debug_component.jsx 1.3 MB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601116021160311604116051160611607116081160911610116111161211613116141161511616116171161811619116201162111622116231162411625116261162711628116291163011631116321163311634116351163611637116381163911640116411164211643116441164511646116471164811649116501165111652116531165411655116561165711658116591166011661116621166311664116651166611667116681166911670116711167211673116741167511676116771167811679116801168111682116831168411685116861168711688116891169011691116921169311694116951169611697116981169911700117011170211703117041170511706117071170811709117101171111712117131171411715117161171711718117191172011721117221172311724117251172611727117281172911730117311173211733117341173511736117371173811739117401174111742117431174411745117461174711748117491175011751117521175311754117551175611757117581175911760117611176211763117641176511766117671176811769117701177111772117731177411775117761177711778117791178011781117821178311784117851178611787117881178911790117911179211793117941179511796117971179811799118001180111802118031180411805118061180711808118091181011811118121181311814118151181611817118181181911820118211182211823118241182511826118271182811829118301183111832118331183411835118361183711838118391184011841118421184311844118451184611847118481184911850118511185211853118541185511856118571185811859118601186111862118631186411865118661186711868118691187011871118721187311874118751187611877118781187911880118811188211883118841188511886118871188811889118901189111892118931189411895118961189711898118991190011901119021190311904119051190611907119081190911910119111191211913119141191511916119171191811919119201192111922119231192411925119261192711928119291193011931119321193311934119351193611937119381193911940119411194211943119441194511946119471194811949119501195111952119531195411955119561195711958119591196011961119621196311964119651196611967119681196911970119711197211973119741197511976119771197811979119801198111982119831198411985119861198711988119891199011991119921199311994119951199611997119981199912000120011200212003120041200512006120071200812009120101201112012120131201412015120161201712018120191202012021120221202312024120251202612027120281202912030120311203212033120341203512036120371203812039120401204112042120431204412045120461204712048120491205012051120521205312054120551205612057120581205912060120611206212063120641206512066120671206812069120701207112072120731207412075120761207712078120791208012081120821208312084120851208612087120881208912090120911209212093120941209512096120971209812099121001210112102121031210412105121061210712108121091211012111121121211312114121151211612117121181211912120121211212212123121241212512126121271212812129121301213112132121331213412135121361213712138121391214012141121421214312144121451214612147121481214912150121511215212153121541215512156121571215812159121601216112162121631216412165121661216712168121691217012171121721217312174121751217612177121781217912180121811218212183121841218512186121871218812189121901219112192121931219412195121961219712198121991220012201122021220312204122051220612207122081220912210122111221212213122141221512216122171221812219122201222112222122231222412225122261222712228122291223012231122321223312234122351223612237122381223912240122411224212243122441224512246122471224812249122501225112252122531225412255122561225712258122591226012261122621226312264122651226612267122681226912270122711227212273122741227512276122771227812279122801228112282122831228412285122861228712288122891229012291122921229312294122951229612297122981229912300123011230212303123041230512306123071230812309123101231112312123131231412315123161231712318123191232012321123221232312324123251232612327123281232912330123311233212333123341233512336123371233812339123401234112342123431234412345123461234712348123491235012351123521235312354123551235612357123581235912360123611236212363123641236512366123671236812369123701237112372123731237412375123761237712378123791238012381123821238312384123851238612387123881238912390123911239212393123941239512396123971239812399124001240112402124031240412405124061240712408124091241012411124121241312414124151241612417124181241912420124211242212423124241242512426124271242812429124301243112432124331243412435124361243712438124391244012441124421244312444124451244612447124481244912450124511245212453124541245512456124571245812459124601246112462124631246412465124661246712468124691247012471124721247312474124751247612477124781247912480124811248212483124841248512486124871248812489124901249112492124931249412495124961249712498124991250012501125021250312504125051250612507125081250912510125111251212513125141251512516125171251812519125201252112522125231252412525125261252712528125291253012531125321253312534125351253612537125381253912540125411254212543125441254512546125471254812549125501255112552125531255412555125561255712558125591256012561125621256312564125651256612567125681256912570125711257212573125741257512576125771257812579125801258112582125831258412585125861258712588125891259012591125921259312594125951259612597125981259912600126011260212603126041260512606126071260812609126101261112612126131261412615126161261712618126191262012621126221262312624126251262612627126281262912630126311263212633126341263512636126371263812639126401264112642126431264412645126461264712648126491265012651126521265312654126551265612657126581265912660126611266212663126641266512666126671266812669126701267112672126731267412675126761267712678126791268012681126821268312684126851268612687126881268912690126911269212693126941269512696126971269812699127001270112702127031270412705127061270712708127091271012711127121271312714127151271612717127181271912720127211272212723127241272512726127271272812729127301273112732127331273412735127361273712738127391274012741127421274312744127451274612747127481274912750127511275212753127541275512756127571275812759127601276112762127631276412765127661276712768127691277012771127721277312774127751277612777127781277912780127811278212783127841278512786127871278812789127901279112792127931279412795127961279712798127991280012801128021280312804128051280612807128081280912810128111281212813128141281512816128171281812819128201282112822128231282412825128261282712828128291283012831128321283312834128351283612837128381283912840128411284212843128441284512846128471284812849128501285112852128531285412855128561285712858128591286012861128621286312864128651286612867128681286912870128711287212873128741287512876128771287812879128801288112882128831288412885128861288712888128891289012891128921289312894128951289612897128981289912900129011290212903129041290512906129071290812909129101291112912129131291412915129161291712918129191292012921129221292312924129251292612927129281292912930129311293212933129341293512936129371293812939129401294112942129431294412945129461294712948129491295012951129521295312954129551295612957129581295912960129611296212963129641296512966129671296812969129701297112972129731297412975129761297712978129791298012981129821298312984129851298612987129881298912990129911299212993129941299512996129971299812999130001300113002130031300413005130061300713008130091301013011130121301313014130151301613017130181301913020130211302213023130241302513026130271302813029130301303113032130331303413035130361303713038130391304013041130421304313044130451304613047130481304913050130511305213053130541305513056130571305813059130601306113062130631306413065130661306713068130691307013071130721307313074130751307613077130781307913080130811308213083130841308513086130871308813089130901309113092130931309413095130961309713098130991310013101131021310313104131051310613107131081310913110131111311213113131141311513116131171311813119131201312113122131231312413125131261312713128131291313013131131321313313134131351313613137131381313913140131411314213143131441314513146131471314813149131501315113152131531315413155131561315713158131591316013161131621316313164131651316613167131681316913170131711317213173131741317513176131771317813179131801318113182131831318413185131861318713188131891319013191131921319313194131951319613197131981319913200132011320213203132041320513206132071320813209132101321113212132131321413215132161321713218132191322013221132221322313224132251322613227132281322913230132311323213233132341323513236132371323813239132401324113242132431324413245132461324713248132491325013251132521325313254132551325613257132581325913260132611326213263132641326513266132671326813269132701327113272132731327413275132761327713278132791328013281132821328313284132851328613287132881328913290132911329213293132941329513296132971329813299133001330113302133031330413305133061330713308133091331013311133121331313314133151331613317133181331913320133211332213323133241332513326133271332813329133301333113332133331333413335133361333713338133391334013341133421334313344133451334613347133481334913350133511335213353133541335513356133571335813359133601336113362133631336413365133661336713368133691337013371133721337313374133751337613377133781337913380133811338213383133841338513386133871338813389133901339113392133931339413395133961339713398133991340013401134021340313404134051340613407134081340913410134111341213413134141341513416134171341813419134201342113422134231342413425134261342713428134291343013431134321343313434134351343613437134381343913440134411344213443134441344513446134471344813449134501345113452134531345413455134561345713458134591346013461134621346313464134651346613467134681346913470134711347213473134741347513476134771347813479134801348113482134831348413485134861348713488134891349013491134921349313494134951349613497134981349913500135011350213503135041350513506135071350813509135101351113512135131351413515135161351713518135191352013521135221352313524135251352613527135281352913530135311353213533135341353513536135371353813539135401354113542135431354413545135461354713548135491355013551135521355313554135551355613557135581355913560135611356213563135641356513566135671356813569135701357113572135731357413575135761357713578135791358013581135821358313584135851358613587135881358913590135911359213593135941359513596135971359813599136001360113602136031360413605136061360713608136091361013611136121361313614136151361613617136181361913620136211362213623136241362513626136271362813629136301363113632136331363413635136361363713638136391364013641136421364313644136451364613647136481364913650136511365213653136541365513656136571365813659136601366113662136631366413665136661366713668136691367013671136721367313674136751367613677136781367913680136811368213683136841368513686136871368813689136901369113692136931369413695136961369713698136991370013701137021370313704137051370613707137081370913710137111371213713137141371513716137171371813719137201372113722137231372413725137261372713728137291373013731137321373313734137351373613737137381373913740137411374213743137441374513746137471374813749137501375113752137531375413755137561375713758137591376013761137621376313764137651376613767137681376913770137711377213773137741377513776137771377813779137801378113782137831378413785137861378713788137891379013791137921379313794137951379613797137981379913800138011380213803138041380513806138071380813809138101381113812138131381413815138161381713818138191382013821138221382313824138251382613827138281382913830138311383213833138341383513836138371383813839138401384113842138431384413845138461384713848138491385013851138521385313854138551385613857138581385913860138611386213863138641386513866138671386813869138701387113872138731387413875138761387713878138791388013881138821388313884138851388613887138881388913890138911389213893138941389513896138971389813899139001390113902139031390413905139061390713908139091391013911139121391313914139151391613917139181391913920139211392213923139241392513926139271392813929139301393113932139331393413935139361393713938139391394013941139421394313944139451394613947139481394913950139511395213953139541395513956139571395813959139601396113962139631396413965139661396713968139691397013971139721397313974139751397613977139781397913980139811398213983139841398513986139871398813989139901399113992139931399413995139961399713998139991400014001140021400314004140051400614007140081400914010140111401214013140141401514016140171401814019140201402114022140231402414025140261402714028140291403014031140321403314034140351403614037140381403914040140411404214043140441404514046140471404814049140501405114052140531405414055140561405714058140591406014061140621406314064140651406614067140681406914070140711407214073140741407514076140771407814079140801408114082140831408414085140861408714088140891409014091140921409314094140951409614097140981409914100141011410214103141041410514106141071410814109141101411114112141131411414115141161411714118141191412014121141221412314124141251412614127141281412914130141311413214133141341413514136141371413814139141401414114142141431414414145141461414714148141491415014151141521415314154141551415614157141581415914160141611416214163141641416514166141671416814169141701417114172141731417414175141761417714178141791418014181141821418314184141851418614187141881418914190141911419214193141941419514196141971419814199142001420114202142031420414205142061420714208142091421014211142121421314214142151421614217142181421914220142211422214223142241422514226142271422814229142301423114232142331423414235142361423714238142391424014241142421424314244142451424614247142481424914250142511425214253142541425514256142571425814259142601426114262142631426414265142661426714268142691427014271142721427314274142751427614277142781427914280142811428214283142841428514286142871428814289142901429114292142931429414295142961429714298142991430014301143021430314304143051430614307143081430914310143111431214313143141431514316143171431814319143201432114322143231432414325143261432714328143291433014331143321433314334143351433614337143381433914340143411434214343143441434514346143471434814349143501435114352143531435414355143561435714358143591436014361143621436314364143651436614367143681436914370143711437214373143741437514376143771437814379143801438114382143831438414385143861438714388143891439014391143921439314394143951439614397143981439914400144011440214403144041440514406144071440814409144101441114412144131441414415144161441714418144191442014421144221442314424144251442614427144281442914430144311443214433144341443514436144371443814439144401444114442144431444414445144461444714448144491445014451144521445314454144551445614457144581445914460144611446214463144641446514466144671446814469144701447114472144731447414475144761447714478144791448014481144821448314484144851448614487144881448914490144911449214493144941449514496144971449814499145001450114502145031450414505145061450714508145091451014511145121451314514145151451614517145181451914520145211452214523145241452514526145271452814529145301453114532145331453414535145361453714538145391454014541145421454314544145451454614547145481454914550145511455214553145541455514556145571455814559145601456114562145631456414565145661456714568145691457014571145721457314574145751457614577145781457914580145811458214583145841458514586145871458814589145901459114592145931459414595145961459714598145991460014601146021460314604146051460614607146081460914610146111461214613146141461514616146171461814619146201462114622146231462414625146261462714628146291463014631146321463314634146351463614637146381463914640146411464214643146441464514646146471464814649146501465114652146531465414655146561465714658146591466014661146621466314664146651466614667146681466914670146711467214673146741467514676146771467814679146801468114682146831468414685146861468714688146891469014691146921469314694146951469614697146981469914700147011470214703147041470514706147071470814709147101471114712147131471414715147161471714718147191472014721147221472314724147251472614727147281472914730147311473214733147341473514736147371473814739147401474114742147431474414745147461474714748147491475014751147521475314754147551475614757147581475914760147611476214763147641476514766147671476814769147701477114772147731477414775147761477714778147791478014781147821478314784147851478614787147881478914790147911479214793147941479514796147971479814799148001480114802148031480414805148061480714808148091481014811148121481314814148151481614817148181481914820148211482214823148241482514826148271482814829148301483114832148331483414835148361483714838148391484014841148421484314844148451484614847148481484914850148511485214853148541485514856148571485814859148601486114862148631486414865148661486714868148691487014871148721487314874148751487614877148781487914880148811488214883148841488514886148871488814889148901489114892148931489414895148961489714898148991490014901149021490314904149051490614907149081490914910149111491214913149141491514916149171491814919149201492114922149231492414925149261492714928149291493014931149321493314934149351493614937149381493914940149411494214943149441494514946149471494814949149501495114952149531495414955149561495714958149591496014961149621496314964149651496614967149681496914970149711497214973149741497514976149771497814979149801498114982149831498414985149861498714988149891499014991149921499314994149951499614997149981499915000150011500215003150041500515006150071500815009150101501115012150131501415015150161501715018150191502015021150221502315024150251502615027150281502915030150311503215033150341503515036150371503815039150401504115042150431504415045150461504715048150491505015051150521505315054150551505615057150581505915060150611506215063150641506515066150671506815069150701507115072150731507415075150761507715078150791508015081150821508315084150851508615087150881508915090150911509215093150941509515096150971509815099151001510115102151031510415105151061510715108151091511015111151121511315114151151511615117151181511915120151211512215123151241512515126151271512815129151301513115132151331513415135151361513715138151391514015141151421514315144151451514615147151481514915150151511515215153151541515515156151571515815159151601516115162151631516415165151661516715168151691517015171151721517315174151751517615177151781517915