge_search_traverse import Post
  13. from post_evaluator_v3 import evaluate_post_v3, apply_evaluation_v3_to_post
  14. async def test_evaluation_v3(run_context_path: str, max_posts: int = 10):
  15. """
  16. 测试V3评估模块
  17. Args:
  18. run_context_path: run_context.json路径
  19. max_posts: 最多评估的帖子数量(用于快速测试)
  20. """
  21. print(f"\n{'='*80}")
  22. print(f"📊 评估V3测试 - {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")
  23. print(f"{'='*80}\n")
  24. # 读取run_context.json
  25. print(f"📂 读取: {run_context_path}")
  26. with open(run_context_path, 'r', encoding='utf-8') as f:
  27. run_context = json.load(f)
  28. # 提取原始query
  29. original_query = run_context.get('o', '')
  30. print(f"🔍 原始Query: {original_query}\n")
  31. # 提取所有帖子 (从rounds -> search_results -> post_list)
  32. post_data_list = []
  33. rounds = run_context.get('rounds', [])
  34. for round_idx, round_data in enumerate(rounds):
  35. search_results = round_data.get('search_results', [])
  36. for search_idx, search in enumerate(search_results):
  37. post_list = search.get('post_list', [])
  38. for post_idx, post_data in enumerate(post_list):
  39. # 生成唯一ID
  40. post_id = f"r{round_idx}_s{search_idx}_p{post_idx}"
  41. post_data_list.append((round_idx, search_idx, post_id, post_data))
  42. total_posts = len(post_data_list)
  43. print(f"📝 找到 {total_posts} 个帖子 (来自 {len(rounds)} 轮)")
  44. # 限制评估数量(快速测试)
  45. if max_posts and max_posts < total_posts:
  46. post_data_list = post_data_list[:max_posts]
  47. print(f"⚡ 快速测试模式: 仅评估前 {max_posts} 个帖子\n")
  48. else:
  49. print()
  50. # 将post_data转换为Post对象
  51. posts = []
  52. for round_idx, search_idx, post_id, post_data in post_data_list:
  53. post = Post(
  54. note_id=post_data.get('note_id', post_id),
  55. title=post_data.get('title', ''),
  56. body_text=post_data.get('body_text', ''),
  57. images=post_data.get('images', []),
  58. type=post_data.get('type', 'normal')
  59. )
  60. posts.append((round_idx, search_idx, post_id, post))
  61. # 批量评估
  62. print(f"🚀 开始并行评估 (最多{len(posts)}个任务,并发限制: 5)...\n")
  63. semaphore = asyncio.Semaphore(5)
  64. tasks = []
  65. # 1. 创建所有任务
  66. for round_idx, search_idx, post_id, post in posts:
  67. task = evaluate_post_v3(post, original_query, semaphore)
  68. tasks.append((round_idx, search_idx, post_id, post, task))
  69. # 2. 并行执行所有任务
  70. task_coroutines = [task for _, _, _, _, task in tasks]
  71. all_eval_results = await asyncio.gather(*task_coroutines)
  72. # 3. 处理结果
  73. results = []
  74. print(f"📊 处理评估结果...\n")
  75. for i, ((round_idx, search_idx, post_id, post, _), eval_result) in enumerate(zip(tasks, all_eval_results), 1):
  76. knowledge_eval, content_eval, purpose_eval, category_eval, final_score, match_level = eval_result
  77. print(f" [{i}/{len(tasks)}] {post.note_id}", end="")
  78. if knowledge_eval:
  79. if final_score is not None:
  80. print(f" → {match_level} ({final_score:.1f}分)")
  81. elif content_eval and not content_eval.is_content_knowledge:
  82. print(f" → 非内容知识")
  83. elif knowledge_eval and not knowledge_eval.is_knowledge:
  84. print(f" → 非知识")
  85. else:
  86. print(f" → 评估未完成")
  87. # 应用评估结果
  88. apply_evaluation_v3_to_post(
  89. post,
  90. knowledge_eval,
  91. content_eval,
  92. purpose_eval,
  93. category_eval,
  94. final_score,
  95. match_level
  96. )
  97. results.append((round_idx, search_idx, post_id, post))
  98. else:
  99. print(f" → ❌ 评估失败")
  100. print(f"\n✅ 评估完成: {len(results)}/{len(posts)} 成功\n")
  101. # 更新run_context.json中的帖子数据
  102. print("💾 更新 run_context.json...")
