| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306 |
- '''
- 多渠道获取知识,当前有两个渠道 llm_search_knowledge.py 和 xhs_search_knowledge.py
- 1. 输入:问题
- 2. 判断选择哪些渠道获取知识,目录默认返回 llm_search 和 xhs_search 两个渠道
- 3. 根据选择的结果调用对应的渠道获取知识
- 4. 合并多个渠道返回知识文本,返回知识文本,使用大模型合并,prompt在 prompt/multi_search_merge_knowledge_prompt.md 中
- 补充:暂时将xhs_search_knowledge渠道的调用注释掉,后续完成xhs_search_knowledge的实现
- '''
- import os
- import sys
- import json
- from typing import List, Dict
- from loguru import logger
- # 设置路径以便导入工具类
- current_dir = os.path.dirname(os.path.abspath(__file__))
- root_dir = os.path.dirname(current_dir)
- sys.path.insert(0, root_dir)
- from utils.gemini_client import generate_text
- from knowledge_v2.llm_search_knowledge import get_knowledge as get_llm_knowledge
- from knowledge_v2.cache_manager import CacheManager
- # from knowledge_v2.xhs_search_knowledge import get_knowledge as get_xhs_knowledge
- class MultiSearchKnowledge:
- """多渠道知识获取类"""
-
- def __init__(self, use_cache: bool = True):
- """
- 初始化
-
- Args:
- use_cache: 是否启用缓存,默认启用
- """
- logger.info("=" * 60)
- logger.info("初始化 MultiSearchKnowledge")
- self.prompt_dir = os.path.join(current_dir, "prompt")
- self.use_cache = use_cache
- self.cache = CacheManager() if use_cache else None
-
- # 执行详情收集
- self.execution_detail = {
- "sources": {},
- "merge_detail": None,
- "execution_time": 0,
- "cache_hits": []
- }
-
- logger.info(f"缓存状态: {'启用' if use_cache else '禁用'}")
- logger.info("=" * 60)
-
- def _load_prompt(self, filename: str) -> str:
- """
- 加载prompt文件内容
-
- Args:
- filename: prompt文件名
-
- Returns:
- str: prompt内容
- """
- prompt_path = os.path.join(self.prompt_dir, filename)
-
- if not os.path.exists(prompt_path):
- error_msg = f"Prompt文件不存在: {prompt_path}"
- logger.error(error_msg)
- raise FileNotFoundError(error_msg)
-
- try:
- with open(prompt_path, 'r', encoding='utf-8') as f:
- content = f.read().strip()
- if not content:
- error_msg = f"Prompt文件内容为空: {prompt_path}"
- logger.error(error_msg)
- raise ValueError(error_msg)
- return content
- except Exception as e:
- logger.error(f"读取prompt文件 {filename} 失败: {e}")
- raise
- def merge_knowledge(self, question: str, knowledge_map: Dict[str, str]) -> str:
- """
- 合并多个渠道的知识文本
-
- Args:
- question: 用户问题
- knowledge_map: 渠道名到知识文本的映射
-
- Returns:
- str: 合并后的知识文本
- """
- logger.info(f"[Multi-Search] 合并多渠道知识 - {len(knowledge_map)} 个渠道")
-
- # 尝试从缓存读取
- if self.use_cache:
- cached_merged = self.cache.get(question, 'multi_search', 'merged_knowledge.txt')
- if cached_merged:
- logger.info(f"✓ 使用缓存的合并知识 (长度: {len(cached_merged)})")
- # 记录缓存命中
- self.execution_detail["merge_detail"].update({
- "cached": True,
- "sources_count": len(knowledge_map),
- "result_length": len(cached_merged)
- })
- self.execution_detail["cache_hits"].append("merged_knowledge")
- return cached_merged
-
- try:
- # 过滤空文本
- valid_knowledge = {k: v for k, v in knowledge_map.items() if v and v.strip()}
- logger.info(f" 有效渠道: {list(valid_knowledge.keys())}")
-
- if not valid_knowledge:
- logger.warning(" ⚠ 所有渠道的知识文本都为空")
- return ""
-
- # 如果只有一个渠道有内容,也经过LLM整理以保证输出风格一致
-
- # 加载prompt
- prompt_template = self._load_prompt("multi_search_merge_knowledge_prompt.md")
-
- # 构建知识文本部分
- knowledge_texts_str = ""
- for source, text in valid_knowledge.items():
- knowledge_texts_str += f"【来源:{source}】\n{text}\n\n"
-
- # 填充prompt
- prompt = prompt_template.format(question=question, knowledge_texts=knowledge_texts_str)
-
- # 调用大模型
- logger.info(" → 调用Gemini合并多渠道知识...")