180151811518215183151841518515186151871518815189151901519115192151931519415195151961519715198151991520015201152021520315204152051520615207152081520915210152111521215213152141521515216152171521815219152201522115222152231522415225152261522715228152291523015231152321523315234152351523615237152381523915240152411524215243152441524515246152471524815249152501525115252152531525415255152561525715258152591526015261152621526315264152651526615267152681526915270152711527215273152741527515276152771527815279152801528115282152831528415285152861528715288152891529015291152921529315294152951529615297152981529915300153011530215303153041530515306153071530815309153101531115312153131531415315153161531715318153191532015321153221532315324153251532615327153281532915330153311533215333153341533515336153371533815339153401534115342153431534415345153461534715348153491535015351153521535315354153551535615357153581535915360153611536215363153641536515366153671536815369153701537115372153731537415375153761537715378153791538015381153821538315384153851538615387153881538915390153911539215393153941539515396153971539815399154001540115402154031540415405154061540715408154091541015411154121541315414154151541615417154181541915420154211542215423154241542515426154271542815429154301543115432154331543415435154361543715438154391544015441154421544315444154451544615447154481544915450154511545215453154541545515456154571545815459154601546115462154631546415465154661546715468154691547015471154721547315474154751547615477154781547915480154811548215483154841548515486154871548815489154901549115492154931549415495154961549715498154991550015501155021550315504155051550615507155081550915510155111551215513155141551515516155171551815519155201552115522155231552415525155261552715528155291553015531155321553315534155351553615537155381553915540155411554215543155441554515546155471554815549155501555115552155531555415555155561555715558155591556015561155621556315564155651556615567155681556915570155711557215573155741557515576155771557815579155801558115582155831558415585155861558715588155891559015591155921559315594155951559615597155981559915600156011560215603156041560515606156071560815609156101561115612156131561415615156161561715618156191562015621156221562315624156251562615627156281562915630156311563215633156341563515636156371563815639156401564115642156431564415645156461564715648156491565015651156521565315654156551565615657156581565915660156611566215663156641566515666156671566815669156701567115672156731567415675156761567715678156791568015681156821568315684156851568615687156881568915690156911569215693156941569515696156971569815699157001570115702157031570415705157061570715708157091571015711157121571315714157151571615717157181571915720157211572215723157241572515726157271572815729157301573115732157331573415735157361573715738157391574015741157421574315744157451574615747157481574915750157511575215753157541575515756157571575815759157601576115762157631576415765157661576715768157691577015771157721577315774157751577615777157781577915780157811578215783157841578515786157871578815789157901579115792157931579415795157961579715798157991580015801158021580315804158051580615807158081580915810158111581215813158141581515816158171581815819158201582115822158231582415825158261582715828158291583015831158321583315834158351583615837158381583915840158411584215843158441584515846158471584815849158501585115852158531585415855158561585715858158591586015861158621586315864158651586615867158681586915870158711587215873158741587515876158771587815879158801588115882158831588415885158861588715888158891589015891158921589315894158951589615897158981589915900159011590215903159041590515906159071590815909159101591115912159131591415915159161591715918159191592015921159221592315924159251592615927159281592915930159311593215933159341593515936159371593815939159401594115942159431594415945159461594715948159491595015951159521595315954159551595615957159581595915960159611596215963159641596515966159671596815969159701597115972159731597415975159761597715978159791598015981159821598315984159851598615987159881598915990159911599215993159941599515996159971599815999160001600116002160031600416005160061600716008160091601016011160121601316014160151601616017160181601916020160211602216023160241602516026160271602816029160301603116032160331603416035160361603716038160391604016041160421604316044160451604616047160481604916050160511605216053160541605516056160571605816059160601606116062160631606416065160661606716068160691607016071160721607316074160751607616077160781607916080160811608216083160841608516086160871608816089160901609116092160931609416095160961609716098160991610016101161021610316104161051610616107161081610916110161111611216113161141611516116161171611816119161201612116122161231612416125161261612716128161291613016131161321613316134161351613616137161381613916140161411614216143161441614516146161471614816149161501615116152161531615416155161561615716158161591616016161161621616316164161651616616167161681616916170161711617216173161741617516176161771617816179161801618116182161831618416185161861618716188161891619016191161921619316194161951619616197161981619916200162011620216203162041620516206162071620816209162101621116212162131621416215162161621716218162191622016221162221622316224162251622616227162281622916230162311623216233162341623516236162371623816239162401624116242162431624416245162461624716248162491625016251162521625316254162551625616257162581625916260162611626216263162641626516266162671626816269162701627116272162731627416275162761627716278162791628016281162821628316284162851628616287162881628916290162911629216293162941629516296162971629816299163001630116302163031630416305163061630716308163091631016311163121631316314163151631616317163181631916320163211632216323163241632516326163271632816329163301633116332163331633416335163361633716338163391634016341163421634316344163451634616347163481634916350163511635216353163541635516356163571635816359163601636116362163631636416365163661636716368163691637016371163721637316374163751637616377163781637916380163811638216383163841638516386163871638816389163901639116392163931639416395163961639716398163991640016401164021640316404164051640616407164081640916410164111641216413164141641516416164171641816419164201642116422164231642416425164261642716428164291643016431164321643316434164351643616437164381643916440164411644216443164441644516446164471644816449164501645116452164531645416455164561645716458164591646016461164621646316464164651646616467164681646916470164711647216473164741647516476164771647816479164801648116482164831648416485164861648716488164891649016491164921649316494164951649616497164981649916500165011650216503165041650516506165071650816509165101651116512165131651416515165161651716518165191652016521165221652316524165251652616527165281652916530165311653216533165341653516536165371653816539165401654116542165431654416545165461654716548165491655016551165521655316554165551655616557165581655916560165611656216563165641656516566165671656816569165701657116572165731657416575165761657716578165791658016581165821658316584165851658616587165881658916590165911659216593165941659516596165971659816599166001660116602166031660416605166061660716608166091661016611166121661316614166151661616617166181661916620166211662216623166241662516626166271662816629166301663116632166331663416635166361663716638166391664016641166421664316644166451664616647166481664916650166511665216653166541665516656166571665816659166601666116662166631666416665166661666716668166691667016671166721667316674166751667616677166781667916680166811668216683166841668516686166871668816689166901669116692166931669416695166961669716698166991670016701167021670316704167051670616707167081670916710167111671216713167141671516716167171671816719167201672116722167231672416725167261672716728167291673016731167321673316734167351673616737167381673916740167411674216743167441674516746167471674816749167501675116752167531675416755167561675716758167591676016761167621676316764167651676616767167681676916770167711677216773167741677516776167771677816779167801678116782167831678416785167861678716788167891679016791167921679316794167951679616797167981679916800168011680216803168041680516806168071680816809168101681116812168131681416815168161681716818168191682016821168221682316824168251682616827168281682916830168311683216833168341683516836168371683816839168401684116842168431684416845168461684716848168491685016851168521685316854168551685616857168581685916860168611686216863168641686516866168671686816869168701687116872168731687416875168761687716878168791688016881168821688316884168851688616887168881688916890168911689216893168941689516896168971689816899169001690116902169031690416905169061690716908169091691016911169121691316914169151691616917169181691916920169211692216923169241692516926169271692816929169301693116932169331693416935169361693716938169391694016941169421694316944169451694616947169481694916950169511695216953169541695516956169571695816959169601696116962169631696416965169661696716968169691697016971169721697316974169751697616977169781697916980169811698216983169841698516986169871698816989169901699116992169931699416995169961699716998169991700017001170021700317004170051700617007170081700917010170111701217013170141701517016170171701817019170201702117022170231702417025170261702717028170291703017031170321703317034170351703617037170381703917040170411704217043170441704517046170471704817049170501705117052170531705417055170561705717058170591706017061170621706317064170651706617067170681706917070170711707217073170741707517076170771707817079170801708117082170831708417085170861708717088170891709017091170921709317094170951709617097170981709917100171011710217103171041710517106171071710817109171101711117112171131711417115171161711717118171191712017121171221712317124171251712617127171281712917130171311713217133171341713517136171371713817139171401714117142171431714417145171461714717148171491715017151171521715317154171551715617157171581715917160171611716217163171641716517166171671716817169171701717117172171731717417175171761717717178171791718017181171821718317184171851718617187171881718917190171911719217193171941719517196171971719817199172001720117202172031720417205172061720717208172091721017211172121721317214172151721617217172181721917220172211722217223172241722517226172271722817229172301723117232172331723417235172361723717238172391724017241172421724317244172451724617247172481724917250172511725217253172541725517256172571725817259172601726117262172631726417265172661726717268172691727017271172721727317274172751727617277172781727917280172811728217283172841728517286172871728817289172901729117292172931729417295172961729717298172991730017301173021730317304173051730617307173081730917310173111731217313173141731517316173171731817319173201732117322173231732417325173261732717328173291733017331173321733317334173351733617337173381733917340173411734217343173441734517346173471734817349173501735117352173531735417355173561735717358173591736017361173621736317364173651736617367173681736917370173711737217373173741737517376173771737817379173801738117382173831738417385173861738717388173891739017391173921739317394173951739617397173981739917400174011740217403174041740517406174071740817409174101741117412174131741417415174161741717418174191742017421174221742317424174251742617427174281742917430174311743217433174341743517436174371743817439174401744117442174431744417445174461744717448174491745017451174521745317454174551745617457174581745917460174611746217463174641746517466174671746817469174701747117472174731747417475174761747717478174791748017481174821748317484174851748617487174881748917490174911749217493174941749517496174971749817499175001750117502175031750417505175061750717508175091751017511175121751317514175151751617517175181751917520175211752217523175241752517526175271752817529175301753117532175331753417535175361753717538175391754017541175421754317544175451754617547175481754917550175511755217553175541755517556175571755817559175601756117562175631756417565175661756717568175691757017571175721757317574175751757617577175781757917580175811758217583175841758517586175871758817589175901759117592175931759417595175961759717598175991760017601176021760317604176051760617607176081760917610176111761217613176141761517616176171761817619176201762117622176231762417625176261762717628176291763017631176321763317634176351763617637176381763917640176411764217643176441764517646176471764817649176501765117652176531765417655176561765717658176591766017661176621766317664176651766617667176681766917670176711767217673176741767517676176771767817679176801768117682176831768417685176861768717688176891769017691176921769317694176951769617697176981769917700177011770217703177041770517706177071770817709177101771117712177131771417715177161771717718177191772017721177221772317724177251772617727177281772917730177311773217733177341773517736177371773817739177401774117742177431774417745177461774717748177491775017751177521775317754177551775617757177581775917760177611776217763177641776517766177671776817769177701777117772177731777417775177761777717778177791778017781177821778317784177851778617787177881778917790177911779217793177941779517796177971779817799178001780117802178031780417805178061780717808178091781017811178121781317814178151781617817178181781917820178211782217823178241782517826178271782817829178301783117832178331783417835178361783717838178391784017841178421784317844178451784617847178481784917850178511785217853178541785517856178571785817859178601786117862178631786417865178661786717868178691787017871178721787317874178751787617877178781787917880178811788217883178841788517886178871788817889178901789117892178931789417895178961789717898178991790017901179021790317904179051790617907179081790917910179111791217913179141791517916179171791817919179201792117922179231792417925179261792717928179291793017931179321793317934179351793617937179381793917940179411794217943179441794517946179471794817949179501795117952179531795417955179561795717958179591796017961179621796317964179651796617967179681796917970179711797217973179741797517976179771797817979179801798117982179831798417985179861798717988179891799017991179921799317994179951799617997179981799918000180011800218003180041800518006180071800818009180101801118012180131801418015180161801718018180191802018021180221802318024180251802618027180281802918030180311803218033180341803518036180371803818039180401804118042180431804418045180461804718048180491805018051180521805318054180551805618057180581805918060180611806218063180641806518066180671806818069180701807118072180731807418075180761807718078180791808018081180821808318084180851808618087180881808918090180911809218093180941809518096180971809818099181001810118102181031810418105181061810718108181091811018111181121811318114181151811618117181181811918120181211812218123181241812518126181271812818129181301813118132181331813418135181361813718138181391814018141181421814318144181451814618147181481814918150181511815218153181541815518156181571815818159181601816118162181631816418165181661816718168181691817018171181721817318174181751817618177181781817918180181811818218183181841818518186181871818818189181901819118192181931819418195181961819718198181991820018201182021820318204182051820618207182081820918210182111821218213182141821518216182171821818219182201822118222182231822418225182261822718228182291823018231182321823318234182351823618237182381823918240182411824218243182441824518246182471824818249182501825118252182531825418255182561825718258182591826018261182621826318264182651826618267182681826918270182711827218273182741827518276182771827818279182801828118282182831828418285182861828718288182891829018291182921829318294182951829618297182981829918300183011830218303183041830518306183071830818309183101831118312183131831418315183161831718318183191832018321183221832318324183251832618327183281832918330183311833218333183341833518336183371833818339183401834118342183431834418345183461834718348183491835018351183521835318354183551835618357183581835918360183611836218363183641836518366183671836818369183701837118372183731837418375183761837718378183791838018381183821838318384183851838618387183881838918390183911839218393183941839518396183971839818399184001840118402184031840418405184061840718408184091841018411184121841318414184151841618417184181841918420184211842218423184241842518426184271842818429184301843118432184331843418435184361843718438184391844018441184421844318444184451844618447184481844918450184511845218453184541845518456184571845818459184601846118462184631846418465184661846718468184691847018471184721847318474184751847618477184781847918480184811848218483184841848518486184871848818489184901849118492184931849418495184961849718498184991850018501185021850318504185051850618507185081850918510185111851218513185141851518516185171851818519185201852118522185231852418525185261852718528185291853018531185321853318534185351853618537185381853918540185411854218543185441854518546185471854818549185501855118552185531855418555185561855718558185591856018561185621856318564185651856618567185681856918570185711857218573185741857518576185771857818579185801858118582185831858418585185861858718588185891859018591185921859318594185951859618597185981859918600186011860218603186041860518606186071860818609186101861118612186131861418615186161861718618186191862018621186221862318624186251862618627186281862918630186311863218633186341863518636186371863818639186401864118642186431864418645186461864718648186491865018651186521865318654186551865618657186581865918660186611866218663186641866518666186671866818669186701867118672186731867418675186761867718678186791868018681186821868318684186851868618687186881868918690186911869218693186941869518696186971869818699187001870118702187031870418705187061870718708187091871018711187121871318714187151871618717187181871918720187211872218723187241872518726187271872818729187301873118732187331873418735187361873718738187391874018741187421874318744187451874618747187481874918750187511875218753187541875518756187571875818759187601876118762187631876418765187661876718768187691877018771187721877318