  103. for round_idx, search_idx, post_id, post in results:
  104. # 定位到对应的post_list
  105. if round_idx < len(rounds):
  106. search_results = rounds[round_idx].get('search_results', [])
  107. if search_idx < len(search_results):
  108. post_list = search_results[search_idx].get('post_list', [])
  109. # 找到对应的帖子并更新
  110. for p in post_list:
  111. if p.get('note_id') == post.note_id:
  112. # 更新V3顶层字段
  113. p['is_knowledge'] = post.is_knowledge
  114. p['is_content_knowledge'] = post.is_content_knowledge
  115. p['knowledge_score'] = post.knowledge_score
  116. p['purpose_score'] = post.purpose_score
  117. p['category_score'] = post.category_score
  118. p['final_score'] = post.final_score
  119. p['match_level'] = post.match_level
  120. p['evaluation_time'] = post.evaluation_time
  121. p['evaluator_version'] = post.evaluator_version
  122. # 更新V3嵌套字段
  123. p['knowledge_evaluation'] = post.knowledge_evaluation
  124. p['content_knowledge_evaluation'] = post.content_knowledge_evaluation
  125. p['purpose_evaluation'] = post.purpose_evaluation
  126. p['category_evaluation'] = post.category_evaluation
  127. break
  128. # 保存更新后的run_context.json
  129. output_path = run_context_path.replace('.json', '_v3.json')
  130. with open(output_path, 'w', encoding='utf-8') as f:
  131. json.dump(run_context, f, ensure_ascii=False, indent=2)
  132. print(f"✅ 已保存: {output_path}\n")
  133. # 生成统计报告
  134. print(f"\n{'='*80}")
  135. print("📊 统计报告")
  136. print(f"{'='*80}\n")
  137. # Prompt1: 是否是知识
  138. is_knowledge_counts = defaultdict(int)
  139. for _, _, _, post in results:
  140. if post.is_knowledge:
  141. is_knowledge_counts['是知识'] += 1
  142. else:
  143. is_knowledge_counts['非知识'] += 1
  144. total = len(results)
  145. print("🔍 Prompt1 - 是否是知识:")
  146. print(f" 是知识: {is_knowledge_counts['是知识']:3d} / {total} ({is_knowledge_counts['是知识']/total*100:.1f}%)")
  147. print(f" 非知识: {is_knowledge_counts['非知识']:3d} / {total} ({is_knowledge_counts['非知识']/total*100:.1f}%)")
  148. print()
  149. # Prompt2: 是否是内容知识
  150. is_content_knowledge_counts = defaultdict(int)
  151. knowledge_scores = []
  152. for _, _, _, post in results:
  153. if post.is_content_knowledge is not None:
  154. if post.is_content_knowledge:
  155. is_content_knowledge_counts['是内容知识'] += 1
  156. else:
  157. is_content_knowledge_counts['非内容知识'] += 1
  158. if post.knowledge_score is not None:
  159. knowledge_scores.append(post.knowledge_score)
  160. if is_content_knowledge_counts:
  161. content_total = sum(is_content_knowledge_counts.values())
  162. print("📚 Prompt2 - 是否是内容知识:")
  163. print(f" 是内容知识: {is_content_knowledge_counts['是内容知识']:3d} / {content_total} ({is_content_knowledge_counts['是内容知识']/content_total*100:.1f}%)")
  164. if is_content_knowledge_counts['非内容知识'] > 0:
  165. print(f" 非内容知识: {is_content_knowledge_counts['非内容知识']:3d} / {content_total} ({is_content_knowledge_counts['非内容知识']/content_total*100:.1f}%)")
  166. print()
  167. if knowledge_scores:
  168. avg_score = sum(knowledge_scores) / len(knowledge_scores)
  169. print(f" 知识平均得分: {avg_score:.1f}分")
  170. print(f" 知识最高得分: {max(knowledge_scores):.0f}分")
  171. print(f" 知识最低得分: {min(knowledge_scores):.0f}分")
  172. print()
  173. # Prompt3 & Prompt4: 目的性和品类匹配