- merged_text = generate_text(prompt=prompt)
-
- logger.info(f"✓ 多渠道知识合并完成 (长度: {len(merged_text)})")
-
- # 记录合并详情
- self.execution_detail["merge_detail"].update({
- "cached": False,
- "prompt": prompt,
- "response": merged_text,
- "sources_count": len(knowledge_map),
- "valid_sources_count": len(valid_knowledge),
- "result_length": len(merged_text)
- })
-
- # 写入缓存
- if self.use_cache:
- self.cache.set(question, 'multi_search', 'merged_knowledge.txt', merged_text.strip())
-
- return merged_text.strip()
-
- except Exception as e:
- logger.error(f"✗ 合并知识失败: {e}")
- raise
-
- def _save_execution_detail(self, cache_key: str):
- """保存执行详情到缓存(支持合并旧记录)"""
- if not self.use_cache or not self.cache:
- return
-
- try:
- import hashlib
- question_hash = hashlib.md5(cache_key.encode('utf-8')).hexdigest()[:12]
- detail_dir = os.path.join(
- self.cache.base_cache_dir,
- question_hash,
- 'multi_search'
- )
- os.makedirs(detail_dir, exist_ok=True)
-
- detail_file = os.path.join(detail_dir, 'execution_detail.json')
-
- # 准备最终要保存的数据
- final_detail = self.execution_detail.copy()
-
- # 尝试读取旧文件进行合并
- if os.path.exists(detail_file):
- try:
- with open(detail_file, 'r', encoding='utf-8') as f:
- old_detail = json.load(f)
-
- # 合并 merge_detail
- new_merge = self.execution_detail.get("merge_detail")
- old_merge = old_detail.get("merge_detail")
-
- if (new_merge and isinstance(new_merge, dict) and
- new_merge.get("cached") is True and
- old_merge and isinstance(old_merge, dict) and
- "prompt" in old_merge):
- final_detail["merge_detail"] = old_merge
-
- except Exception as e:
- logger.warning(f" ⚠ 读取旧详情失败: {e}")
- with open(detail_file, 'w', encoding='utf-8') as f:
- json.dump(final_detail, f, ensure_ascii=False, indent=2)
-
- logger.info(f"✓ 执行详情已保存: {detail_file}")
-
- except Exception as e:
- logger.error(f"✗ 保存执行详情失败: {e}")
- def get_knowledge(self, question: str, cache_key: str = None) -> str:
- """
- 获取知识的主方法
-
- Args:
- question: 问题字符串
- cache_key: 可选的缓存键,用于与主流程共享同一缓存目录
-
- Returns:
- str: 最终的知识文本
- """
- #使用cache_key或question作为缓存键
- actual_cache_key = cache_key if cache_key is not None else question
-
- import time
- start_time = time.time()
-
- logger.info(f"{'='*60}")
- logger.info(f"Multi-Search - 开始处理问题: {question[:50]}...")
- logger.info(f"{'='*60}")
-
- # 检查整体缓存
- if self.use_cache:
- cached_final = self.cache.get(actual_cache_key, 'multi_search', 'final_knowledge.txt')
- if cached_final:
- logger.info(f"✓ 使用缓存的最终知识 (长度: {len(cached_final)})")
- logger.info(f"{'='*60}\n")
- # 记录缓存命中
- self.execution_detail["cache_hits"].append("final_knowledge")
- self.execution_detail["execution_time"] = time.time() - start_time
- self._save_execution_detail(actual_cache_key)
- return cached_final
-
- knowledge_map = {}
-
- # 1. 获取 LLM Search 知识
- try:
- logger.info("[渠道1] 调用 LLM Search...")
- llm_knowledge = get_llm_knowledge(question, cache_key=actual_cache_key)
- knowledge_map["LLM Search"] = llm_knowledge
- logger.info(f"✓ LLM Search 完成 (长度: {len(llm_knowledge)})")
- # 记录来源详情
- self.execution_detail["sources"]["llm_search"] = {
- "success": True,
- "knowledge_length": len(llm_knowledge)
- }
- except Exception as e:
- logger.error(f"✗ LLM Search 失败: {e}")
- knowledge_map["LLM Search"] = ""
- self.execution_detail["sources"]["llm_search"] = {
- "success": False,
- "error": str(e)
- }
-
- # 2. 获取 XHS Search 知识 (暂时注释)
- # try:
- # logger.info("[渠道2] 调用 XHS Search...")
- # xhs_knowledge = get_xhs_knowledge(question)
- # knowledge_map["XHS Search"] = xhs_knowledge
- # except Exception as e:
- # logger.error(f"✗ XHS Search 失败: {e}")
- # knowledge_map["XHS Search"] = ""
-
- # 3. 合并知识
- final_knowledge = self.merge_knowledge(actual_cache_key, knowledge_map)
-
- # 保存最终缓存
- if self.use_cache and final_knowledge:
- self.cache.set(actual_cache_key, 'multi_search', 'final_knowledge.txt', final_knowledge)
-
- logger.info(f"{'='*60}")
- logger.info(f"✓ Multi-Search 完成 (最终长度: {len(final_knowledge)})")
- logger.info(f"{'='*60}\n")
-
- # 计算执行时间并保存详情
- self.execution_detail["execution_time"] = time.time() - start_time
- self._save_execution_detail(actual_cache_key)
-
- return final_knowledge
- def get_knowledge(question: str, cache_key: str = None) -> str:
- """
- 便捷调用函数
-
- Args:
- question: 问题
- cache_key: 可选的缓存键
- """
- agent = MultiSearchKnowledge()
- return agent.get_knowledge(question, cache_key=cache_key)
- if __name__ == "__main__":
- # 测试代码
- test_question = "如何评价最近的国产3A游戏黑神话悟空?"
- try:
- result = get_knowledge(test_question)
- print("=" * 50)
- print("最终整合知识:")
- print("=" * 50)
- print(result)
- except Exception as e:
- logger.error(f"测试失败: {e}")
|