774187751877618777187781877918780187811878218783187841878518786187871878818789187901879118792187931879418795187961879718798187991880018801188021880318804188051880618807188081880918810188111881218813188141881518816188171881818819188201882118822188231882418825188261882718828188291883018831188321883318834188351883618837188381883918840188411884218843188441884518846188471884818849188501885118852188531885418855188561885718858188591886018861188621886318864188651886618867188681886918870188711887218873188741887518876188771887818879188801888118882188831888418885188861888718888188891889018891188921889318894188951889618897188981889918900189011890218903189041890518906189071890818909189101891118912189131891418915189161891718918189191892018921189221892318924189251892618927189281892918930189311893218933189341893518936189371893818939189401894118942189431894418945189461894718948189491895018951189521895318954189551895618957189581895918960189611896218963189641896518966189671896818969189701897118972189731897418975189761897718978189791898018981189821898318984189851898618987189881898918990189911899218993189941899518996189971899818999190001900119002190031900419005190061900719008190091901019011190121901319014190151901619017190181901919020190211902219023190241902519026190271902819029190301903119032190331903419035190361903719038190391904019041190421904319044190451904619047190481904919050190511905219053190541905519056190571905819059190601906119062190631906419065190661906719068190691907019071190721907319074190751907619077190781907919080190811908219083190841908519086190871908819089190901909119092190931909419095190961909719098190991910019101191021910319104191051910619107191081910919110191111911219113191141911519116191171911819119191201912119122191231912419125191261912719128191291913019131191321913319134191351913619137191381913919140191411914219143191441914519146191471914819149191501915119152191531915419155191561915719158191591916019161191621916319164191651916619167191681916919170191711917219173191741917519176191771917819179191801918119182191831918419185191861918719188191891919019191191921919319194191951919619197191981919919200192011920219203192041920519206192071920819209192101921119212192131921419215192161921719218192191922019221192221922319224192251922619227192281922919230192311923219233192341923519236192371923819239192401924119242192431924419245192461924719248192491925019251192521925319254192551925619257192581925919260192611926219263192641926519266192671926819269192701927119272192731927419275192761927719278192791928019281192821928319284192851928619287192881928919290192911929219293192941929519296192971929819299193001930119302193031930419305193061930719308193091931019311193121931319314193151931619317193181931919320193211932219323193241932519326193271932819329193301933119332193331933419335193361933719338193391934019341193421934319344193451934619347193481934919350193511935219353193541935519356193571935819359193601936119362193631936419365193661936719368193691937019371193721937319374193751937619377193781937919380193811938219383193841938519386193871938819389193901939119392193931939419395193961939719398193991940019401194021940319404194051940619407194081940919410194111941219413194141941519416194171941819419194201942119422194231942419425194261942719428194291943019431194321943319434194351943619437194381943919440194411944219443194441944519446194471944819449194501945119452194531945419455194561945719458194591946019461194621946319464194651946619467194681946919470194711947219473194741947519476194771947819479194801948119482194831948419485194861948719488194891949019491194921949319494194951949619497194981949919500195011950219503195041950519506195071950819509195101951119512195131951419515195161951719518195191952019521195221952319524195251952619527195281952919530195311953219533195341953519536195371953819539195401954119542195431954419545195461954719548195491955019551195521955319554195551955619557195581955919560195611956219563195641956519566195671956819569195701957119572195731957419575195761957719578195791958019581195821958319584195851958619587195881958919590195911959219593195941959519596195971959819599196001960119602196031960419605196061960719608196091961019611196121961319614196151961619617196181961919620196211962219623196241962519626196271962819629196301963119632196331963419635196361963719638196391964019641196421964319644196451964619647196481964919650196511965219653196541965519656196571965819659196601966119662196631966419665196661966719668196691967019671196721967319674196751967619677196781967919680196811968219683196841968519686196871968819689196901969119692196931969419695196961969719698196991970019701197021970319704197051970619707197081970919710197111971219713197141971519716197171971819719197201972119722197231972419725197261972719728197291973019731197321973319734197351973619737197381973919740197411974219743197441974519746197471974819749197501975119752197531975419755197561975719758197591976019761197621976319764197651976619767197681976919770197711977219773197741977519776197771977819779197801978119782197831978419785197861978719788197891979019791197921979319794197951979619797197981979919800198011980219803198041980519806198071980819809198101981119812198131981419815198161981719818198191982019821198221982319824198251982619827198281982919830198311983219833198341983519836198371983819839198401984119842198431984419845198461984719848198491985019851198521985319854198551985619857198581985919860198611986219863198641986519866198671986819869198701987119872198731987419875198761987719878198791988019881198821988319884198851988619887198881988919890198911989219893198941989519896198971989819899199001990119902199031990419905199061990719908199091991019911199121991319914199151991619917199181991919920199211992219923199241992519926199271992819929199301993119932199331993419935199361993719938199391994019941199421994319944199451994619947199481994919950199511995219953199541995519956199571995819959199601996119962199631996419965199661996719968199691997019971199721997319974199751997619977199781997919980199811998219983199841998519986199871998819989199901999119992199931999419995199961999719998199992000020001200022000320004200052000620007200082000920010200112001220013200142001520016200172001820019200202002120022200232002420025200262002720028200292003020031200322003320034200352003620037200382003920040200412004220043200442004520046200472004820049200502005120052200532005420055200562005720058200592006020061200622006320064200652006620067200682006920070200712007220073200742007520076200772007820079200802008120082200832008420085200862008720088200892009020091200922009320094200952009620097200982009920100201012010220103201042010520106201072010820109201102011120112201132011420115201162011720118201192012020121201222012320124201252012620127201282012920130201312013220133201342013520136201372013820139201402014120142201432014420145201462014720148201492015020151201522015320154201552015620157201582015920160201612016220163201642016520166201672016820169201702017120172201732017420175201762017720178201792018020181201822018320184201852018620187201882018920190201912019220193201942019520196201972019820199202002020120202202032020420205202062020720208202092021020211202122021320214202152021620217202182021920220202212022220223202242022520226202272022820229202302023120232202332023420235202362023720238202392024020241202422024320244202452024620247202482024920250202512025220253202542025520256202572025820259202602026120262202632026420265202662026720268202692027020271202722027320274202752027620277202782027920280202812028220283202842028520286202872028820289202902029120292202932029420295202962029720298202992030020301203022030320304203052030620307203082030920310203112031220313203142031520316203172031820319203202032120322203232032420325203262032720328203292033020331203322033320334203352033620337203382033920340203412034220343203442034520346203472034820349203502035120352203532035420355203562035720358203592036020361203622036320364203652036620367203682036920370203712037220373203742037520376203772037820379203802038120382203832038420385203862038720388203892039020391203922039320394203952039620397203982039920400204012040220403204042040520406204072040820409204102041120412204132041420415204162041720418204192042020421204222042320424204252042620427204282042920430204312043220433204342043520436204372043820439204402044120442204432044420445204462044720448204492045020451204522045320454204552045620457204582045920460204612046220463204642046520466204672046820469204702047120472204732047420475204762047720478204792048020481204822048320484204852048620487204882048920490204912049220493204942049520496204972049820499205002050120502205032050420505205062050720508205092051020511205122051320514205152051620517205182051920520205212052220523205242052520526205272052820529205302053120532205332053420535205362053720538205392054020541205422054320544205452054620547205482054920550205512055220553205542055520556205572055820559205602056120562205632056420565205662056720568205692057020571205722057320574205752057620577205782057920580205812058220583205842058520586205872058820589205902059120592205932059420595205962059720598205992060020601206022060320604206052060620607206082060920610206112061220613206142061520616206172061820619206202062120622206232062420625206262062720628206292063020631206322063320634206352063620637206382063920640206412064220643206442064520646206472064820649206502065120652206532065420655206562065720658206592066020661206622066320664206652066620667206682066920670206712067220673206742067520676206772067820679206802068120682206832068420685206862068720688206892069020691206922069320694206952069620697206982069920700207012070220703207042070520706207072070820709207102071120712207132071420715207162071720718207192072020721207222072320724207252072620727207282072920730207312073220733207342073520736207372073820739207402074120742207432074420745207462074720748207492075020751207522075320754207552075620757207582075920760207612076220763207642076520766207672076820769207702077120772207732077420775207762077720778207792078020781207822078320784207852078620787207882078920790207912079220793207942079520796207972079820799208002080120802208032080420805208062080720808208092081020811208122081320814208152081620817208182081920820208212082220823208242082520826208272082820829208302083120832208332083420835208362083720838208392084020841208422084320844208452084620847208482084920850208512085220853208542085520856208572085820859208602086120862208632086420865208662086720868208692087020871208722087320874208752087620877208782087920880208812088220883208842088520886208872088820889208902089120892208932089420895208962089720898208992090020901209022090320904209052090620907209082090920910209112091220913209142091520916209172091820919209202092120922209232092420925209262092720928209292093020931209322093320934209352093620937209382093920940209412094220943209442094520946209472094820949209502095120952209532095420955209562095720958209592096020961209622096320964209652096620967209682096920970209712097220973209742097520976209772097820979209802098120982209832098420985209862098720988209892099020991209922099320994209952099620997209982099921000210012100221003210042100521006210072100821009210102101121012210132101421015210162101721018210192102021021210222102321024210252102621027210282102921030210312103221033210342103521036210372103821039210402104121042210432104421045210462104721048210492105021051210522105321054210552105621057210582105921060210612106221063210642106521066210672106821069210702107121072210732107421075210762107721078210792108021081210822108321084210852108621087210882108921090210912109221093210942109521096210972109821099211002110121102211032110421105211062110721108211092111021111211122111321114211152111621117211182111921120211212112221123211242112521126211272112821129211302113121132211332113421135211362113721138211392114021141211422114321144211452114621147211482114921150211512115221153211542115521156211572115821159211602116121162211632116421165211662116721168211692117021171211722117321174211752117621177211782117921180211812118221183211842118521186211872118821189211902119121192211932119421195211962119721198211992120021201212022120321204212052120621207212082120921210212112121221213212142121521216212172121821219212202122121222212232122421225212262122721228212292123021231212322123321234212352123621237212382123921240212412124221243212442124521246212472124821249212502125121252212532125421255212562125721258212592126021261212622126321264212652126621267212682126921270212712127221273212742127521276212772127821279212802128121282212832128421285212862128721288212892129021291212922129321294212952129621297212982129921300213012130221303213042130521306213072130821309213102131121312213132131421315213162131721318213192132021321213222132321324213252132621327213282132921330213312133221333213342133521336213372133821339213402134121342213432134421345213462134721348213492135021351213522135321354213552135621357213582135921360213612136221363213642136521366213672136821369213702137121372213732137421375213762137721378213792138021381213822138321384213852138621387213882138921390213912139221393213942139521396213972139821399214002140121402214032140421405214062140721408214092141021411214122141321414214152141621417214182141921420214212142221423214242142521426214272142821429214302143121432214332143421435214362143721438214392144021441214422144321444214452144621447214482144921450214512145221453214542145521456214572145821459214602146121462214632146421465214662146721468214692147021471214722147321474214752147621477214782147921480214812148221483214842148521486214872148821489214902149121492214932149421495214962149721498214992150021501215022150321504215052150621507215082150921510215112151221513215142151521516215172151821519215202152121522215232152421525215262152721528215292153021531215322153321534215352153621537215382153921540215412154221543215442154521546215472154821549215502155121552215532155421555215562155721558215592156021561215622156321564215652156621567215682156921570215712157221573215742157521576215772157821579215802158121582215832158421585215862158721588215892159021591215922159321594215952159621597215982159921600216012160221603216042160521606216072160821609216102161121612216132161421615216162161721618216192162021621216222162321624216252162621627216282162921630216312163221633216342163521636216372163821639216402164121642216432164421645216462164721648216492165021651216522165321654216552165621657216582165921660216612166221663216642166521666216672166821669216702167121672216732167421675216762167721678216792168021681216822168321684216852168621687216882168921690216912169221693216942169521696216972169821699217002170121702217032170421705217062170721708217092171021711217122171321714217152171621717217182171921720217212172221723217242172521726217272172821729217302173121732217332173421735217362173721738217392174021741217422174321744217452174621747217482174921750217512175221753217542175521756217572175821759217602176121762217632176421765217662176721768217692177021771217722177321774217752177621777217782177921780217812178221783217842178521786217872178821789217902179121792217932179421795217962179721798217992180021801218022180321804218052180621807218082180921810218112181221813218142181521816218172181821819218202182121822218232182421825218262182721828218292183021831218322183321834218352183621837218382183921840218412184221843218442184521846218472184821849218502185121852218532185421855218562185721858218592186021861218622186321864218652186621867218682186921870218712187221873218742187521876218772187821879218802188121882218832188421885218862188721888218892189021891218922189321894218952189621897218982189921900219012190221903219042190521906219072190821909219102191121912219132191421915219162191721918219192192021921219222192321924219252192621927219282192921930219312193221933219342193521936219372193821939219402194121942219432194421945219462194721948219492195021951219522195321954219552195621957219582195921960219612196221963219642196521966219672196821969219702197121972219732197421975219762197721978219792198021981219822198321984219852198621987219882198921990219912199221993219942199521996219972199821999220002200122002220032200422005220062200722008220092201022011220122201322014220152201622017220182201922020220212202222023220242202522026220272202822029220302203122032220332203422035220362203722038220392204022041220422204322044220452204622047220482204922050220512205222053220542205522056220572205822059220602206122062220632206422065220662206722068220692207022071220722207322074220752207622077220782207922080220812208222083220842208522086220872208822089220902209122092220932209422095220962209722098220992210022101221022210322104221052210622107221082210922110221112211222113221142211522116221172211822119221202212122122221232212422125221262212722128221292213022131221322213322134221352213622137221382213922140221412214222143221442214522146221472214822149221502215122152221532215422155221562215722158221592216022161221622216322164221652216622167221682216922170221712217222173221742217522176221772217822179221802218122182221832218422185221862218722188221892219022191221922219322194221952219622197221982219922200222012220222203222042220522206222072220822209222102221122212222132221422215222162221722218222192222022221222222222322224222252222622227222282222922230222312223222233222342223522236222372223822239222402224122242222432224422245222462224722248222492225022251222522225322254222552225622257222582225922260222612226222263222642226522266222672226822269222702227122272222732227422275222762227722278222792228022281222822228322284222852228622287222882228922290222912229222293222942229522296222972229822299223002230122302223032230422305223062230722308223092231022311223122231322314223152231622317223182231922320223212232222323223242232522326223272232822329223302233122332223332233422335223362233722338223392234022341223422234322344223452234622347223482234922350223512235222353223542235522356223572235822359223602236122362223632236422365223662236722368