  174. purpose_scores = []
  175. category_scores = []
  176. final_scores = []
  177. match_level_counts = defaultdict(int)
  178. for _, _, _, post in results:
  179. if post.purpose_score is not None:
  180. purpose_scores.append(post.purpose_score)
  181. if post.category_score is not None:
  182. category_scores.append(post.category_score)
  183. if post.final_score is not None:
  184. final_scores.append(post.final_score)
  185. if post.match_level:
  186. match_level_counts[post.match_level] += 1
  187. if purpose_scores:
  188. avg_purpose = sum(purpose_scores) / len(purpose_scores)
  189. print("🎯 Prompt3 - 目的性匹配:")
  190. print(f" 平均得分: {avg_purpose:.1f}分")
  191. print(f" 最高得分: {max(purpose_scores):.0f}分")
  192. print(f" 最低得分: {min(purpose_scores):.0f}分")
  193. print()
  194. if category_scores:
  195. avg_category = sum(category_scores) / len(category_scores)
  196. print("🏷️ Prompt4 - 品类匹配:")
  197. print(f" 平均得分: {avg_category:.1f}分")
  198. print(f" 最高得分: {max(category_scores):.0f}分")
  199. print(f" 最低得分: {min(category_scores):.0f}分")
  200. print()
  201. if final_scores:
  202. avg_final = sum(final_scores) / len(final_scores)
  203. print("🔥 综合得分 (目的性70% + 品类30%):")
  204. print(f" 平均得分: {avg_final:.2f}分")
  205. print(f" 最高得分: {max(final_scores):.2f}分")
  206. print(f" 最低得分: {min(final_scores):.2f}分")
  207. print()
  208. if match_level_counts:
  209. print("📊 匹配等级分布:")
  210. for level in ['高度匹配', '基本匹配', '部分匹配', '弱匹配', '不匹配']:
  211. count = match_level_counts.get(level, 0)
  212. if count > 0:
  213. bar = '█' * int(count / total * 50)
  214. print(f" {level:8s}: {count:3d} / {total} ({count/total*100:.1f}%) {bar}")
  215. print()
  216. # 综合分析
  217. print("🌟 高质量内容统计:")
  218. # 是知识 + 是内容知识
  219. is_quality_knowledge = sum(
  220. 1 for _, _, _, post in results
  221. if post.is_knowledge and post.is_content_knowledge
  222. )
  223. print(f" 知识内容: {is_quality_knowledge} / {total} ({is_quality_knowledge/total*100:.1f}%)")
  224. # 是知识 + 是内容知识 + 高度匹配
  225. high_match = sum(
  226. 1 for _, _, _, post in results
  227. if post.is_knowledge and post.is_content_knowledge and post.match_level == '高度匹配'
  228. )
  229. print(f" 高度匹配: {high_match} / {total} ({high_match/total*100:.1f}%)")
  230. # 是知识 + 是内容知识 + 综合得分>=70
  231. high_score = sum(
  232. 1 for _, _, _, post in results
  233. if post.is_knowledge and post.is_content_knowledge and post.final_score and post.final_score >= 70
  234. )
  235. print(f" 得分≥70: {high_score} / {total} ({high_score/total*100:.1f}%)")
  236. print()
  237. print(f"{'='*80}\n")
  238. return results
  239. if __name__ == "__main__":
  240. if len(sys.argv) < 2:
  241. print("用法: python3 test_evaluation_v3.py <run_context.json路径> [最大评估数量]")
  242. print()
  243. print("示例:")
  244. print(" python3 test_evaluation_v3.py input/test_case/output/knowledge_search_traverse/20251112/173512_dc/run_context.json")
  245. print(" python3 test_evaluation_v3.py input/test_case/output/knowledge_search_traverse/20251112/173512_dc/run_context.json 20")
  246. sys.exit(1)
  247. run_context_path = sys.argv[1]
  248. max_posts = int(sys.argv[2]) if len(sys.argv) > 2 else None
  249. asyncio.run(test_evaluation_v3(run_context_path, max_posts))