223692237022371223722237322374223752237622377223782237922380223812238222383223842238522386223872238822389223902239122392223932239422395223962239722398223992240022401224022240322404224052240622407224082240922410224112241222413224142241522416224172241822419224202242122422224232242422425224262242722428224292243022431224322243322434224352243622437224382243922440224412244222443224442244522446224472244822449224502245122452224532245422455224562245722458224592246022461224622246322464224652246622467224682246922470224712247222473224742247522476224772247822479224802248122482224832248422485224862248722488224892249022491224922249322494224952249622497224982249922500225012250222503225042250522506225072250822509225102251122512225132251422515225162251722518225192252022521225222252322524225252252622527225282252922530225312253222533225342253522536225372253822539225402254122542225432254422545225462254722548225492255022551225522255322554225552255622557225582255922560225612256222563225642256522566225672256822569225702257122572225732257422575225762257722578225792258022581225822258322584225852258622587225882258922590225912259222593225942259522596225972259822599226002260122602226032260422605226062260722608226092261022611226122261322614226152261622617226182261922620226212262222623226242262522626226272262822629226302263122632226332263422635226362263722638226392264022641226422264322644226452264622647226482264922650226512265222653226542265522656226572265822659226602266122662226632266422665226662266722668226692267022671226722267322674226752267622677226782267922680226812268222683226842268522686226872268822689226902269122692226932269422695226962269722698226992270022701227022270322704227052270622707227082270922710227112271222713227142271522716227172271822719227202272122722227232272422725227262272722728227292273022731227322273322734227352273622737227382273922740227412274222743227442274522746227472274822749227502275122752227532275422755227562275722758227592276022761227622276322764227652276622767227682276922770227712277222773227742277522776227772277822779227802278122782227832278422785227862278722788227892279022791227922279322794227952279622797227982279922800228012280222803228042280522806228072280822809228102281122812228132281422815228162281722818228192282022821228222282322824228252282622827228282282922830228312283222833228342283522836228372283822839228402284122842228432284422845228462284722848228492285022851228522285322854228552285622857228582285922860228612286222863228642286522866228672286822869228702287122872228732287422875228762287722878228792288022881228822288322884228852288622887228882288922890228912289222893228942289522896228972289822899229002290122902229032290422905229062290722908229092291022911229122291322914229152291622917229182291922920229212292222923229242292522926229272292822929229302293122932229332293422935229362293722938229392294022941229422294322944229452294622947229482294922950229512295222953229542295522956229572295822959229602296122962229632296422965229662296722968229692297022971229722297322974229752297622977229782297922980229812298222983229842298522986229872298822989229902299122992229932299422995229962299722998229992300023001230022300323004230052300623007230082300923010230112301223013230142301523016230172301823019230202302123022230232302423025230262302723028230292303023031230322303323034230352303623037230382303923040230412304223043230442304523046230472304823049230502305123052230532305423055230562305723058230592306023061230622306323064230652306623067230682306923070230712307223073230742307523076230772307823079230802308123082230832308423085230862308723088230892309023091230922309323094230952309623097230982309923100231012310223103231042310523106231072310823109231102311123112231132311423115231162311723118231192312023121231222312323124231252312623127231282312923130231312313223133231342313523136231372313823139231402314123142231432314423145231462314723148231492315023151231522315323154231552315623157231582315923160231612316223163231642316523166231672316823169231702317123172231732317423175231762317723178231792318023181231822318323184231852318623187231882318923190231912319223193231942319523196231972319823199232002320123202232032320423205232062320723208232092321023211232122321323214232152321623217232182321923220232212322223223232242322523226232272322823229232302323123232232332323423235232362323723238232392324023241232422324323244232452324623247232482324923250232512325223253232542325523256232572325823259232602326123262232632326423265232662326723268232692327023271232722327323274232752327623277232782327923280232812328223283232842328523286232872328823289232902329123292232932329423295232962329723298232992330023301233022330323304233052330623307233082330923310233112331223313233142331523316233172331823319233202332123322233232332423325233262332723328233292333023331233322333323334233352333623337233382333923340233412334223343233442334523346233472334823349233502335123352233532335423355233562335723358233592336023361233622336323364233652336623367233682336923370233712337223373233742337523376233772337823379233802338123382233832338423385233862338723388233892339023391233922339323394233952339623397233982339923400234012340223403234042340523406234072340823409234102341123412234132341423415234162341723418234192342023421234222342323424234252342623427234282342923430234312343223433234342343523436234372343823439234402344123442234432344423445234462344723448234492345023451234522345323454234552345623457234582345923460234612346223463234642346523466234672346823469234702347123472234732347423475234762347723478234792348023481234822348323484234852348623487234882348923490234912349223493234942349523496234972349823499235002350123502235032350423505235062350723508235092351023511235122351323514235152351623517235182351923520235212352223523235242352523526235272352823529235302353123532235332353423535235362353723538235392354023541235422354323544235452354623547235482354923550235512355223553235542355523556235572355823559235602356123562235632356423565235662356723568235692357023571235722357323574235752357623577235782357923580235812358223583235842358523586235872358823589235902359123592235932359423595235962359723598235992360023601236022360323604236052360623607236082360923610236112361223613236142361523616236172361823619236202362123622236232362423625236262362723628236292363023631236322363323634236352363623637236382363923640236412364223643236442364523646236472364823649236502365123652236532365423655236562365723658236592366023661236622366323664236652366623667236682366923670236712367223673236742367523676236772367823679236802368123682236832368423685236862368723688236892369023691236922369323694236952369623697236982369923700237012370223703237042370523706237072370823709237102371123712237132371423715237162371723718237192372023721237222372323724237252372623727237282372923730237312373223733237342373523736237372373823739237402374123742237432374423745237462374723748237492375023751237522375323754237552375623757237582375923760237612376223763237642376523766237672376823769237702377123772237732377423775237762377723778237792378023781237822378323784237852378623787237882378923790237912379223793237942379523796237972379823799238002380123802238032380423805238062380723808238092381023811238122381323814238152381623817238182381923820238212382223823238242382523826238272382823829238302383123832238332383423835238362383723838238392384023841238422384323844238452384623847238482384923850238512385223853238542385523856238572385823859238602386123862238632386423865238662386723868238692387023871238722387323874238752387623877238782387923880238812388223883238842388523886238872388823889238902389123892238932389423895238962389723898238992390023901239022390323904239052390623907239082390923910239112391223913239142391523916239172391823919239202392123922239232392423925239262392723928239292393023931239322393323934239352393623937239382393923940239412394223943239442394523946239472394823949239502395123952239532395423955239562395723958239592396023961239622396323964239652396623967239682396923970239712397223973239742397523976239772397823979239802398123982239832398423985239862398723988239892399023991239922399323994239952399623997239982399924000240012400224003240042400524006240072400824009240102401124012240132401424015240162401724018240192402024021240222402324024240252402624027240282402924030240312403224033240342403524036240372403824039240402404124042240432404424045240462404724048240492405024051240522405324054240552405624057240582405924060240612406224063240642406524066240672406824069240702407124072240732407424075240762407724078240792408024081240822408324084240852408624087240882408924090240912409224093240942409524096240972409824099241002410124102241032410424105241062410724108241092411024111241122411324114241152411624117241182411924120241212412224123241242412524126241272412824129241302413124132241332413424135241362413724138241392414024141241422414324144241452414624147241482414924150241512415224153241542415524156241572415824159241602416124162241632416424165241662416724168241692417024171241722417324174241752417624177241782417924180241812418224183241842418524186241872418824189241902419124192241932419424195241962419724198241992420024201242022420324204242052420624207242082420924210242112421224213242142421524216242172421824219242202422124222242232422424225242262422724228242292423024231242322423324234242352423624237242382423924240242412424224243242442424524246242472424824249242502425124252242532425424255242562425724258242592426024261242622426324264242652426624267242682426924270242712427224273242742427524276242772427824279242802428124282242832428424285242862428724288242892429024291242922429324294242952429624297242982429924300243012430224303243042430524306243072430824309243102431124312243132431424315243162431724318243192432024321243222432324324243252432624327243282432924330243312433224333243342433524336243372433824339243402434124342243432434424345243462434724348243492435024351243522435324354243552435624357243582435924360243612436224363243642436524366243672436824369243702437124372243732437424375243762437724378243792438024381243822438324384243852438624387243882438924390243912439224393243942439524396243972439824399244002440124402244032440424405244062440724408244092441024411244122441324414244152441624417244182441924420244212442224423244242442524426244272442824429244302443124432244332443424435244362443724438244392444024441244422444324444244452444624447244482444924450244512445224453244542445524456244572445824459244602446124462244632446424465244662446724468244692447024471244722447324474244752447624477244782447924480244812448224483244842448524486244872448824489244902449124492244932449424495244962449724498244992450024501245022450324504245052450624507245082450924510245112451224513245142451524516245172451824519245202452124522245232452424525245262452724528245292453024531245322453324534245352453624537245382453924540245412454224543245442454524546245472454824549245502455124552245532455424555245562455724558245592456024561245622456324564245652456624567245682456924570245712457224573245742457524576245772457824579245802458124582245832458424585245862458724588245892459024591245922459324594245952459624597245982459924600246012460224603246042460524606246072460824609246102461124612246132461424615246162461724618246192462024621246222462324624246252462624627246282462924630246312463224633246342463524636246372463824639246402464124642246432464424645246462464724648246492465024651246522465324654246552465624657246582465924660246612466224663246642466524666246672466824669246702467124672246732467424675246762467724678246792468024681246822468324684246852468624687246882468924690246912469224693246942469524696246972469824699247002470124702247032470424705247062470724708247092471024711247122471324714247152471624717247182471924720247212472224723247242472524726247272472824729247302473124732247332473424735247362473724738247392474024741247422474324744247452474624747247482474924750247512475224753247542475524756247572475824759247602476124762247632476424765247662476724768247692477024771247722477324774247752477624777247782477924780247812478224783247842478524786247872478824789247902479124792247932479424795247962479724798247992480024801248022480324804248052480624807248082480924810248112481224813248142481524816248172481824819248202482124822248232482424825248262482724828248292483024831248322483324834248352483624837248382483924840248412484224843248442484524846248472484824849248502485124852248532485424855248562485724858248592486024861248622486324864248652486624867248682486924870248712487224873248742487524876248772487824879248802488124882248832488424885248862488724888248892489024891248922489324894248952489624897248982489924900249012490224903249042490524906249072490824909249102491124912249132491424915249162491724918249192492024921249222492324924249252492624927249282492924930249312493224933249342493524936249372493824939249402494124942249432494424945249462494724948249492495024951249522495324954249552495624957249582495924960249612496224963249642496524966249672496824969249702497124972249732497424975249762497724978249792498024981249822498324984249852498624987249882498924990249912499224993249942499524996249972499824999250002500125002250032500425005250062500725008250092501025011250122501325014250152501625017250182501925020250212502225023250242502525026250272502825029250302503125032250332503425035250362503725038250392504025041250422504325044250452504625047250482504925050250512505225053250542505525056250572505825059250602506125062250632506425065250662506725068250692507025071250722507325074250752507625077250782507925080250812508225083250842508525086250872508825089250902509125092250932509425095250962509725098250992510025101251022510325104251052510625107251082510925110251112511225113251142511525116251172511825119251202512125122251232512425125251262512725128251292513025131251322513325134251352513625137251382513925140251412514225143251442514525146251472514825149251502515125152251532515425155251562515725158251592516025161251622516325164251652516625167251682516925170251712517225173251742517525176251772517825179251802518125182251832518425185251862518725188251892519025191251922519325194251952519625197251982519925200252012520225203252042520525206252072520825209252102521125212252132521425215252162521725218252192522025221252222522325224252252522625227252282522925230252312523225233252342523525236252372523825239252402524125242252432524425245252462524725248252492525025251252522525325254252552525625257252582525925260252612526225263252642526525266252672526825269252702527125272252732527425275252762527725278252792528025281252822528325284252852528625287252882528925290252912529225293252942529525296252972529825299253002530125302253032530425305253062530725308253092531025311253122531325314253152531625317253182531925320253212532225323253242532525326253272532825329253302533125332253332533425335253362533725338253392534025341253422534325344253452534625347253482534925350253512535225353253542535525356253572535825359253602536125362253632536425365253662536725368253692537025371253722537325374253752537625377253782537925380253812538225383253842538525386253872538825389253902539125392253932539425395253962539725398253992540025401254022540325404254052540625407254082540925410254112541225413254142541525416254172541825419254202542125422254232542425425254262542725428254292543025431254322543325434254352543625437254382543925440254412544225443254442544525446254472544825449254502545125452254532545425455254562545725458254592546025461254622546325464254652546625467254682546925470254712547225473254742547525476254772547825479254802548125482254832548425485254862548725488254892549025491254922549325494254952549625497254982549925500255012550225503255042550525506255072550825509255102551125512255132551425515255162551725518255192552025521255222552325524255252552625527255282552925530255312553225533255342553525536255372553825539255402554125542255432554425545255462554725548255492555025551255522555325554255552555625557255582555925560255612556225563255642556525566255672556825569255702557125572255732557425575255762557725578255792558025581255822558325584255852558625587255882558925590255912559225593255942559525596255972559825599256002560125602256032560425605256062560725608256092561025611256122561325614256152561625617256182561925620256212562225623256242562525626256272562825629256302563125632256332563425635256362563725638256392564025641256422564325644256452564625647256482564925650256512565225653256542565525656256572565825659256602566125662256632566425665256662566725668256692567025671256722567325674256752567625677256782567925680256812568225683256842568525686256872568825689256902569125692256932569425695256962569725698256992570025701257022570325704257052570625707257082570925710257112571225713257142571525716257172571825719257202572125722257232572425725257262572725728257292573025731257322573325734257352573625737257382573925740257412574225743257442574525746257472574825749257502575125752257532575425755257562575725758257592576025761257622576325764257652576625767257682576925770257712577225773257742577525776257772577825779257802578125782257832578425785257862578725788257892579025791257922579325794257952579625797257982579925800258012580225803258042580525806258072580825809258102581125812258132581425815258162581725818258192582025821258222582325824258252582625827258282582925830258312583225833258342583525836258372583825839258402584125842258432584425845258462584725848258492585025851258522585325854258552585625857258582585925860258612586225863258642586525866258672586825869258702587125872258732587425875258762587725878258792588025881258822588325884258852588625887258882588925890258912589225893258942589525896258972589825899259002590125902259032590425905259062590725908259092591025911259122591325914259152591625917259182591925920259212592225923259242592525926259272592825929259302593125932259332593425935259362593725938259392594025941259422594325944259452594625947259482594925950259512595225953259542595525956259572595825959259602596125962259632596425965259662596725968259692597025971259722597325974259752597625977259782597925980259812598225983259842598525986259872598825989259902599125992259932599425995259962599725998259992600026001260022600326004260052600626007260082600926010260112601226013260142601526016260172601826019260202602126022260232602426025260262602726028260292603026031260322603326034260352603626037260382603926040260412604226043260442604526046260472604826049260502605126052260532605426055260562605726058260592606026061260622606326064260652606626067260682606926070260712607226073260742607526076260772607826079260802608126082260832608426085260862608726088260892609026091260922609326094260952609626097260982609926100261012610226103261042610526106261072610826109261102611126112261132611426115261162611726118261192612026121261222612326124261252612626127261282612926130261312613226133261342613526136261372613826139261402614126142261432614426145261462614726148261492615026151261522615326154261552615626157261582615926160261612616226163261642616526166261672616826169261702617126172261732617426175261762617726178261792618026181261822618326184261852618626187261882618926190261912619226193261942619526196261972619826199262002620126202262032620426205262062620726208262092621026211262122621326214262152621626217262182621926220262212622226223262242622526226262272622826229262302623126232262332623426235262362623726238262392624026241262422624326244262452624626247262482624926250262512625226253262542625526256262572625826259262602626126262262632626426265262662626726268262692627026271262722627326274262752627626277262782627926280262812628226283262842628526286262872628826289262902629126292262932629426295262962629726298262992630026301263022630326304263052630626307263082630926310263112631226313263142631526316263172631826319263202632126322263232632426325263262632726328263292633026331263322633326334263352633626337263382633926340263412634226343263442634526346263472634826349263502635126352263532635426355263562635726358263592636026361263622636326364263652636626367263682636926370263712637226373263742637526376263772637826379263802638126382263832638426385263862638726388263892639026391263922639326394263952639626397263982639926400264012640226403264042640526406264072640826409264102641126412264132641426415264162641726418264192642026421264222642326424264252642626427264282642926430264312643226433264342643526436264372643826439264402644126442264432644426445264462644726448264492645026451264522645326454264552645626457264582645926460264612646226463264642646526466264672646826469264702647126472264732647426475264762647726478264792648026481264822648326484264852648626487264882648926490264912649226493264942649526496264972649826499265002650126502265032650426505265062650726508265092651026511265122651326514265152651626517265182651926520265212652226523265242652526526265272652826529265302653126532265332653426535265362653726538265392654026541265422654326544265452654626547265482654926550265512655226553265542655526556265572655826559265602656126562265632656426565265662656726568265692657026571265722657326574265752657626577265782657926580265812658226583265842658526586265872658826589265902659126592265932659426595265962659726598265992660026601266022660326604266052660626607266082660926610266112661226613266142661526616266172661826619266202662126622266232662426625266262662726628266292663026631266322663326634266352663626637266382663926640266412664226643266442664526646266472664826649266502665126652266532665426655266562665726658266592666026661266622666326664266652666626667266682666926670266712667226673266742667526676266772667826679266802668126682266832668426685266862668726688266892669026691266922669326694266952669626697266982669926700267012670226703267042670526706267072670826709267102671126712267132671426715267162671726718267192672026721267222672326724267252672626727267282672926730267312673226733267342673526736267372673826739267402674126742267432674426745267462674726748267492675026751267522675326754267552675626757267582675926760267612676226763267642676526766267672676826769267702677126772267732677426775267762677726778267792678026781267822678326784267852678626787267882678926790267912679226793267942679526796267972679826799268002680126802268032680426805268062680726808268092681026811268122681326814268152681626817268182681926820268212682226823268242682526826268272682826829268302683126832268332683426835268362683726838268392684026841268422684326844268452684626847268482684926850268512685226853268542685526856268572685826859268602686126862268632686426865268662686726868268692687026871268722687326874268752687626877268782687926880268812688226883268842688526886268872688826889268902689126892268932689426895268962689726898268992690026901269022690326904269052690626907269082690926910269112691226913269142691526916269172691826919269202692126922269232692426925269262692726928269292693026931269322693326934269352693626937269382693926940269412694226943269442694526946269472694826949269502695126952269532695426955269562695726958269592696026961269622696326964269652696626967269682696926970269712697226973269742697526976269772697826979269802698126982269832698426985269862698726988269892699026991269922699326994269952699626997269982699927000270012700227003270042700527006270072700827009270102701127012270132701427015270162701727018270192702027021270222702327024270252702627027270282702927030270312703227033270342703527036270372703827039270402704127042270432704427045270462704727048270492705027051270522705327054270552705627057270582705927060270612706227063270642706527066270672706827069270702707127072270732707427075270762707727078270792708027081270822708327084270852708627087270882708927090270912709227093270942709527096270972709827099271002710127102271032710427105271062710727108271092711027111271122711327114271152711627117271182711927120271212712227123271242712527126271272712827129271302713127132271332713427135271362713727138271392714027141271422714327144271452714627147271482714927150271512715227153271542715527156271572715827159271602716127162271632716427165271662716727168271692717027171271722717327174271752717627177271782717927180271812718227183271842718527186271872718827189271902719127192271932719427195271962719727198271992720027201272022720327204272052720627207272082720927210272112721227213272142721527216272172721827219272202722127222272232722427225272262722727228272292723027231272322723327234272352723627237272382723927240272412724227243272442724527246272472724827249272502725127252272532725427255272562725727258272592726027261272622726327264272652726627267272682726927270272712727227273272742727527276272772727827279272802728127282272832728427285272862728727288272892729027291272922729327294272952729627297272982729927300273012730227303273042730527306273072730827309273102731127312273132731427315273162731727318273192732027321273222732327324273252732627327273282732927330273312733227333273342733527336273372733827339273402734127342273432734427345273462734727348273492735027351273522735327354273552735627357273582735927360273612736227363273642736527366273672736827369273702737127372273732737427375273762737727378273792738027381273822738327384273852738627387273882738927390273912739227393273942739527396273972739827399274002740127402274032740427405274062740727408274092741027411274122741327414274152741627417274182741927420274212742227423274242742527426274272742827429274302743127432274332743427435274362743727438274392744027441274422744327444274452744627447274482744927450274512745227453274542745527456274572745827459274602746127462274632746427465274662746727468274692747027471274722747327474274752747627477274782747927480274812748227483274842748527486274872748827489274902749127492274932749427495274962749727498274992750027501275022750327504275052750627507275082750927510275112751227513275142751527516275172751827519275202752127522275232752427525275262752727528275292753027531275322753327534275352753627537275382753927540275412754227543275442754527546275472754827549275502755127552275532755427555275562755727558275592756027561275622756327564275652756627567275682756927570275712757227573275742757527576275772757827579275802758127582275832758427585275862758727588275892759027591275922759327594275952759627597275982759927600276012760227603276042760527606276072760827609276102761127612276132761427615276162761727618276192762027621276222762327624276252762627627276282762927630276312763227633276342763527636276372763827639276402764127642276432764427645276462764727648276492765027651276522765327654276552765627657276582765927660276612766227663276642766527666276672766827669276702767127672276732767427675276762767727678276792768027681276822768327684276852768627687276882768927690276912769227693276942769527696276972769827699277002770127702277032770427705277062770727708277092771027711277122771327714277152771627717277182771927720277212772227723277242772527726277272772827729277302773127732277332773427735277362773727738277392774027741277422774327744277452774627747277482774927750277512775227753277542775527756277572775827759277602776127762277632776427765277662776727768277692777027771277722777327774277752777627777277782777927780277812778227783277842778527786277872778827789277902779127792277932779427795277962779727798277992780027801278022780327804278052780627807278082780927810278112781227813278142781527816278172781827819278202782127822278232782427825278262782727828278292783027831278322783327834278352783627837278382783927840278412784227843278442784527846278472784827849278502785127852278532785427855278562785727858278592786027861278622786327864278652786627867278682786927870278712787227873278742787527876278772787827879278802788127882278832788427885278862788727888278892789027891278922789327894278952789627897278982789927900279012790227903279042790527906279072790827909279102791127912279132791427915279162791727918279192792027921279222792327924279252792627927279282792927930279312793227933279342793527936279372793827939279402794127942279432794427945279462794727948279492795027951279522795327954279552795627957279582795927960279612796227963279642796527966279672796827969279702797127972279732797427975279762797727978279792798027981279822798327984279852798627987279882798927990279912799227993279942799527996279972799827999280002800128002280032800428005280062800728008280092801028011280122801328014280152801628017280182801928020280212802228023280242802528026280272802828029280302803128032280332803428035280362803728038280392804028041280422804328044280452804628047280482804928050280512805228053280542805528056280572805828059280602806128062280632806428065280662806728068280692807028071280722807328074280752807628077280782807928080280812808228083280842808528086280872808828089280902809128092280932809428095280962809728098280992810028101281022810328104281052810628107281082810928110281112811228113281142811528116281172811828119281202812128122281232812428125281262812728128281292813028131281322813328134281352813628137281382813928140281412814228143281442814528146281472814828149281502815128152281532815428155281562815728158281592816028161281622816328164281652816628167281682816928170281712817228173281742817528176281772817828179281802818128182281832818428185281862818728188281892819028191281922819328194281952819628197281982819928200282012820228203282042820528206282072820828209282102821128212282132821428215282162821728218282192822028221282222822328224282252822628227282282822928230282312823228233282342823528236282372823828239282402824128242282432824428245282462824728248282492825028251282522825328254282552825628257282582825928260282612826228263282642826528266282672826828269282702827128272282732827428275282762827728278282792828028281282822828328284282852828628287282882828928290282912829228293282942829528296282972829828299283002830128302283032830428305283062830728308283092831028311283122831328314283152831628317283182831928320283212832228323283242832528326283272832828329283302833128332283332833428335283362833728338283392834028341283422834328344283452834628347283482834928350283512835228353283542835528356283572835828359283602836128362283632836428365283662836728368283692837028371283722837328374283752837628377283782837928380283812838228383283842838528386283872838828389283902839128392283932839428395283962839728398283992840028401284022840328404284052840628407284082840928410284112841228413284142841528416284172841828419284202842128422284232842428425284262842728428284292843028431284322843328434284352843628437284382843928440284412844228443284442844528446284472844828449284502845128452284532845428455284562845728458284592846028461284622846328464284652846628467284682846928470284712847228473284742847528476284772847828479284802848128482284832848428485284862848728488284892849028491284922849328494284952849628497284982849928500285012850228503285042850528506285072850828509285102851128512285132851428515285162851728518285192852028521285222852328524285252852628527285282852928530285312853228533285342853528536285372853828539285402854128542285432854428545285462854728548285492855028551285522855328554285552855628557285582855928560285612856228563285642856528566285672856828569285702857128572285732857428575285762857728578285792858028581285822858328584285852858628587285882858928590285912859228593285942859528596285972859828599286002860128602286032860428605286062860728608286092861028611286122861328614286152861628617286182861928620286212862228623286242862528626286272862828629286302863128632286332863428635286362863728638286392864028641286422864328644286452864628647286482864928650286512865228653286542865528656286572865828659286602866128662286632866428665286662866728668286692867028671286722867328674286752867628677286782867928680286812868228683286842868528686286872868828689286902869128692286932869428695286962869728698286992870028701287022870328704287052870628707287082870928710287112871228713287142871528716287172871828719287202872128722287232872428725287262872728728287292873028731287322873328734287352873628737287382873928740287412874228743287442874528746287472874828749287502875128752287532875428755287562875728758287592876028761287622876328764287652876628767287682876928770287712877228773287742877528776287772877828779287802878128782287832878428785287862878728788287892879028791287922879328794287952879628797287982879928800288012880228803288042880528806288072880828809288102881128812288132881428815288162881728818288192882028821288222882328824288252882628827288282882928830288312883228833288342883528836288372883828839288402884128842288432884428845288462884728848288492885028851288522885328854288552885628857
  1. import React, { useState, useCallback, useMemo, useEffect } from 'react';
  2. import { createRoot } from 'react-dom/client';
  3. import {
  4. ReactFlow,
  5. Controls,
  6. Background,
  7. useNodesState,
  8. useEdgesState,
  9. Handle,
  10. Position,
  11. useReactFlow,
  12. ReactFlowProvider,
  13. } from '@xyflow/react';
  14. import '@xyflow/react/dist/style.css';
  15. const data = {
  16. "nodes": {
  17. "root_o": {
  18. "type": "root",
  19. "query": "如何制作反映人类双标行为的猫咪表情包梗图",
  20. "level": 0,
  21. "relevance_score": 1,
  22. "strategy": "原始问题",
  23. "iteration": 0,
  24. "is_selected": true
  25. },
  26. "round_0": {
  27. "type": "round",
  28. "query": "Round 0 (初始化)",
  29. "level": 0,
  30. "relevance_score": 0,
  31. "strategy": "初始化",
  32. "iteration": 0,
  33. "is_selected": true
  34. },
  35. "step_seg_r0": {
  36. "type": "step",
  37. "query": "步骤1: 分段 (4个segment)",
  38. "level": 1,
  39. "relevance_score": 0,
  40. "strategy": "分段",
  41. "iteration": 0,
  42. "is_selected": true
  43. },
  44. "segment_0_r0": {
  45. "type": "segment",
  46. "query": "[疑问引导] 如何",
  47. "level": 2,
  48. "relevance_score": 0.024,
  49. "evaluationReason": "【评估对象】词条\"如何\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作\n【动机维度 0.00】词条“如何”本身不包含任何动作意图,无法与原始问题的核心动机“制作”进行匹配。\n【品类维度 0.08】原始问题是关于制作特定主题(人类双标行为的猫咪表情包梗图)的方法,而词条“如何”是一个高度通用的疑问词,不包含任何具体品类信息。根据评估原则,通用概念不等于特定概念,因此品类匹配度极低。\n【最终得分 0.02】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.02已≤0.5",
  50. "strategy": "疑问引导",
  51. "iteration": 0,
  52. "is_selected": true,
  53. "segment_type": "疑问引导",
  54. "domain_index": 0,
  55. "domain_type": "疑问引导"
  56. },
  57. "word_如何_seg0_0": {
  58. "type": "word",
  59. "query": "如何",
  60. "level": 3,
  61. "relevance_score": 0.024,
  62. "evaluationReason": "【评估对象】词条\"如何\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作\n【动机维度 0.00】词条“如何”本身不包含任何动作意图,无法与原始问题的核心动机“制作”进行匹配。\n【品类维度 0.08】原始问题是关于制作特定主题(人类双标行为的猫咪表情包梗图)的方法,而词条“如何”是一个高度通用的疑问词,不包含任何具体品类信息。根据评估原则,通用概念不等于特定概念,因此品类匹配度极低。\n【最终得分 0.02】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.02已≤0.5",
  63. "strategy": "Word",
  64. "iteration": 0,
  65. "is_selected": true
  66. },
  67. "segment_1_r0": {
  68. "type": "segment",
  69. "query": "[核心动作] 制作",
  70. "level": 2,
  71. "relevance_score": 0.71,
  72. "evaluationReason": "【评估对象】词条\"制作\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作\n【动机维度 0.98】词条“制作”与原始问题中的核心动作“制作”完全一致,是原始问题动作的精确匹配。\n【品类维度 0.08】原始问题是关于制作特定主题(人类双标行为的猫咪表情包梗图)的方法,而词条“制作”是一个非常通用的动词,没有包含任何品类信息,属于过度泛化。通用概念不等于特定概念,因此品类匹配度极低。\n【最终得分 0.71】\n【规则说明】规则A:动机高分保护生效(动机0.98≥0.8),实际得分0.71已≥0.7",
  73. "strategy": "核心动作",
  74. "iteration": 0,
  75. "is_selected": true,
  76. "segment_type": "核心动作",
  77. "domain_index": 1,
  78. "domain_type": "核心动作"
  79. },
  80. "word_制作_seg1_0": {
  81. "type": "word",
  82. "query": "制作",
  83. "level": 3,
  84. "relevance_score": 0.71,
  85. "evaluationReason": "【评估对象】词条\"制作\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作\n【动机维度 0.98】词条“制作”与原始问题中的核心动作“制作”完全一致,是原始问题动作的精确匹配。\n【品类维度 0.08】原始问题是关于制作特定主题(人类双标行为的猫咪表情包梗图)的方法,而词条“制作”是一个非常通用的动词,没有包含任何品类信息,属于过度泛化。通用概念不等于特定概念,因此品类匹配度极低。\n【最终得分 0.71】\n【规则说明】规则A:动机高分保护生效(动机0.98≥0.8),实际得分0.71已≥0.7",
  86. "strategy": "Word",
  87. "iteration": 0,
  88. "is_selected": true
  89. },
  90. "segment_2_r0": {
  91. "type": "segment",
  92. "query": "[修饰短语] 反映人类双标行为的",
  93. "level": 2,
  94. "relevance_score": 0.09,
  95. "evaluationReason": "【评估对象】词条\"反映人类双标行为的\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作\n【动机维度 0.00】词条“反映人类双标行为的”是一个描述性短语,没有明确的动作意图,无法与原始问题的核心动机“制作”进行匹配。\n【品类维度 0.30】词条'反映人类双标行为的'是原始问题中的一个限定词,但缺少核心主体'猫咪表情包梗图',因此匹配度较低。\n【最终得分 0.09】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.09已≤0.5",
  96. "strategy": "修饰短语",
  97. "iteration": 0,
  98. "is_selected": true,
  99. "segment_type": "修饰短语",
  100. "domain_index": 2,
  101. "domain_type": "修饰短语"
  102. },
  103. "word_反映_seg2_0": {
  104. "type": "word",
  105. "query": "反映",
  106. "level": 3,
  107. "relevance_score": 0.024,
  108. "evaluationReason": "【评估对象】词条\"反映\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作\n【动机维度 0.00】原始问题的核心动机是“制作”,而词条“反映”虽然是原始问题中的一个动词,但它不是核心动机,且词条本身无法构成一个完整的动作意图,因此动机维度得分为0。\n【品类维度 0.08】原始问题是关于制作特定主题(人类双标行为的猫咪表情包梗图)的品类,而词条“反映”是一个通用动词,不包含任何品类信息,属于过度泛化,因此品类匹配度极低。\n【最终得分 0.02】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.02已≤0.5",
  109. "strategy": "Word",
  110. "iteration": 0,
  111. "is_selected": true
  112. },
  113. "word_人类_seg2_1": {
  114. "type": "word",
  115. "query": "人类",
  116. "level": 3,
  117. "relevance_score": 0.024,
  118. "evaluationReason": "【评估对象】词条\"人类\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作\n【动机维度 0.00】词条“人类”是一个名词,没有明确的动作意图,无法与原始问题的核心动机“制作”进行匹配。\n【品类维度 0.08】原始问题是关于制作特定主题(人类双标行为)的猫咪表情包梗图,而词条“人类”是一个高度泛化的概念,虽然原始问题中包含“人类”一词,但词条本身没有提供任何关于“双标行为”、“猫咪表情包”或“梗图制作”的特定信息,属于通用概念与特定概念的匹配,因此得分较低。\n【最终得分 0.02】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.02已≤0.5",
  119. "strategy": "Word",
  120. "iteration": 0,
  121. "is_selected": true
  122. },
  123. "word_双标_seg2_2": {
  124. "type": "word",
  125. "query": "双标",
  126. "level": 3,
  127. "relevance_score": 0.024,
  128. "evaluationReason": "【评估对象】词条\"双标\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作\n【动机维度 0.00】词条“双标”是一个名词,没有明确的动作意图,因此无法与原始问题的核心动机“制作”进行匹配。\n【品类维度 0.08】原始问题是关于制作特定主题(人类双标行为)的特定形式(猫咪表情包梗图),而词条“双标”是一个通用概念,虽然是原始问题中的一个限定词,但词条本身没有包含原始问题的主体和限定词,属于过度泛化。\n【最终得分 0.02】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.02已≤0.5",
  129. "strategy": "Word",
  130. "iteration": 0,
  131. "is_selected": true
  132. },
  133. "word_行为_seg2_3": {
  134. "type": "word",
  135. "query": "行为",
  136. "level": 3,
  137. "relevance_score": 0.024,
  138. "evaluationReason": "【评估对象】词条\"行为\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作\n【动机维度 0.00】词条“行为”是一个名词,没有明确的动作意图,无法与原始问题的核心动机“制作”进行匹配。\n【品类维度 0.08】原始问题是关于制作特定主题(人类双标行为)的特定形式(猫咪表情包梗图)的指南,而词条“行为”是一个非常通用的概念,没有限定词,无法与原始问题的特定品类匹配,属于过度泛化。\n【最终得分 0.02】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.02已≤0.5",
  139. "strategy": "Word",
  140. "iteration": 0,
  141. "is_selected": true
  142. },
  143. "segment_3_r0": {
  144. "type": "segment",
  145. "query": "[中心名词] 猫咪表情包梗图",
  146. "level": 2,
  147. "relevance_score": 0.23399999999999999,
  148. "evaluationReason": "【评估对象】词条\"猫咪表情包梗图\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作\n【动机维度 0.00】词条“猫咪表情包梗图”是一个名词短语,没有明确的动作意图,因此无法与原始问题的“制作”动作进行匹配。\n【品类维度 0.78】词条'猫咪表情包梗图'与原始问题中的核心主体'猫咪表情包梗图'完全匹配,但缺少了限定词'反映人类双标行为的',因此给予较高正向分数。\n【最终得分 0.23】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.23已≤0.5",
  149. "strategy": "中心名词",
  150. "iteration": 0,
  151. "is_selected": true,
  152. "segment_type": "中心名词",
  153. "domain_index": 3,
  154. "domain_type": "中心名词"
  155. },
  156. "word_猫咪_seg3_0": {
  157. "type": "word",
  158. "query": "猫咪",
  159. "level": 3,
  160. "relevance_score": 0.09,
  161. "evaluationReason": "【评估对象】词条\"猫咪\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作\n【动机维度 0.00】词条“猫咪”是一个名词,没有明确的动作意图,无法与原始问题的“制作”动作进行匹配。\n【品类维度 0.30】原始问题的主体是'猫咪表情包梗图',词条是'猫咪'。词条包含了原始问题核心主体的一部分,但缺少了'表情包梗图'这个关键限定词,且原始问题中的'猫咪'是作为表情包的主体,而词条'猫咪'是泛指,语义身份存在差异。\n【最终得分 0.09】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.09已≤0.5",
  162. "strategy": "Word",
  163. "iteration": 0,
  164. "is_selected": true
  165. },
  166. "word_表情包_seg3_1": {
  167. "type": "word",
  168. "query": "表情包",
  169. "level": 3,
  170. "relevance_score": 0.15,
  171. "evaluationReason": "【评估对象】词条\"表情包\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作\n【动机维度 0.00】原始问题的核心动机是“制作”,而词条“表情包”是一个名词,没有明确的动作意图,因此无法评估动作匹配度。\n【品类维度 0.50】词条“表情包”是原始问题“猫咪表情包梗图”的核心主体,但缺少了“猫咪”、“梗图”等限定词,属于核心主体匹配但限定词缺失。\n【最终得分 0.15】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.15已≤0.5",
  172. "strategy": "Word",
  173. "iteration": 0,
  174. "is_selected": true
  175. },
  176. "word_梗图_seg3_2": {
  177. "type": "word",
  178. "query": "梗图",
  179. "level": 3,
  180. "relevance_score": 0.024,
  181. "evaluationReason": "【评估对象】词条\"梗图\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作\n【动机维度 0.00】词条“梗图”是一个名词,没有明确的动作意图,因此无法与原始问题的核心动机“制作”进行匹配。\n【品类维度 0.08】原始问题是关于制作特定主题(人类双标行为)和特定形式(猫咪表情包梗图)的梗图,而词条“梗图”是一个非常通用的概念,没有包含原始问题中的任何限定词(人类双标行为、猫咪表情包)。通用概念不等于特定概念,因此品类匹配度低。\n【最终得分 0.02】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.02已≤0.5",
  182. "strategy": "Word",
  183. "iteration": 0,
  184. "is_selected": true
  185. },
  186. "round_1": {
  187. "type": "round",
  188. "query": "Round 1",
  189. "level": 10,
  190. "relevance_score": 0,
  191. "strategy": "第1轮",
  192. "iteration": 1,
  193. "is_selected": true
  194. },
  195. "step_sug_r1": {
  196. "type": "step",
  197. "query": "步骤1: 请求&评估推荐词 (90个)",
  198. "level": 11,
  199. "relevance_score": 0,
  200. "strategy": "请求&评估推荐词",
  201. "iteration": 1,
  202. "is_selected": true
  203. },
  204. "q_如何_r1_0": {
  205. "type": "q",
  206. "query": "[Q] 如何",
  207. "level": 12,
  208. "relevance_score": 0.024,
  209. "evaluationReason": "",
  210. "strategy": "Query",
  211. "iteration": 1,
  212. "is_selected": true,
  213. "type_label": "",
  214. "domain_index": 0,
  215. "domain_type": "疑问引导"
  216. },
  217. "sug_如何快速减肥_r1_q0_0": {
  218. "type": "sug",
  219. "query": "[SUG] 如何快速减肥",
  220. "level": 13,
  221. "relevance_score": -0.53,
  222. "evaluationReason": "【评估对象】词条\"如何快速减肥\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作表情包\n【动机维度 -0.50】原始问题动机为“制作”,sug词条动机为“减肥”。两者动作意图完全不相关,且制作与减肥的方向也存在明显的冲突。\n【品类维度 -0.55】原始问题核心是“人类双标行为的猫咪表情包梗图”,涉及到“猫咪”、“表情包”、“梗图”,而sug词条是“如何快速减肥”,二者品类完全不相关,对象完全错位。\n【延伸词维度 -0.60】sug词条「快速减肥」与原始问题「制作反映人类双标行为的猫咪表情包梗图」在主题、对象、目的上完全不相关,引入了与原始问题核心需求无关的全新主题,严重稀释了原始问题的聚焦度,属于作用域稀释型延伸词。\n【最终得分 -0.53】\n【规则说明】规则3:核心维度严重负向,上限=0",
  223. "strategy": "推荐词",
  224. "iteration": 1,
  225. "is_selected": true,
  226. "scoreColor": "#ef4444",
  227. "parentQScore": 0.024
  228. },
  229. "sug_如何培养男人主动给你花钱_r1_q0_1": {
  230. "type": "sug",
  231. "query": "[SUG] 如何培养男人主动给你花钱",
  232. "level": 13,
  233. "relevance_score": -0.8,
  234. "evaluationReason": "【评估对象】词条\"如何培养男人主动给你花钱\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作(表情包梗图)\n【动机维度 -0.80】原始问题的核心动机是「制作」反映特定主题的表情包梗图。sug词条的核心动机是「培养」。两者在动作意图上完全不相关,且方向大相径庭,一个侧重创作,一个侧重影响或改变他人的行为。\n【品类维度 -0.85】原始问题对象层为「猫咪表情包梗图」,场景层为「人类双标行为」。Sug词条对象层为「男人」的「花钱行为」,两者话题品类完全不同,对象层与场景层均不匹配,存在负向偏离。\n【延伸词维度 -0.60】sug词条与原始问题完全不相关,原始问题是关于制作猫咪表情包梗图,而sug词条是关于培养男人花钱,两者在主题、目的和内容上都毫无关联,属于作用域稀释型,且稀释程度极高。\n【最终得分 -0.80】\n【规则说明】规则3:核心维度严重负向,上限=0",
  235. "strategy": "推荐词",
  236. "iteration": 1,
  237. "is_selected": true,
  238. "scoreColor": "#ef4444",
  239. "parentQScore": 0.024
  240. },
  241. "sug_如何快速挣到钱_r1_q0_2": {
  242. "type": "sug",
  243. "query": "[SUG] 如何快速挣到钱",
  244. "level": 13,
  245. "relevance_score": -0.4,
  246. "evaluationReason": "【评估对象】词条\"如何快速挣到钱\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作表情包梗图\n【动机维度 0.00】原始问题是「制作表情包梗图」,sug词条是「挣钱」。两者在动机维度完全不匹配。\n【品类维度 -0.85】原始问题涉及“猫咪表情包梗图”和“人类双标行为”的创作主题,sug词条“如何快速挣到钱”的主体是金钱获取方式。两者内容主体完全无关,且品类冲突。\n【延伸词维度 -0.60】sug词条「如何快速挣到钱」与原始问题「如何制作反映人类双标行为的猫咪表情包梗图」在主题、目的和内容上完全不相关,引入了与原始问题核心需求无关的全新主题,严重稀释了原始问题的聚焦度,属于作用域稀释型延伸词。\n【最终得分 -0.40】\n【规则说明】规则3:核心维度严重负向,上限=0",
  247. "strategy": "推荐词",
  248. "iteration": 1,
  249. "is_selected": true,
  250. "scoreColor": "#ef4444",
  251. "parentQScore": 0.024
  252. },
  253. "sug_如何和女生聊天找话题_r1_q0_3": {
  254. "type": "sug",
  255. "query": "[SUG] 如何和女生聊天找话题",
  256. "level": 13,
  257. "relevance_score": -0.38000000000000006,
  258. "evaluationReason": "【评估对象】词条\"如何和女生聊天找话题\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作表情包/梗图\n【动机维度 0.00】原始问题的核心动机是学习「制作」表情包/梗图,而sug词条的动机是学习「聊天/找话题」。两者动机完全不匹配。\n【品类维度 -0.80】原始问题内容主体为《人类双标行为的猫咪表情包梗图》,sug词条内容主体为《和女生聊天找话题》。两者核心对象和场景完全不匹配,是完全不同领域的类别。\n【延伸词维度 -0.60】sug词条「如何和女生聊天找话题」与原始问题「如何制作反映人类双标行为的猫咪表情包梗图」在主题、目的和对象上完全不相关,属于作用域稀释型,且偏离度极高。\n【最终得分 -0.38】\n【规则说明】规则3:核心维度严重负向,上限=0",
  259. "strategy": "推荐词",
  260. "iteration": 1,
  261. "is_selected": true,
  262. "scoreColor": "#ef4444",
  263. "parentQScore": 0.024
  264. },
  265. "sug_如何快速入睡_r1_q0_4": {
  266. "type": "sug",
  267. "query": "[SUG] 如何快速入睡",
  268. "level": 13,
  269. "relevance_score": -0.78,
  270. "evaluationReason": "【评估对象】词条\"如何快速入睡\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作表情包梗图,表达特定主题\n【动机维度 -0.80】原始问题的核心动机是「制作」具有特定意义的「表情包梗图」,而sug词条的动机是「入睡」。两者动作意图完全不相关,且方向相反,一个是主动创造,另一个是被动状态。\n【品类维度 -0.80】原始问题内容主体为《人类双标行为的猫咪表情包梗图制作》,sug词条内容主体为《入睡》的方法。两者核心对象和场景完全不匹配,品类差异巨大,语义错位。\n【延伸词维度 -0.60】sug词条「如何快速入睡」与原始问题「如何制作反映人类双标行为的猫咪表情包梗图」在主题、目的和内容上完全不相关,属于作用域稀释型,且偏离度极高。\n【最终得分 -0.78】\n【规则说明】规则3:核心维度严重负向,上限=0",
  271. "strategy": "推荐词",
  272. "iteration": 1,
  273. "is_selected": true,
  274. "scoreColor": "#ef4444",
  275. "parentQScore": 0.024
  276. },
  277. "sug_如何让男生持续上头_r1_q0_5": {
  278. "type": "sug",
  279. "query": "[SUG] 如何让男生持续上头",
  280. "level": 13,
  281. "relevance_score": -0.4,
  282. "evaluationReason": "【评估对象】词条\"如何让男生持续上头\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作(表情包、梗图)\n【动机维度 0.00】原始问题的核心动机是「制作」表情包/梗图,而sug词条的动机是「让」男生如何,两者动作意图完全不相关,方向不同,因此得分为0。\n【品类维度 -0.85】原始问题对象层为「猫咪表情包梗图」,场景层为「人类双标行为」。Sug词条对象层为「男生」,缺失全部核心对象和场景,类别完全冲突,为负向偏离。\n【延伸词维度 -0.60】sug词条与原始问题完全无关,原始问题是关于制作表情包梗图,而sug词条是关于两性情感,两者在主题、目的和内容上均无任何关联,属于作用域稀释型,且稀释程度非常高。\n【最终得分 -0.40】\n【规则说明】规则3:核心维度严重负向,上限=0",
  283. "strategy": "推荐词",
  284. "iteration": 1,
  285. "is_selected": true,
  286. "scoreColor": "#ef4444",
  287. "parentQScore": 0.024
  288. },
  289. "sug_如何逼自己自律学习_r1_q0_6": {
  290. "type": "sug",
  291. "query": "[SUG] 如何逼自己自律学习",
  292. "level": 13,
  293. "relevance_score": -0.4,
  294. "evaluationReason": "【评估对象】词条\"如何逼自己自律学习\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作表情包\n【动机维度 0.00】原始问题的核心动机是「制作」表情包,而sug词条的核心动机是「逼」自己学习。两者动作意图完全不匹配。\n【品类维度 -0.85】原始问题主题集中在“猫咪表情包梗图”这一创作内容,sug词条“如何逼自己自律学习”与原始问题的主体内容(猫、表情包、梗图)完全不符,属于完全不同的品类,且没有可关联的限定词。\n【延伸词维度 -0.60】sug词条「如何逼自己自律学习」与原始问题「如何制作反映人类双标行为的猫咪表情包梗图」在主题、目的和对象上完全不相关,引入了与原始问题核心需求相悖的全新主题,严重稀释了原始问题的聚焦度,导致负面影响。\n【最终得分 -0.40】\n【规则说明】规则3:核心维度严重负向,上限=0",
  295. "strategy": "推荐词",
  296. "iteration": 1,
  297. "is_selected": true,
  298. "scoreColor": "#ef4444",
  299. "parentQScore": 0.024
  300. },
  301. "sug_如何连接别人家的加密wifi_r1_q0_7": {
  302. "type": "sug",
  303. "query": "[SUG] 如何连接别人家的加密wifi",
  304. "level": 13,
  305. "relevance_score": -0.4,
  306. "evaluationReason": "【评估对象】词条\"如何连接别人家的加密wifi\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作(表情包梗图)\n【动机维度 0.00】原始问题意图是「制作」反映人类双标行为的猫咪表情包梗图,sug词条是「连接」别人家的加密wifi,两者动作意图完全不相关。\n【品类维度 -0.85】原始问题涉及“猫咪表情包梗图”这一创作类内容主体,且有具体行为“双标”限定。sug词条为“如何连接别人家的加密wifi”这一计算机网络类内容,二者品类完全不符,且限定词也无关联,属于完全负向的偏离。\n【延伸词维度 -0.60】sug词条「如何连接别人家的加密wifi」与原始问题「如何制作反映人类双标行为的猫咪表情包梗图」在主题、目的和内容上完全不相关,引入了与原始问题核心需求无关的全新主题,严重稀释了原始问题的聚焦度,导致负面影响。\n【最终得分 -0.40】\n【规则说明】规则3:核心维度严重负向,上限=0",
  307. "strategy": "推荐词",
  308. "iteration": 1,
  309. "is_selected": true,
  310. "scoreColor": "#ef4444",
  311. "parentQScore": 0.024
  312. },
  313. "sug_如何养好头发_r1_q0_8": {
  314. "type": "sug",
  315. "query": "[SUG] 如何养好头发",
  316. "level": 13,
  317. "relevance_score": -0.8,
  318. "evaluationReason": "【评估对象】词条\"如何养好头发\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作表情包梗图\n【动机维度 -0.80】原始问题的核心动机是「制作」反映特定主题的表情包梗图。sug词条的动机是「养好」头发。两者之间没有任何关联性和相似性,属于完全不相关的动作意图。\n【品类维度 -0.85】原始问题对象层为「人类双标行为的猫咪表情包梗图」,限定词为「反映/制作」,场景层无。 Sug词条对象层为「头发」,限定词为「养好」。两者在对象层和限定词上完全不匹配,品类冲突,属于负向偏离。\n【延伸词维度 -0.60】sug词条「如何养好头发」与原始问题「如何制作反映人类双标行为的猫咪表情包梗图」完全不相关,引入了与原始问题核心目的和作用域完全无关的全新主题,严重稀释了原始问题的聚焦度,导致内容偏离,属于作用域稀释型。\n【最终得分 -0.80】\n【规则说明】规则3:核心维度严重负向,上限=0",
  319. "strategy": "推荐词",
  320. "iteration": 1,
  321. "is_selected": true,
  322. "scoreColor": "#ef4444",
  323. "parentQScore": 0.024
  324. },
  325. "sug_如何治疗早泻时间短_r1_q0_9": {
  326. "type": "sug",
  327. "query": "[SUG] 如何治疗早泻时间短",
  328. "level": 13,
  329. "relevance_score": -0.46,
  330. "evaluationReason": "【评估对象】词条\"如何治疗早泻时间短\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作/制作梗图\n【动机维度 0.00】原始问题的核心动机是「制作」,sug词条的核心动机是「治疗」。两者动作意图完全无关。\n【品类维度 -1.00】原始问题涉及「猫咪表情包梗图」这一创意内容制作领域,sug词条「如何治疗早泻时间短」属于医疗健康领域,两者在内容主体上完全不相关,且领域冲突,评分为最低。\n【延伸词维度 -0.60】sug词条「如何治疗早泻时间短」与原始问题「如何制作反映人类双标行为的猫咪表情包梗图」在主题、目的、对象和场景上完全不相关,引入了与原始问题完全无关的医学健康领域内容,严重稀释了原始问题的聚焦度,导致内容偏离,属于作用域稀释型延伸词。\n【最终得分 -0.46】\n【规则说明】规则3:核心维度严重负向,上限=0",
  331. "strategy": "推荐词",
  332. "iteration": 1,
  333. "is_selected": true,
  334. "scoreColor": "#ef4444",
  335. "parentQScore": 0.024
  336. },
  337. "q_制作_r1_1": {
  338. "type": "q",
  339. "query": "[Q] 制作",
  340. "level": 12,
  341. "relevance_score": 0.71,
  342. "evaluationReason": "",
  343. "strategy": "Query",
  344. "iteration": 1,
  345. "is_selected": true,
  346. "type_label": "",
  347. "domain_index": 1,
  348. "domain_type": "核心动作"
  349. },
  350. "sug_制作ppt_r1_q1_0": {
  351. "type": "sug",
  352. "query": "[SUG] 制作ppt",
  353. "level": 13,
  354. "relevance_score": -0.1600000000000001,
  355. "evaluationReason": "【评估对象】词条\"制作ppt\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】原始问题的核心动机是「制作」反映人类双标行为的猫咪表情包梗图。\n【动机维度 0.35】原始问题的动机是「制作」表情包梗图,sug词条的动机也是「制作」ppt。两者核心动作均为「制作」,属于同一大类,动作方向有间接关联,但制作的对象(表情包梗图 vs ppt)完全不同,因此属于弱相关。\n【品类维度 -0.80】原始问题核心是「猫咪表情包梗图」,涉及「人类双标行为」这一限定。而sug词条「制作ppt」内容主体完全偏离,与原始问题无任何关联,属于品类错位。\n【延伸词维度 -0.15】sug词条「制作ppt」与原始问题「制作反映人类双标行为的猫咪表情包梗图」的核心目的和对象完全不符,引入了无关的工具和主题,严重稀释了原始问题的聚焦度,属于作用域稀释型。\n【最终得分 -0.16】\n【规则说明】规则3:核心维度严重负向,上限=0",
  356. "strategy": "推荐词",
  357. "iteration": 1,
  358. "is_selected": true,
  359. "scoreColor": "#ef4444",
  360. "parentQScore": 0.71
  361. },
  362. "sug_制作表情包_r1_q1_1": {
  363. "type": "sug",
  364. "query": "[SUG] 制作表情包",
  365. "level": 13,
  366. "relevance_score": 0.815,
  367. "evaluationReason": "【评估对象】词条\"制作表情包\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作\n【动机维度 0.95】原始问题的核心动机是「制作」,sug词条「制作表情包」的核心动机也是「制作」。sug词条的动作意图和原始问题完全一致。\n【品类维度 0.50】原始问题对象层为“猫咪表情包梗图”,限定词有“反映人类双标行为”;sug词对象层为“表情包”,是原始问题的泛化对象层,但缺少所有的限定词,故给予中等匹配分。\n【延伸词维度 0.00】sug词条未引入延伸词,所有词汇均属于原始问题作用域范围。sug词条是原始问题核心动作的概括,不构成延伸。\n【最终得分 0.81】\n【规则说明】情况4:无延伸词,权重调整为 动机70% + 品类30%",
  368. "strategy": "推荐词",
  369. "iteration": 1,
  370. "is_selected": true,
  371. "scoreColor": "#22c55e",
  372. "parentQScore": 0.71
  373. },
  374. "sug_制作冰糖葫芦_r1_q1_2": {
  375. "type": "sug",
  376. "query": "[SUG] 制作冰糖葫芦",
  377. "level": 13,
  378. "relevance_score": -0.8,
  379. "evaluationReason": "【评估对象】词条\"制作冰糖葫芦\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作\n【动机维度 -0.80】原始问题核心动机是“制作”,sug词条「制作冰糖葫芦」中也包含“制作”的动作。但制作表情包梗图和制作冰糖葫芦是完全不同的制作方向和目的,动机上完全不相关。\n【品类维度 -0.85】原始问题涉及「猫咪表情包梗图」、「双标行为」内容,而sug词条是「制作冰糖葫芦」,两者在对象层和场景层均完全不匹配,是完全不同品类的内容,因此评为负分。\n【延伸词维度 -0.60】sug词条「制作冰糖葫芦」与原始问题「制作反映人类双标行为的猫咪表情包梗图」在主题和目的上完全不相关,引入了与原始问题核心需求无关的全新概念,严重稀释了原始问题的聚焦度,属于作用域稀释型,且程度较深。\n【最终得分 -0.80】\n【规则说明】规则3:核心维度严重负向,上限=0",
  380. "strategy": "推荐词",
  381. "iteration": 1,
  382. "is_selected": true,
  383. "scoreColor": "#ef4444",
  384. "parentQScore": 0.71
  385. },
  386. "sug_制作ppt的ai软件_r1_q1_3": {
  387. "type": "sug",
  388. "query": "[SUG] 制作ppt的ai软件",
  389. "level": 13,
  390. "relevance_score": -0.38000000000000006,
  391. "evaluationReason": "【评估对象】词条\"制作ppt的ai软件\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作\n【动机维度 0.00】原始问题的核心动机是“制作”,sug词条「制作ppt的ai软件」的核心动机也是“制作”。尽管两者都涉及“制作”,但制作的对象完全不同,sug词条无法帮助原始问题的「制作表情包」行为,因此动机匹配度为0。\n【品类维度 -0.80】原始问题问的是「人类双标行为」「猫咪表情包梗图」的「制作」方法,sug词条是「制作ppt的ai软件」,二者在对象层和场景层完全不匹配,品类冲突。\n【延伸词维度 -0.60】sug词条「制作ppt的ai软件」中的所有词汇,如「制作」、「ppt」、「ai」、「软件」,均与原始问题「如何制作反映人类双标行为的猫咪表情包梗图」的作用域(制作、猫咪表情包梗图、人类双标行为)完全不符,引入了全新的、不相关的概念,严重稀释了原始问题的聚焦度,导致内容完全偏离,属于作用域稀释型延伸词。\n【最终得分 -0.38】\n【规则说明】规则3:核心维度严重负向,上限=0",
  392. "strategy": "推荐词",
  393. "iteration": 1,
  394. "is_selected": true,
  395. "scoreColor": "#ef4444",
  396. "parentQScore": 0.71
  397. },
  398. "sug_制作视频_r1_q1_4": {
  399. "type": "sug",
  400. "query": "[SUG] 制作视频",
  401. "level": 13,
  402. "relevance_score": -0.09500000000000001,
  403. "evaluationReason": "【评估对象】词条\"制作视频\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作\n【动机维度 0.00】原始问题核心动机是“制作”,平台sug词条核心动机也是“制作”,但在对象上存在差异。原始问题是制作「表情包梗图」,sug词条是制作「视频」。虽然都是『制作』,但『表情包』和『视频』是两个完全不同的事物,无法形成直接的上下属或并列关系,故无法形成高相关的动机匹配,但又不能完全否定。\n【品类维度 -0.20】原始问题是关于“猫咪表情包梗图”,sug词条是“制作视频”,核心对象类型完全不匹配,一个需要图片素材,一个需要视频素材,存在品类错位。\n【延伸词维度 -0.15】原始问题是制作「表情包梗图」,而sug词条是「制作视频」。视频与表情包梗图是两种不同的内容形式,引入「视频」稀释了原始问题对「表情包梗图」的聚焦度,降低了内容的针对性,属于作用域稀释型。\n【最终得分 -0.10】",
  404. "strategy": "推荐词",
  405. "iteration": 1,
  406. "is_selected": true,
  407. "scoreColor": "#ef4444",
  408. "parentQScore": 0.71
  409. },
  410. "sug_制作美食_r1_q1_5": {
  411. "type": "sug",
  412. "query": "[SUG] 制作美食",
  413. "level": 13,
  414. "relevance_score": -0.6800000000000002,
  415. "evaluationReason": "【评估对象】词条\"制作美食\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作(表情包梗图)\n【动机维度 -0.60】原始问题的核心动机是“制作”(表情包梗图),sug词条的核心动机是“制作”(美食),两者动作相同但制作的对象和场景完全不同,动机意图方向明显偏离。\n【品类维度 -0.80】原始问题核心对象为「猫咪表情包梗图」,sug词条核心对象为「美食」。两者对象完全不相关,品类冲突,属于负向偏离。\n【延伸词维度 -0.60】sug词条「制作美食」与原始问题「制作反映人类双标行为的猫咪表情包梗图」在动机、对象、场景上均不相关,属于完全无关的延伸,严重稀释了原始问题的核心意图。\n【最终得分 -0.68】\n【规则说明】规则3:核心维度严重负向,上限=0",
  416. "strategy": "推荐词",
  417. "iteration": 1,
  418. "is_selected": true,
  419. "scoreColor": "#ef4444",
  420. "parentQScore": 0.71
  421. },
  422. "sug_制作简历_r1_q1_6": {
  423. "type": "sug",
  424. "query": "[SUG] 制作简历",
  425. "level": 13,
  426. "relevance_score": -0.6800000000000002,
  427. "evaluationReason": "【评估对象】词条\"制作简历\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作\n【动机维度 -0.60】原始问题核心动机是「制作」反映人类双标行为的猫咪表情包梗图,sug词条核心动机是「制作」简历。虽然两者都有「制作」动作,但sug词条提供的「制作简历」和原始问题「制作梗图」在具体行为和目的上完全不相关。\n【品类维度 -0.80】原始问题对象层为「猫咪表情包梗图」,限定词为「人类双标行为」。sug词条对象层为「简历」,二者对象层完全不匹配,品类冲突严重,功能等方面属于完全不同领域。\n【延伸词维度 -0.60】sug词条「制作简历」与原始问题「制作反映人类双标行为的猫咪表情包梗图」在主题、对象和目的上完全不相关,引入了与原始问题核心需求无关的全新主题,严重稀释了原始问题的聚焦度,属于作用域稀释型,且程度较深。\n【最终得分 -0.68】\n【规则说明】规则3:核心维度严重负向,上限=0",
  428. "strategy": "推荐词",
  429. "iteration": 1,
  430. "is_selected": true,
  431. "scoreColor": "#ef4444",
  432. "parentQScore": 0.71
  433. },
  434. "sug_制作饮品_r1_q1_7": {
  435. "type": "sug",
  436. "query": "[SUG] 制作饮品",
  437. "level": 13,
  438. "relevance_score": -0.6600000000000001,
  439. "evaluationReason": "【评估对象】词条\"制作饮品\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作(表情包梗图)\n【动机维度 -0.80】原始问题的核心动机是“制作”(表情包梗图),sug词条的动机是“制作”(饮品),两者均有制作行为,但动作对象完全不同,导致制作行为偏离很大。\n【品类维度 -0.50】原始问题核心是《表现人类双标行为的猫咪表情包梗图》,sug词是《饮品》,对象层完全不同,且无任何场景限定词匹配。客体类别完全偏离,负向抵消了动作的关联性。\n【延伸词维度 -0.60】sug词条「制作饮品」与原始问题「制作反映人类双标行为的猫咪表情包梗图」在对象和目的上完全不相关,引入了与原始问题核心需求相悖的全新主题,严重稀释了原始问题的聚焦度,属于作用域稀释型。\n【最终得分 -0.66】\n【规则说明】规则3:核心维度严重负向,上限=0",
  440. "strategy": "推荐词",
  441. "iteration": 1,
  442. "is_selected": true,
  443. "scoreColor": "#ef4444",
  444. "parentQScore": 0.71
  445. },
  446. "sug_制作小房子_r1_q1_8": {
  447. "type": "sug",
  448. "query": "[SUG] 制作小房子",
  449. "level": 13,
  450. "relevance_score": -0.20500000000000007,
  451. "evaluationReason": "【评估对象】词条\"制作小房子\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作\n【动机维度 0.35】原始问题核心动机是“制作”,sug词条核心动机也是“制作”,两者动作意图相同,但制作的对象完全不同,属于动作相关。\n【品类维度 -0.80】原始问题内容主体为《猫咪表情包梗图》,包含对象层「梗图、表情包」及场景层「猫咪、双标行为」。Sug词条《制作小房子》主体为「小房子」,与原始问题完全不匹配,品类完全无关。\n【延伸词维度 -0.60】sug词条「制作小房子」与原始问题「制作反映人类双标行为的猫咪表情包梗图」在主题、对象和目的上完全不相关,引入了与原始问题核心需求无关的全新概念,严重稀释了原始问题的聚焦度,导致内容偏离,属于作用域稀释型延伸词。\n【最终得分 -0.21】\n【规则说明】规则3:核心维度严重负向,上限=0",
  452. "strategy": "推荐词",
  453. "iteration": 1,
  454. "is_selected": true,
  455. "scoreColor": "#ef4444",
  456. "parentQScore": 0.71
  457. },
  458. "sug_制作表格_r1_q1_9": {
  459. "type": "sug",
  460. "query": "[SUG] 制作表格",
  461. "level": 13,
  462. "relevance_score": -0.5650000000000001,
  463. "evaluationReason": "【评估对象】词条\"制作表格\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作表情包梗图\n【动机维度 -0.70】原始问题的核心动机是围绕生成内容进行创作,旨在「制作」出一种特定形式的表情包梗图。sug词条「制作表格」虽然包含「制作」这一动词,但其指向的是「表格」的制作,与原始问题的「表情包梗图」的制作在行为目的和内容产出上存在显著差异,属于完全不同的制作行为,动作意图完全不匹配且方向相反。\n【品类维度 -0.50】原始问题核心对象是「表情包梗图」,场景是「人类双标行为」和「猫咪」。Sug词条核心对象为「表格」,品类完全不匹配,完全不同维度的内容主体。\n【延伸词维度 -0.15】sug词条「制作表格」与原始问题「制作反映人类双标行为的猫咪表情包梗图」的核心目的和作用域完全不符,引入了无关主题,稀释了原始问题的聚焦度,属于作用域稀释型。\n【最终得分 -0.57】\n【规则说明】规则3:核心维度严重负向,上限=0",
  464. "strategy": "推荐词",
  465. "iteration": 1,
  466. "is_selected": true,
  467. "scoreColor": "#ef4444",
  468. "parentQScore": 0.71
  469. },
  470. "q_反映_r1_2": {
  471. "type": "q",
  472. "query": "[Q] 反映",
  473. "level": 12,
  474. "relevance_score": 0.024,
  475. "evaluationReason": "",
  476. "strategy": "Query",
  477. "iteration": 1,
  478. "is_selected": true,
  479. "type_label": "",
  480. "domain_index": 2,
  481. "domain_type": "修饰短语"
  482. },
  483. "sug_反映问题还是反应问题_r1_q2_0": {
  484. "type": "sug",
  485. "query": "[SUG] 反映问题还是反应问题",
  486. "level": 13,
  487. "relevance_score": -0.7600000000000001,
  488. "evaluationReason": "【评估对象】词条\"反映问题还是反应问题\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作(表情包梗图)\n【动机维度 0.00】原始问题的核心动机是「制作」表情包梗图。sug词条「反映问题还是反应问题」关注的是词语用法选择,没有明确的动作意图。\n【品类维度 -0.80】原始问题的核心是「猫咪表情包梗图」这一核心对象,限定词为「人类双标行为」。sug词为抽象的语法辨析「反映问题还是反应问题」,两者对象和限定词完全不匹配,品类冲突严重。\n【延伸词维度 -0.60】sug词条「反映问题还是反应问题」与原始问题「如何制作反映人类双标行为的猫咪表情包梗图」完全无关,属于作用域无关型,且严重稀释了原始问题的核心意图,导致负向评分。\n【最终得分 -0.76】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20% + 规则3:核心维度严重负向,上限=0",
  489. "strategy": "推荐词",
  490. "iteration": 1,
  491. "is_selected": true,
  492. "scoreColor": "#ef4444",
  493. "parentQScore": 0.024
  494. },
  495. "sug_反映和反应的区别_r1_q2_1": {
  496. "type": "sug",
  497. "query": "[SUG] 反映和反应的区别",
  498. "level": 13,
  499. "relevance_score": -0.35500000000000004,
  500. "evaluationReason": "【评估对象】词条\"反映和反应的区别\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作\n【动机维度 0.00】原始问题的核心动机是「制作」,sug词条「反映和反应的区别」的核心动机是「辨析/理解」。两者动作完全不匹配。\n【品类维度 -0.85】原始问题主要涉及“猫咪表情包梗图”的制作,而sug词条是关于“反映和反应的区别”的语言知识。两者内容主体完全不相关,品类冲突严重,评分极低。\n【延伸词维度 -0.15】sug词条「反映和反应的区别」与原始问题「制作猫咪表情包梗图」的核心目的和作用域完全无关,属于无关型延伸词,且分散了用户注意力,稀释了原始问题的聚焦度。\n【最终得分 -0.36】\n【规则说明】规则3:核心维度严重负向,上限=0",
  501. "strategy": "推荐词",
  502. "iteration": 1,
  503. "is_selected": true,
  504. "scoreColor": "#ef4444",
  505. "parentQScore": 0.024
  506. },
  507. "sug_反映是什么意思_r1_q2_2": {
  508. "type": "sug",
  509. "query": "[SUG] 反映是什么意思",
  510. "level": 13,
  511. "relevance_score": -0.04,
  512. "evaluationReason": "【评估对象】词条\"反映是什么意思\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作\n【动机维度 -0.05】原始问题的核心动机是「制作」反映人类双标行为的猫咪表情包梗图。sug词条「反映是什么意思」的核心动机是「获取或解释」某种含义,二者动作方向不同。\n【品类维度 0.00】原始问题内容主体为《人类双标行为的猫咪表情包梗图》,sug词条内容主体为《反映》,二者无任何内容主体的关联性,属于不同品类,因此得分为0分0分处理。\n【延伸词维度 -0.15】sug词条「反映是什么意思」与原始问题「如何制作反映人类双标行为的猫咪表情包梗图」的核心目的和作用域完全不符,引入了无关的词义解释,严重稀释了原始问题的聚焦度。\n【最终得分 -0.04】",
  513. "strategy": "推荐词",
  514. "iteration": 1,
  515. "is_selected": true,
  516. "scoreColor": "#ef4444",
  517. "parentQScore": 0.024
  518. },
  519. "sug_反映者_r1_q2_3": {
  520. "type": "sug",
  521. "query": "[SUG] 反映者",
  522. "level": 13,
  523. "relevance_score": 0.010000000000000009,
  524. "evaluationReason": "【评估对象】词条\"反映者\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作\n【动机维度 0.00】sug词条「反映者」是纯名词,不包含任何动作意图,因此无法与原始问题的「制作」动机进行匹配。\n【品类维度 0.05】sug词是抽象的动词转名词,原始问题是一个具体的制作行为,两者相距甚远。sug词过度泛化,几乎无法体现原始问题中任何内容主体。\n【延伸词维度 -0.15】sug词条「反映者」与原始问题「如何制作反映人类双标行为的猫咪表情包梗图」的核心需求完全不符,引入了无关概念,稀释了原始问题的聚焦度,属于作用域稀释型。\n【最终得分 0.01】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  525. "strategy": "推荐词",
  526. "iteration": 1,
  527. "is_selected": true,
  528. "scoreColor": "#ef4444",
  529. "parentQScore": 0.024
  530. },
  531. "sug_反应力小游戏_r1_q2_4": {
  532. "type": "sug",
  533. "query": "[SUG] 反应力小游戏",
  534. "level": 13,
  535. "relevance_score": -0.38000000000000006,
  536. "evaluationReason": "【评估对象】词条\"反应力小游戏\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作表情包梗图\n【动机维度 0.00】原始问题的核心动机是“制作”梗图,而sug词条「反应力小游戏」的动作意图是“玩”/“进行”小游戏,两者动作意图完全不匹配。\n【品类维度 -0.80】原始问题核心对象是《猫咪表情包梗图》,场景是《人类双标行为》。sug词条核心对象是《小游戏》,场景是《反应力》。两者品类完全不相关,且词语含义偏离度大。\n【延伸词维度 -0.60】原始问题是关于“制作猫咪表情包梗图”的,核心是“制作”和“表情包梗图”;sug词条“反应力小游戏”与原始问题的“制作”和“表情包梗图”完全不相关,引入了全新的、不相关的概念,严重稀释了原始问题的聚焦度,属于作用域稀释型。\n【最终得分 -0.38】\n【规则说明】规则3:核心维度严重负向,上限=0",
  537. "strategy": "推荐词",
  538. "iteration": 1,
  539. "is_selected": true,
  540. "scoreColor": "#ef4444",
  541. "parentQScore": 0.024
  542. },
  543. "sug_反应蛋白高是什么意思_r1_q2_5": {
  544. "type": "sug",
  545. "query": "[SUG] 反应蛋白高是什么意思",
  546. "level": 13,
  547. "relevance_score": -0.38000000000000006,
  548. "evaluationReason": "【评估对象】词条\"反应蛋白高是什么意思\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作\n【动机维度 0.00】原始问题意图是「制作」表情包梗图,而sug词条「反应蛋白高是什么意思」的意图是「理解/获取知识」。两者动机完全不匹配。\n【品类维度 -0.80】原始问题是关于“猫咪表情包梗图”的制作,涉及娱乐创作领域。sug词条是“反应蛋白高是什么意思”,属于医学健康领域。两者内容主体完全不匹配,品类冲突,完全风马牛不相及。\n【延伸词维度 -0.60】sug词条「反应蛋白高是什么意思」与原始问题「如何制作反映人类双标行为的猫咪表情包梗图」在主题、内容和目的上完全不相关。sug词条引入了与原始问题制作表情包梗图毫无关联的医学概念,严重稀释了原始问题的聚焦度,导致内容完全偏离,属于作用域稀释型。\n【最终得分 -0.38】\n【规则说明】规则3:核心维度严重负向,上限=0",
  549. "strategy": "推荐词",
  550. "iteration": 1,
  551. "is_selected": true,
  552. "scoreColor": "#ef4444",
  553. "parentQScore": 0.024
  554. },
  555. "sug_反映拼音_r1_q2_6": {
  556. "type": "sug",
  557. "query": "[SUG] 反映拼音",
  558. "level": 13,
  559. "relevance_score": -0.7100000000000001,
  560. "evaluationReason": "【评估对象】词条\"反映拼音\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作(表情包、梗图)\n【动机维度 0.00】原始问题意图是「制作」表情包梗图,sug词条「反映拼音」无任何动作意图,因此无法匹配。\n【品类维度 -0.85】原始问题是关于《猫咪表情包梗图》的制作方法,限定词有《双标行为》,核心对象是《猫咪表情包梗图》。sug词条《反映拼音》与原始问题核心主体及所有限定词完全不符,品类严重冲突。\n【延伸词维度 -0.15】sug词条「反映拼音」与原始问题「如何制作反映人类双标行为的猫咪表情包梗图」的核心目的和作用域完全不符,引入了无关信息,严重稀释了原始问题的聚焦度。\n【最终得分 -0.71】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20% + 规则3:核心维度严重负向,上限=0",
  561. "strategy": "推荐词",
  562. "iteration": 1,
  563. "is_selected": true,
  564. "scoreColor": "#ef4444",
  565. "parentQScore": 0.024
  566. },
  567. "sug_反映财务状况的会计要素_r1_q2_7": {
  568. "type": "sug",
  569. "query": "[SUG] 反映财务状况的会计要素",
  570. "level": 13,
  571. "relevance_score": -0.8,
  572. "evaluationReason": "【评估对象】词条\"反映财务状况的会计要素\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作(表情包、梗图)\n【动机维度 0.00】原始问题的核心动机是“制作”表情包或梗图,而sug词条“反映财务状况的会计要素”中没有明确的动作意图。sug词条缺失动机层,无法与原始问题的动机进行匹配。\n【品类维度 -0.85】原始问题对象层为「猫咪表情包梗图」,场景层为「反映人类双标行为」。Sug词条对象层为「会计要素」,场景层为「反映财务状况」。两者对象层和场景层完全不匹配,品类完全冲突,负相关。\n【延伸词维度 -0.60】sug词条中的“财务状况”和“会计要素”与原始问题中的“人类双标行为”和“猫咪表情包梗图”完全不相关,引入了与原始问题核心主题无关的全新概念,严重稀释了原始问题的聚焦度,导致内容偏离。\n【最终得分 -0.80】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20% + 规则3:核心维度严重负向,上限=0",
  573. "strategy": "推荐词",
  574. "iteration": 1,
  575. "is_selected": true,
  576. "scoreColor": "#ef4444",
  577. "parentQScore": 0.024
  578. },
  579. "sug_反映的英语_r1_q2_8": {
  580. "type": "sug",
  581. "query": "[SUG] 反映的英语",
  582. "level": 13,
  583. "relevance_score": -0.3,
  584. "evaluationReason": "【评估对象】词条\"反映的英语\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作表情包/梗图\n【动机维度 0.00】原始问题意图是「制作」反映人类双标行为的猫咪表情包/梗图,而sug词条「反映的英语」是指查询“反映”这个词的英文翻译,两者动作意图完全不相关。\n【品类维度 -0.60】原始问题意在制作「猫咪表情包梗图」,限定词为「人类双标行为」。sug词条「反映的英语」与原始问题在对象和场景上均完全错位,品类差异巨大。\n【延伸词维度 -0.60】sug词条「反映的英语」与原始问题「如何制作反映人类双标行为的猫咪表情包梗图」的核心目的和作用域完全不符,引入了无关的语言学习主题,严重稀释了原始问题的聚焦度,属于作用域稀释型延伸词。\n【最终得分 -0.30】\n【规则说明】规则3:核心维度严重负向,上限=0",
  585. "strategy": "推荐词",
  586. "iteration": 1,
  587. "is_selected": true,
  588. "scoreColor": "#ef4444",
  589. "parentQScore": 0.024
  590. },
  591. "sug_反映事物间的互补关系_r1_q2_9": {
  592. "type": "sug",
  593. "query": "[SUG] 反映事物间的互补关系",
  594. "level": 13,
  595. "relevance_score": -0.26,
  596. "evaluationReason": "【评估对象】词条\"反映事物间的互补关系\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作\n【动机维度 0.00】原始问题意图是「制作」表情包梗图,sug词表示「反映」互补关系。两者在行为意图上完全不一致,没有关联。sug词条的重点在于概念的「反映」,与原始问题的「制作」行为毫无关联。\n【品类维度 -0.50】原始问题的核心主体是「猫咪表情包梗图」及「双标行为」;sug词条「反映事物间的互补关系」与原始问题主体品类完全错位,无任何关联。\n【延伸词维度 -0.60】sug词条「反映事物间的互补关系」与原始问题「制作反映人类双标行为的猫咪表情包梗图」在主题、对象、目的上完全不相关,引入了全新的、不相干的概念,严重稀释了原始问题的聚焦度,导致内容偏离,属于作用域稀释型。\n【最终得分 -0.26】\n【规则说明】规则3:核心维度严重负向,上限=0",
  597. "strategy": "推荐词",
  598. "iteration": 1,
  599. "is_selected": true,
  600. "scoreColor": "#ef4444",
  601. "parentQScore": 0.024
  602. },
  603. "q_人类_r1_3": {
  604. "type": "q",
  605. "query": "[Q] 人类",
  606. "level": 12,
  607. "relevance_score": 0.024,
  608. "evaluationReason": "",
  609. "strategy": "Query",
  610. "iteration": 1,
  611. "is_selected": true,
  612. "type_label": "",
  613. "domain_index": 2,
  614. "domain_type": "修饰短语"
  615. },
  616. "sug_人类一败涂地_r1_q3_0": {
  617. "type": "sug",
  618. "query": "[SUG] 人类一败涂地",
  619. "level": 13,
  620. "relevance_score": -0.6700000000000002,
  621. "evaluationReason": "【评估对象】词条\"人类一败涂地\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作表情包\n【动机维度 0.00】sug词条「人类一败涂地」是游戏名称,不包含任何动作意图,所以不存在动机匹配度。\n【品类维度 -0.80】原始问题核心是“猫咪表情包梗图”,限定词为“双标行为”。sug词条“人类一败涂地”与原始问题在对象层、场景层均不匹配,品类完全冲突。\n【延伸词维度 -0.15】sug词条「人类一败涂地」与原始问题「制作反映人类双标行为的猫咪表情包梗图」的核心目的和作用域完全不符,属于无关且稀释原始问题聚焦度的延伸,降低了内容的针对性。\n【最终得分 -0.67】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20% + 规则3:核心维度严重负向,上限=0",
  622. "strategy": "推荐词",
  623. "iteration": 1,
  624. "is_selected": true,
  625. "scoreColor": "#ef4444",
  626. "parentQScore": 0.024
  627. },
  628. "sug_人类狗窝_r1_q3_1": {
  629. "type": "sug",
  630. "query": "[SUG] 人类狗窝",
  631. "level": 13,
  632. "relevance_score": -0.19000000000000003,
  633. "evaluationReason": "【评估对象】词条\"人类狗窝\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作(表情包梗图)\n【动机维度 0.00】原始问题的核心动机是“制作”猫咪表情包梗图,而sug词条“人类狗窝”是一个名词性短语,无法识别出任何动作意图,因此无法评估动机匹配度。\n【品类维度 -0.20】原始问题主对象是“猫咪表情包梗图”,限定词是“双标行为”。sug词《人类狗窝》是完全不相关的名词概念,无论是主体还是限定词都完全没有关联性极低且有误导性。\n【延伸词维度 -0.15】sug词条「人类狗窝」与原始问题「制作反映人类双标行为的猫咪表情包梗图」的核心概念和目的完全不符。它既不属于原始问题的任何作用域,也无法促进原始目的的达成,反而引入了无关且可能分散注意力的信息,属于作用域稀释型。\n【最终得分 -0.19】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  634. "strategy": "推荐词",
  635. "iteration": 1,
  636. "is_selected": true,
  637. "scoreColor": "#ef4444",
  638. "parentQScore": 0.024
  639. },
  640. "sug_人类幼崽陪伴指南_r1_q3_2": {
  641. "type": "sug",
  642. "query": "[SUG] 人类幼崽陪伴指南",
  643. "level": 13,
  644. "relevance_score": -0.52,
  645. "evaluationReason": "【评估对象】词条\"人类幼崽陪伴指南\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作(表情包梗图)\n【动机维度 0.00】原始问题意在制作表情包,sug词条「人类幼崽陪伴指南」不含任何动作意图,且内容方向完全不匹配,因此动机维度评分为0。\n【品类维度 -0.50】原始问题核心是“猫咪表情包梗图”和“人类双标行为”,sug词条是“人类幼崽陪伴指南”,二者在主体对象上完全不匹配,品类冲突。\n【延伸词维度 -0.60】原始问题聚焦于「猫咪表情包梗图」的制作,延伸词「人类幼崽陪伴指南」引入了完全不相关的对象「人类幼崽」和动机「陪伴」,与原始问题的主题和目的完全脱节,属于作用域稀释型,且偏离度极高。\n【最终得分 -0.52】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20% + 规则3:核心维度严重负向,上限=0",
  646. "strategy": "推荐词",
  647. "iteration": 1,
  648. "is_selected": true,
  649. "scoreColor": "#ef4444",
  650. "parentQScore": 0.024
  651. },
  652. "sug_人类用沙想捏出梦里通天塔_r1_q3_3": {
  653. "type": "sug",
  654. "query": "[SUG] 人类用沙想捏出梦里通天塔",
  655. "level": 13,
  656. "relevance_score": -0.7600000000000001,
  657. "evaluationReason": "【评估对象】词条\"人类用沙想捏出梦里通天塔\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作表情包梗图,意在表达/反映人类双标行为\n【动机维度 0.00】原始问题的核心动机是「制作」以「反映」某种行为的梗图。sug词条是描述一种人类行为,不包含任何动作意图,因此无法评估动机匹配度。\n【品类维度 -0.80】原始问题主体是「猫咪表情包梗图」、「人类双标行为」;sug词条主体是「人类」、「沙」、「通天塔」。二者在对象层和场景层均无任何交集,品类完全不相关。\n【延伸词维度 -0.60】sug词条「人类用沙想捏出梦里通天塔」与原始问题「如何制作反映人类双标行为的猫咪表情包梗图」在主题、内容和目的上完全不相关,属于作用域无关型,且严重偏离原始问题,导致稀释作用域。\n【最终得分 -0.76】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20% + 规则3:核心维度严重负向,上限=0",
  658. "strategy": "推荐词",
  659. "iteration": 1,
  660. "is_selected": true,
  661. "scoreColor": "#ef4444",
  662. "parentQScore": 0.024
  663. },
  664. "sug_人类幼仔_r1_q3_4": {
  665. "type": "sug",
  666. "query": "[SUG] 人类幼仔",
  667. "level": 13,
  668. "relevance_score": -0.7100000000000001,
  669. "evaluationReason": "【评估对象】词条\"人类幼仔\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作(表情包梗图)\n【动机维度 0.00】原始问题意图是「制作」表情包梗图,sug词条「人类幼仔」是一个名词短语,没有包含任何动作意图,因此动机维度评分为0。\n【品类维度 -0.85】原始问题核心对象是《猫咪表情包梗图》,限定词有《人类双标行为》。sug词条《人类幼仔》与原始问题主体对象完全不符,且限定词也无关联,品类冲突。\n【延伸词维度 -0.15】原始问题聚焦于「猫咪表情包梗图」的制作,而延伸词「人类幼仔」引入了与猫咪无关的新对象,稀释了原始问题的核心主题,降低了内容的聚焦度。\n【最终得分 -0.71】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20% + 规则3:核心维度严重负向,上限=0",
  670. "strategy": "推荐词",
  671. "iteration": 1,
  672. "is_selected": true,
  673. "scoreColor": "#ef4444",
  674. "parentQScore": 0.024
  675. },
  676. "sug_人类简史_r1_q3_5": {
  677. "type": "sug",
  678. "query": "[SUG] 人类简史",
  679. "level": 13,
  680. "relevance_score": -0.6700000000000002,
  681. "evaluationReason": "【评估对象】词条\"人类简史\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作\n【动机维度 0.00】原始问题意图是“制作”表情包梗图。sug词条《人类简史》指代一本书籍,没有明确的动作意图。\n【品类维度 -0.80】原始问题核心对象是“猫咪表情包梗图”和“双标行为”,场景限定为“人类”。sug词条“人类简史”核心对象为“简史”,场景为“人类”,二者对象层和场景层均完全不匹配,品类冲突,属于完全不相关的概念。\n【延伸词维度 -0.15】sug词条「人类简史」与原始问题「制作猫咪表情包梗图」的核心目的和作用域完全不符,属于无关且稀释主题的延伸,降低了内容的针对性。\n【最终得分 -0.67】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20% + 规则3:核心维度严重负向,上限=0",
  682. "strategy": "推荐词",
  683. "iteration": 1,
  684. "is_selected": true,
  685. "scoreColor": "#ef4444",
  686. "parentQScore": 0.024
  687. },
  688. "sug_人类进化史_r1_q3_6": {
  689. "type": "sug",
  690. "query": "[SUG] 人类进化史",
  691. "level": 13,
  692. "relevance_score": -0.12,
  693. "evaluationReason": "【评估对象】词条\"人类进化史\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作表情包/梗图\n【动机维度 0.00】原始问题意在「制作」表情包梗图,而sug词条「人类进化史」为纯名词,无任何动作意图,动机完全不匹配。\n【品类维度 0.00】原始问题核心是“猫咪表情包梗图”及“双标行为主题”。而sug词条“人类进化史”是历史类别,与原始问题在对象层和场景层均无任何关联。\n【延伸词维度 -0.60】原始问题聚焦于「制作反映人类双标行为的猫咪表情包梗图」,核心是「制作」和「猫咪表情包梗图」。sug词条「人类进化史」与原始问题在主题、目的和对象上均无关联,属于完全无关的延伸词,严重稀释了原始问题的聚焦度,且引入了完全不相干的信息,对原始目的达成有极强的负面影响。\n【最终得分 -0.12】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  694. "strategy": "推荐词",
  695. "iteration": 1,
  696. "is_selected": true,
  697. "scoreColor": "#ef4444",
  698. "parentQScore": 0.024
  699. },
  700. "sug_人类跌落梦境_r1_q3_7": {
  701. "type": "sug",
  702. "query": "[SUG] 人类跌落梦境",
  703. "level": 13,
  704. "relevance_score": -0.6700000000000002,
  705. "evaluationReason": "【评估对象】词条\"人类跌落梦境\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作(表情包梗图)\n【动机维度 0.00】原始问题的核心动机是「制作」表情包梗图。sug词条「人类跌落梦境」是一个游戏名称,没有体现任何制作的行为意图。\n【品类维度 -0.80】原始问题核心对象是“猫咪表情包梗图”,限定词是“人类双标行为”。sug词条“人类跌落梦境”是一个游戏名,与原始问题的核心对象和限定词均完全不匹配,品类完全冲突。\n【延伸词维度 -0.15】sug词条「人类跌落梦境」是一款游戏名称,与原始问题中「制作反映人类双标行为的猫咪表情包梗图」的核心目的和作用域完全不符,属于无关型延伸词,且分散了用户对核心需求的注意力。\n【最终得分 -0.67】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20% + 规则3:核心维度严重负向,上限=0",
  706. "strategy": "推荐词",
  707. "iteration": 1,
  708. "is_selected": true,
  709. "scoreColor": "#ef4444",
  710. "parentQScore": 0.024
  711. },
  712. "sug_人类群星闪耀时_r1_q3_8": {
  713. "type": "sug",
  714. "query": "[SUG] 人类群星闪耀时",
  715. "level": 13,
  716. "relevance_score": -0.436,
  717. "evaluationReason": "【评估对象】词条\"人类群星闪耀时\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作表情包梗图\n【动机维度 0.00】sug词条「人类群星闪耀时」是一个作品名称,无法识别出任何动作意图,因此无法与原始问题的核心动作「制作」进行匹配。\n【品类维度 -0.50】原始问题的核心是「猫咪表情包梗图」、「双标行为」。sug词的核心是「人类群星闪耀时」。两者对象层和场景层均无任何关联,品类完全不同,属于品类冲突。\n【延伸词维度 -0.18】sug词条「人类群星闪耀时」与原始问题「制作反映人类双标行为的猫咪表情包梗图」在主题和目的上完全不相关,属于作用域无关型,且严重稀释了原始问题的聚焦度,导致内容偏离。\n【最终得分 -0.44】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20% + 规则3:核心维度严重负向,上限=0",
  718. "strategy": "推荐词",
  719. "iteration": 1,
  720. "is_selected": true,
  721. "scoreColor": "#ef4444",
  722. "parentQScore": 0.024
  723. },
  724. "sug_人类高质量男姓_r1_q3_9": {
  725. "type": "sug",
  726. "query": "[SUG] 人类高质量男姓",
  727. "level": 13,
  728. "relevance_score": -0.6760000000000002,
  729. "evaluationReason": "【评估对象】词条\"人类高质量男姓\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作(表情包梗图)\n【动机维度 0.00】原始问题的核心动机是「制作」,sug词条「人类高质量男姓」是一个描述性名词短语,没有体现任何动作意图。因此,sug词条无法命中原始问题的动机。\n【品类维度 -0.80】原始问题核心对象为「猫咪表情包梗图」,限定词为「人类双标行为」。sug词条「人类高质量男性」与原始问题对象和限定词完全不匹配,品类冲突严重。\n【延伸词维度 -0.18】sug词条「人类高质量男姓」与原始问题「如何制作反映人类双标行为的猫咪表情包梗图」的核心主题和目的完全不符,属于无关且稀释原始问题焦点的延伸词,严重偏离了用户意图。\n【最终得分 -0.68】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20% + 规则3:核心维度严重负向,上限=0",
  730. "strategy": "推荐词",
  731. "iteration": 1,
  732. "is_selected": true,
  733. "scoreColor": "#ef4444",
  734. "parentQScore": 0.024
  735. },
  736. "q_双标_r1_4": {
  737. "type": "q",
  738. "query": "[Q] 双标",
  739. "level": 12,
  740. "relevance_score": 0.024,
  741. "evaluationReason": "",
  742. "strategy": "Query",
  743. "iteration": 1,
  744. "is_selected": true,
  745. "type_label": "",
  746. "domain_index": 2,
  747. "domain_type": "修饰短语"
  748. },
  749. "sug_双标是什么意思_r1_q4_0": {
  750. "type": "sug",
  751. "query": "[SUG] 双标是什么意思",
  752. "level": 13,
  753. "relevance_score": 0.0050000000000000044,
  754. "evaluationReason": "【评估对象】词条\"双标是什么意思\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】「制作」猫咪表情包梗图,用于「反映」人类双标行为。核心动作是「制作」和「反映」\n【动机维度 0.00】原始问题的核心动机是「制作」和「反映」。sug词条「双标是什么意思」的核心动机是「了解/理解」。sug词条仅包含原始问题的主题「双标」,但没有围绕原始问题的核心动作「制作」或「反映」提供任何动机支持,因此动机不匹配。\n【品类维度 0.05】原始问题核心是《猫咪表情包梗图制作》,限定词是《人类双标行为》。sug词条仅包含《双标》,与原始问题的核心对象层《猫咪表情包梗图》几乎无关,覆盖度极低。\n【延伸词维度 -0.15】sug词条「双标是什么意思」中的「是什么意思」是延伸词,它将原始问题从「制作」行为转移到「解释」概念,稀释了原始问题制作梗图的聚焦度,降低了内容针对性。\n【最终得分 0.01】",
  755. "strategy": "推荐词",
  756. "iteration": 1,
  757. "is_selected": true,
  758. "scoreColor": "#ef4444",
  759. "parentQScore": 0.024
  760. },
  761. "sug_讽刺双标的文案_r1_q4_1": {
  762. "type": "sug",
  763. "query": "[SUG] 讽刺双标的文案",
  764. "level": 13,
  765. "relevance_score": 0.010000000000000009,
  766. "evaluationReason": "【评估对象】词条\"讽刺双标的文案\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作/生成(梗图)\n【动机维度 -0.15】原始问题的核心动机是「制作(梗图)」,sug词条的动机是「撰写/找寻(文案)」。两者动机存在部分重合,但方向上制作(图像)与撰写(文字)存在明显偏差。\n【品类维度 0.25】原始问题对象层为「猫咪表情包梗图」,场景层为「反映人类双标行为」。Sug词条对象层为「文案」,场景层为「讽刺双标」。场景层有部分匹配,但核心对象层「猫咪表情包梗图」与「文案」完全不符。\n【延伸词维度 -0.15】原始问题聚焦于「制作」猫咪表情包梗图,延伸词「文案」虽然与「讽刺双标」相关,但偏离了「制作」和「猫咪表情包」的核心对象,引入了不相关的创作形式,稀释了原始问题的聚焦度。\n【最终得分 0.01】",
  767. "strategy": "推荐词",
  768. "iteration": 1,
  769. "is_selected": true,
  770. "scoreColor": "#ef4444",
  771. "parentQScore": 0.024
  772. },
  773. "sug_双标的人是什么心理_r1_q4_2": {
  774. "type": "sug",
  775. "query": "[SUG] 双标的人是什么心理",
  776. "level": 13,
  777. "relevance_score": -0.07999999999999999,
  778. "evaluationReason": "【评估对象】词条\"双标的人是什么心理\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作(表情包梗图),通过猫咪表情包梗图反映人类双标行为,旨在表达或讽刺\n【动机维度 0.00】原始问题的核心动机是「制作」反映特定主题的表情包梗图,带有「表达、讽刺」的意图。sug词条「双标的人是什么心理」不含显性动机,也无法推断出隐性动机。sug词条不包含任何动作意图,因此无法与原始问题的动机「制作」进行匹配。\n【品类维度 0.05】原始问题核心对象是《猫咪表情包梗图》,场景是《人类双标行为》。sug词条仅包含《双标》,且仅为泛化概念,与问题核心对象完全不对应,品类差异大。\n【延伸词维度 -0.60】sug词条「双标的人是什么心理」与原始问题「制作猫咪表情包梗图」的核心目的完全不符。原始问题是关于内容创作,而sug词条是心理学探讨,引入了完全不相关的概念,严重稀释了原始问题的聚焦度,导致负向评分。\n【最终得分 -0.08】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  779. "strategy": "推荐词",
  780. "iteration": 1,
  781. "is_selected": true,
  782. "scoreColor": "#ef4444",
  783. "parentQScore": 0.024
  784. },
  785. "sug_双标文案_r1_q4_3": {
  786. "type": "sug",
  787. "query": "[SUG] 双标文案",
  788. "level": 13,
  789. "relevance_score": -0.23,
  790. "evaluationReason": "【评估对象】词条\"双标文案\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作(表情包梗图)\n【动机维度 0.00】原始问题意图是「制作」表情包梗图,而sug词条「双标文案」未体现任何明确的动作意图。因此,sug词条无法匹配原始问题的动机。\n【品类维度 -0.25】原始问题是关于《猫咪表情包梗图》且反映《人类双标行为》,而sug词条是《双标文案》。sug词条无法命中核心对象,且限定词不同,属于品类错位。\n【延伸词维度 -0.15】原始问题聚焦于制作「猫咪表情包梗图」以反映「人类双标行为」,而sug词条「双标文案」将重点从「表情包梗图」转移到「文案」,且未提及「猫咪」元素,稀释了原始问题的核心对象和产出形式,属于作用域稀释型。\n【最终得分 -0.23】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  791. "strategy": "推荐词",
  792. "iteration": 1,
  793. "is_selected": true,
  794. "scoreColor": "#ef4444",
  795. "parentQScore": 0.024
  796. },
  797. "sug_双标高爆卡点伴奏_r1_q4_4": {
  798. "type": "sug",
  799. "query": "[SUG] 双标高爆卡点伴奏",
  800. "level": 13,
  801. "relevance_score": -0.7100000000000001,
  802. "evaluationReason": "【评估对象】词条\"双标高爆卡点伴奏\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作(表情包、梗图)\n【动机维度 0.00】原始问题的核心动机是「制作」表情包/梗图,而sug词条「双标高爆卡点伴奏」没有体现任何动作意图,因此动机不匹配。\n【品类维度 -0.85】原始问题对象层为「猫咪表情包梗图」,涉及「人类双标行为」限定词;sug词条对象层为「卡点伴奏」,主核心词与限定词均不匹配,品类完全冲突,负相关。\n【延伸词维度 -0.15】原始问题聚焦于「制作」反映「人类双标行为」的「猫咪表情包梗图」,强调内容创作和主题。sug词条「双标高爆卡点伴奏」中的「高爆卡点伴奏」与原始问题的「制作表情包梗图」这一核心目的和对象完全不符,引入了音乐制作和视频剪辑的无关维度,严重稀释了原始问题的聚焦度,导致内容偏离。\n【最终得分 -0.71】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20% + 规则3:核心维度严重负向,上限=0",
  803. "strategy": "推荐词",
  804. "iteration": 1,
  805. "is_selected": true,
  806. "scoreColor": "#ef4444",
  807. "parentQScore": 0.024
  808. },
  809. "sug_双标信用卡_r1_q4_5": {
  810. "type": "sug",
  811. "query": "[SUG] 双标信用卡",
  812. "level": 13,
  813. "relevance_score": -0.7600000000000001,
  814. "evaluationReason": "【评估对象】词条\"双标信用卡\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作表情包\n【动机维度 0.00】原始问题核心动机是「制作」图片作品,而sug词条「双标信用卡」无任何制作行为,sug词条无法识别动作意图,动机完全不匹配。\n【品类维度 -0.80】原始问题核心是「猫咪表情包梗图」,限定词为「反映人类双标行为」。Sug词「双标信用卡」的核心对象是「信用卡」,且限定词「双标」与原始问题中的「双标行为」含义完全不同,品类错位严重。\n【延伸词维度 -0.60】原始问题聚焦于「猫咪表情包梗图」的制作,延伸词「信用卡」与原始问题的核心主题完全无关,属于作用域无关型,且严重偏离原始问题,导致稀释作用域,故给予负分。\n【最终得分 -0.76】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20% + 规则3:核心维度严重负向,上限=0",
  815. "strategy": "推荐词",
  816. "iteration": 1,
  817. "is_selected": true,
  818. "scoreColor": "#ef4444",
  819. "parentQScore": 0.024
  820. },
  821. "sug_双椒兔做法_r1_q4_6": {
  822. "type": "sug",
  823. "query": "[SUG] 双椒兔做法",
  824. "level": 13,
  825. "relevance_score": -0.38000000000000006,
  826. "evaluationReason": "【评估对象】词条\"双椒兔做法\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作\n【动机维度 0.00】sug词条「双椒兔做法」的动机是“如何制作/烹饪”,原始问题是“如何制作”,虽然都有制作,但是二者制作的客体完全不同,且sug词条中的‘做法’已经特指「食品」的制作方法,无法与原始问题意图相匹配。\n【品类维度 -0.80】原始问题的核心主体是“猫咪表情包梗图”和“双标行为”,sug词为“双椒兔做法”,对象完全不匹配,一个为食品制作,一个为文化创作,品类差异巨大。\n【延伸词维度 -0.60】sug词条「双椒兔做法」与原始问题「如何制作反映人类双标行为的猫咪表情包梗图」在主题、对象、目的上完全不相关,引入了与原始问题核心需求无关的全新概念,严重稀释了原始问题的聚焦度,导致内容完全偏离。\n【最终得分 -0.38】\n【规则说明】规则3:核心维度严重负向,上限=0",
  827. "strategy": "推荐词",
  828. "iteration": 1,
  829. "is_selected": true,
  830. "scoreColor": "#ef4444",
  831. "parentQScore": 0.024
  832. },
  833. "sug_双标图片_r1_q4_7": {
  834. "type": "sug",
  835. "query": "[SUG] 双标图片",
  836. "level": 13,
  837. "relevance_score": 0.17,
  838. "evaluationReason": "【评估对象】词条\"双标图片\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作(表情包梗图)\n【动机维度 0.00】原始问题的核心动机是“制作”表情包梗图,sug词条“双标图片”不包含任何动作意图,因此无法匹配。\n【品类维度 0.25】原始问题中包含核心对象“猫咪表情包梗图”和限定词“双标行为”。sug词条只包含了限定词“双标行为”的对象部分,缺失了核心对象“猫咪表情包梗图”,覆盖度较低。\n【延伸词维度 -0.15】原始问题聚焦于「猫咪表情包梗图」这一特定形式,而sug词条「图片」泛化了对象,稀释了原始问题的具体性和趣味性,属于作用域稀释型。\n【最终得分 0.17】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  839. "strategy": "推荐词",
  840. "iteration": 1,
  841. "is_selected": true,
  842. "scoreColor": "#22c55e",
  843. "parentQScore": 0.024
  844. },
  845. "sug_双标表情包_r1_q4_8": {
  846. "type": "sug",
  847. "query": "[SUG] 双标表情包",
  848. "level": 13,
  849. "relevance_score": 0.4,
  850. "evaluationReason": "【评估对象】词条\"双标表情包\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作表情包\n【动机维度 0.00】sug词条「双标表情包」不包含明确的动作意图。原始问题的核心动机是「制作」,而sug词条仅提及了表情包的主题,未能体现出任何制作或获取表情包的动作。\n【品类维度 0.50】原始问题涉及“猫咪表情包梗图”和“双标行为”两个核心对象。sug词条“双标表情包”包含了“双标”和“表情包”,覆盖了原始问题大部分核心对象层,但缺失了“猫咪”这一关键限定词\n【延伸词维度 0.00】sug词条未引入延伸词,所有词汇均属于原始问题作用域范围。\n【最终得分 0.40】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  851. "strategy": "推荐词",
  852. "iteration": 1,
  853. "is_selected": true,
  854. "scoreColor": "#22c55e",
  855. "parentQScore": 0.024
  856. },
  857. "sug_双标的人_r1_q4_9": {
  858. "type": "sug",
  859. "query": "[SUG] 双标的人",
  860. "level": 13,
  861. "relevance_score": 0.04000000000000001,
  862. "evaluationReason": "【评估对象】词条\"双标的人\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作(表情包梗图)\n【动机维度 0.00】原始问题的核心动机是“制作”表情包梗图,sug词条「双标的人」只是一个名词短语,它本身不包含任何动作意图,也无法体现与“制作”相关的行为。\n【品类维度 0.05】原始问题核心对象是《猫咪表情包梗图》,限定词是《人类双标行为》。sug词《双标的人》虽然提及《双标》,但主体是《人》,与原始问题的核心对象《猫咪表情包梗图》完全不匹配,同时,sug词条只涉及原始问题的一小部分语义信息《双标》,导致匹配度较低。覆盖度极低。\n【延伸词维度 0.00】sug词条「双标的人」是原始问题「人类双标行为」的同义表达,属于原始问题作用域内的词汇,不构成延伸词。\n【最终得分 0.04】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  863. "strategy": "推荐词",
  864. "iteration": 1,
  865. "is_selected": true,
  866. "scoreColor": "#ef4444",
  867. "parentQScore": 0.024
  868. },
  869. "q_行为_r1_5": {
  870. "type": "q",
  871. "query": "[Q] 行为",
  872. "level": 12,
  873. "relevance_score": 0.024,
  874. "evaluationReason": "",
  875. "strategy": "Query",
  876. "iteration": 1,
  877. "is_selected": true,
  878. "type_label": "",
  879. "domain_index": 2,
  880. "domain_type": "修饰短语"
  881. },
  882. "sug_行为心理学_r1_q5_0": {
  883. "type": "sug",
  884. "query": "[SUG] 行为心理学",
  885. "level": 13,
  886. "relevance_score": 0.010000000000000009,
  887. "evaluationReason": "【评估对象】词条\"行为心理学\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作(表情包梗图)\n【动机维度 0.00】原始问题的核心动机是\"制作\",而sug词条「行为心理学」无明确的动作意图。因此,动机维度不匹配。\n【品类维度 0.05】原始问题核心对象为「猫咪表情包梗图」,限定词为「人类双标行为」。sug词条「行为心理学」是高度泛化的学科概念,其内容与「双标行为」有抽象关联,但与图片制作无直接主体关联,覆盖度极低。\n【延伸词维度 -0.15】原始问题聚焦于「制作」猫咪表情包梗图,而「行为心理学」是一个宽泛的学术领域,与具体的制作行为关联度低,稀释了原始问题的目的性。\n【最终得分 0.01】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  888. "strategy": "推荐词",
  889. "iteration": 1,
  890. "is_selected": true,
  891. "scoreColor": "#ef4444",
  892. "parentQScore": 0.024
  893. },
  894. "sug_行为基础_r1_q5_1": {
  895. "type": "sug",
  896. "query": "[SUG] 行为基础",
  897. "level": 13,
  898. "relevance_score": 0.010000000000000009,
  899. "evaluationReason": "【评估对象】词条\"行为基础\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作(表情包梗图)\n【动机维度 0.00】原始问题的核心动机是“制作”表情包梗图,而sug词条“行为基础”是一个名词短语,不包含任何动作意图,因此动机意图完全不匹配。\n【品类维度 0.05】原始问题是关于《人类双标行为》、《猫咪表情包梗图》的具体制作方法。sug词条《行为基础》过于抽象和泛化,无法构成有效内容主体匹配。\n【延伸词维度 -0.15】原始问题聚焦于「制作」猫咪表情包梗图,且主题是「人类双标行为」。sug词条「行为基础」是一个非常宽泛且抽象的词汇,与原始问题的具体制作行为和特定主题关联度极低,属于作用域稀释型延伸词,分散了原始问题的核心焦点。\n【最终得分 0.01】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  900. "strategy": "推荐词",
  901. "iteration": 1,
  902. "is_selected": true,
  903. "scoreColor": "#ef4444",
  904. "parentQScore": 0.024
  905. },
  906. "sug_行为规范手抄报_r1_q5_2": {
  907. "type": "sug",
  908. "query": "[SUG] 行为规范手抄报",
  909. "level": 13,
  910. "relevance_score": -0.3350000000000001,
  911. "evaluationReason": "【评估对象】词条\"行为规范手抄报\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作(表情包梗图),通过制作表达观点\n【动机维度 0.00】原始问题的核心动机是「制作」具有特定表达意图的梗图。sug词条「行为规范手抄报」的动机是「制作」手抄报,虽然都包含「制作」的动作,但是意图载体和目的完全不匹配。\n【品类维度 -0.80】原始问题内容主体为《人类双标行为的猫咪表情包梗图》,作用域为『猫咪、表情包梗图、人类双标行为』;sug词条内容主体为《行为规范手抄报》,作用域为『行为规范、手抄报』。二者核心对象和限定词完全不同,品类高度不匹配。\n【延伸词维度 -0.15】原始问题聚焦于「猫咪表情包梗图」的制作,而sug词条「行为规范手抄报」引入了完全不相关的「手抄报」和「行为规范」概念,严重稀释了原始问题的核心主题和目的,属于作用域稀释型。\n【最终得分 -0.34】\n【规则说明】规则3:核心维度严重负向,上限=0",
  912. "strategy": "推荐词",
  913. "iteration": 1,
  914. "is_selected": true,
  915. "scoreColor": "#ef4444",
  916. "parentQScore": 0.024
  917. },
  918. "sug_行为习惯手抄报_r1_q5_3": {
  919. "type": "sug",
  920. "query": "[SUG] 行为习惯手抄报",
  921. "level": 13,
  922. "relevance_score": -0.7100000000000001,
  923. "evaluationReason": "【评估对象】词条\"行为习惯手抄报\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作(表情包梗图)\n【动机维度 0.00】原始问题意图是「制作」表情包梗图,而sug词条是「行为习惯手抄报」,未包含任何明确的动作意图。因此,sug词条与原始问题的动机无匹配。\n【品类维度 -0.85】原始问题的核心对象是“表情包梗图”,限定词为“猫咪”、“双标行为”,sug词条为“行为习惯手抄报”。两者对象类型完全不匹配,无任何共同限定词,品类冲突严重。\n【延伸词维度 -0.15】原始问题聚焦于「猫咪表情包梗图」的制作,强调「人类双标行为」这一主题。sug词条「行为习惯手抄报」中的「手抄报」与原始问题中的「表情包梗图」在形式上完全不符,且「行为习惯」也未能体现「人类双标行为」这一核心主题,属于引入无关信息,稀释了原始问题的聚焦度。\n【最终得分 -0.71】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20% + 规则3:核心维度严重负向,上限=0",
  924. "strategy": "推荐词",
  925. "iteration": 1,
  926. "is_selected": true,
  927. "scoreColor": "#ef4444",
  928. "parentQScore": 0.024
  929. },
  930. "sug_行为艺术_r1_q5_4": {
  931. "type": "sug",
  932. "query": "[SUG] 行为艺术",
  933. "level": 13,
  934. "relevance_score": -0.19000000000000003,
  935. "evaluationReason": "【评估对象】词条\"行为艺术\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作梗图,用于反映人类双标行为\n【动机维度 0.00】原始问题的核心动机是「制作」梗图,sug词条「行为艺术」没有包含任何动作意图,因此无法评估动作匹配度。\n【品类维度 -0.20】原始问题侧重“猫咪表情包梗图”这一内容形式与“双标行为”这一具体主题,sug词条“行为艺术”虽与“行为”相关,但内容主体差异大,无法直接匹配,存在一定偏离。\n【延伸词维度 -0.15】原始问题聚焦于「猫咪表情包梗图」的制作,而「行为艺术」是一个宽泛的艺术形式,与制作表情包梗图的直接关联性较低,稀释了原始问题的具体制作目的。\n【最终得分 -0.19】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  936. "strategy": "推荐词",
  937. "iteration": 1,
  938. "is_selected": true,
  939. "scoreColor": "#ef4444",
  940. "parentQScore": 0.024
  941. },
  942. "sug_行为决定关系而非关系决定行为_r1_q5_5": {
  943. "type": "sug",
  944. "query": "[SUG] 行为决定关系而非关系决定行为",
  945. "level": 13,
  946. "relevance_score": -0.07,
  947. "evaluationReason": "【评估对象】词条\"行为决定关系而非关系决定行为\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作(表情包梗图)\n【动机维度 0.00】原始问题意图是“制作”表情包梗图,sug词条「行为决定关系而非关系决定行为」无任何动作意图,无法评估动机匹配度。\n【品类维度 -0.05】原始问题核心对象是「猫咪表情包梗图」、「人类双标行为」,强调制作。sug词条是抽象的观点陈述,与原始问题无任何核心对象和场景匹配,存在语义错位,可能会引起用户迷惑,用户误解为制作表情包梗图而搜索。\n【延伸词维度 -0.15】sug词条「行为决定关系而非关系决定行为」与原始问题「如何制作反映人类双标行为的猫咪表情包梗图」的核心目的和作用域完全不符,属于无关型延伸词,且分散了用户对制作表情包的注意力,稀释了原始问题的聚焦度。\n【最终得分 -0.07】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  948. "strategy": "推荐词",
  949. "iteration": 1,
  950. "is_selected": true,
  951. "scoreColor": "#ef4444",
  952. "parentQScore": 0.024
  953. },
  954. "sug_行为违反腾讯用户协议_r1_q5_6": {
  955. "type": "sug",
  956. "query": "[SUG] 行为违反腾讯用户协议",
  957. "level": 13,
  958. "relevance_score": -0.8,
  959. "evaluationReason": "【评估对象】词条\"行为违反腾讯用户协议\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作表情包\n【动机维度 0.00】原始问题的核心动机是「制作」表情包,而Sug词条「行为违反腾讯用户协议」并没有提出任何动作意图,因此无法匹配。\n【品类维度 -0.85】原始问题对象层为「猫咪表情包梗图」,场景层为「反映人类双标行为」。Sug词条与原始问题在对象层和场景层均完全不匹配,是完全不相关的安全提示。\n【延伸词维度 -0.60】原始问题聚焦于「制作猫咪表情包梗图」这一创意行为,而sug词条「行为违反腾讯用户协议」引入了与创作内容和方法完全无关的法律/平台规范维度,严重稀释了原始问题的核心目的和作用域,属于作用域稀释型延伸词。\n【最终得分 -0.80】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20% + 规则3:核心维度严重负向,上限=0",
  960. "strategy": "推荐词",
  961. "iteration": 1,
  962. "is_selected": true,
  963. "scoreColor": "#ef4444",
  964. "parentQScore": 0.024
  965. },
  966. "sug_行为认知疗法_r1_q5_7": {
  967. "type": "sug",
  968. "query": "[SUG] 行为认知疗法",
  969. "level": 13,
  970. "relevance_score": -0.6700000000000002,
  971. "evaluationReason": "【评估对象】词条\"行为认知疗法\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作(表情包梗图),通过制作来反映人类双标行为,表达创作意图\n【动机维度 0.00】原始问题的核心动机是「制作」带有特定主题的表情包梗图,而sug词条「行为认知疗法」中没有明确的动作语义,因此无法评估动作匹配度。\n【品类维度 -0.80】原始问题核心是“猫咪表情包梗图”,限定词是“人类双标行为”;sug词是“行为认知疗法”,对象和目的完全不同,品类错位严重。\n【延伸词维度 -0.15】原始问题聚焦于「制作表情包梗图」,而「行为认知疗法」是一个心理学概念,与表情包制作完全无关,属于无关型延伸词,且引入了完全不相关的专业领域,稀释了原始问题的聚焦度。\n【最终得分 -0.67】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20% + 规则3:核心维度严重负向,上限=0",
  972. "strategy": "推荐词",
  973. "iteration": 1,
  974. "is_selected": true,
  975. "scoreColor": "#ef4444",
  976. "parentQScore": 0.024
  977. },
  978. "sug_行为经济学_r1_q5_8": {
  979. "type": "sug",
  980. "query": "[SUG] 行为经济学",
  981. "level": 13,
  982. "relevance_score": -0.43000000000000005,
  983. "evaluationReason": "【评估对象】词条\"行为经济学\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作\n【动机维度 0.00】sug词条「行为经济学」没有明确的动作意图,因此无法评估其与原始问题「制作」这一动作意图的匹配度。\n【品类维度 -0.50】原始问题核心是「人类双标行为」和「猫咪表情包梗图」。sug词是「行为经济学」,两者品类完全不匹配,核心对象和限定词均无关联。\n【延伸词维度 -0.15】sug词条「行为经济学」与原始问题「制作猫咪表情包梗图」的核心目的和作用域完全不符,属于无关且稀释主题的延伸,降低了内容的针对性。\n【最终得分 -0.43】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20% + 规则3:核心维度严重负向,上限=0",
  984. "strategy": "推荐词",
  985. "iteration": 1,
  986. "is_selected": true,
  987. "scoreColor": "#ef4444",
  988. "parentQScore": 0.024
  989. },
  990. "sug_行为规范家_r1_q5_9": {
  991. "type": "sug",
  992. "query": "[SUG] 行为规范家",
  993. "level": 13,
  994. "relevance_score": -0.19000000000000003,
  995. "evaluationReason": "【评估对象】词条\"行为规范家\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】「制作」猫咪表情包梗图,用于「反映」人类双标行为\n【动机维度 0.00】原始问题明确意图为「制作」梗图,sug词条「行为规范家」无明确动作意图,且与「制作」、「反映」的核心动作完全不匹配。\n【品类维度 -0.20】原始问题核心对象是“猫咪表情包梗图”,限定词为“双标行为”。sug词为“行为规范家”,对象完全不符,且限定词无关联,无法体现人类双标行为,品类冲突。\n【延伸词维度 -0.15】原始问题是关于制作特定主题的表情包梗图,而“行为规范家”是一个抽象的概念,与表情包制作这一具体行为和猫咪、双标等主题均不相关。它引入了与原始问题核心目的无关的全新概念,稀释了原始问题的聚焦度,降低了内容针对性。\n【最终得分 -0.19】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  996. "strategy": "推荐词",
  997. "iteration": 1,
  998. "is_selected": true,
  999. "scoreColor": "#ef4444",
  1000. "parentQScore": 0.024
  1001. },
  1002. "q_猫咪_r1_6": {
  1003. "type": "q",
  1004. "query": "[Q] 猫咪",
  1005. "level": 12,
  1006. "relevance_score": 0.09,
  1007. "evaluationReason": "",
  1008. "strategy": "Query",
  1009. "iteration": 1,
  1010. "is_selected": true,
  1011. "type_label": "",
  1012. "domain_index": 3,
  1013. "domain_type": "中心名词"
  1014. },
  1015. "sug_猫咪领养免费领养_r1_q6_0": {
  1016. "type": "sug",
  1017. "query": "[SUG] 猫咪领养免费领养",
  1018. "level": 13,
  1019. "relevance_score": -0.27,
  1020. "evaluationReason": "【评估对象】词条\"猫咪领养免费领养\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作梗图\n【动机维度 0.00】原始问题的核心动机是「制作」梗图,而sug词条「猫咪领养免费领养」的动机是「领养」,两者动作意图完全无关。sug词条中包含猫咪,但主题无关。\n【品类维度 -0.55】原始问题涉及“猫咪+表情包梗图”,sug词为“猫咪领养”,两者对象层和场景层均完全不匹配,品类冲突。\n【延伸词维度 -0.50】原始问题聚焦于「制作表情包梗图」这一创意行为,对象是「猫咪」和「人类双标行为」。sug词条「猫咪领养免费领养」引入了「领养」这一全新且与原始问题核心目的完全无关的维度,严重稀释了原始问题的聚焦度,甚至将主题完全转向了另一个方向,因此给予负向评分。\n【最终得分 -0.27】\n【规则说明】规则3:核心维度严重负向,上限=0",
  1021. "strategy": "推荐词",
  1022. "iteration": 1,
  1023. "is_selected": true,
  1024. "scoreColor": "#ef4444",
  1025. "parentQScore": 0.09
  1026. },
  1027. "sug_猫咪叫声吸引小猫_r1_q6_1": {
  1028. "type": "sug",
  1029. "query": "[SUG] 猫咪叫声吸引小猫",
  1030. "level": 13,
  1031. "relevance_score": -0.26,
  1032. "evaluationReason": "【评估对象】词条\"猫咪叫声吸引小猫\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作(表情包梗图)\n【动机维度 0.00】原始问题意图是“制作”表情包梗图,sug词条“猫咪叫声吸引小猫”的意图是“吸引”(小猫),两者动作意图完全不相关。\n【品类维度 -0.50】原始问题核心对象为「表情包梗图」及「人类双标行为」,限定词为「猫咪」。sug词条核心对象为「猫咪叫声」及「小猫」,两者在核心对象和限定词上均不匹配,品类完全冲突。\n【延伸词维度 -0.60】sug词条中的“叫声”、“吸引”、“小猫”均与原始问题“制作反映人类双标行为的猫咪表情包梗图”的核心目的和作用域完全不符,引入了完全不相关的概念,严重稀释了原始问题的聚焦度,导致内容偏离。\n【最终得分 -0.26】\n【规则说明】规则3:核心维度严重负向,上限=0",
  1033. "strategy": "推荐词",
  1034. "iteration": 1,
  1035. "is_selected": true,
  1036. "scoreColor": "#ef4444",
  1037. "parentQScore": 0.09
  1038. },
  1039. "sug_猫咪呕吐_r1_q6_2": {
  1040. "type": "sug",
  1041. "query": "[SUG] 猫咪呕吐",
  1042. "level": 13,
  1043. "relevance_score": -0.436,
  1044. "evaluationReason": "【评估对象】词条\"猫咪呕吐\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作表情包\n【动机维度 0.00】原始问题的核心动机是「制作」表情包,而sug词条「猫咪呕吐」没有明确的动作意图。因此,sug词条无法命中原始问题的动机。\n【品类维度 -0.50】原始问题核心对象为「猫咪表情包梗图」,限定词「反映人类双标行为」。Sug词条核心对象为「猫咪呕吐」,二者对象主体和限定词均不匹配,品类完全冲突。\n【延伸词维度 -0.18】sug词条「猫咪呕吐」与原始问题「制作反映人类双标行为的猫咪表情包梗图」的核心目的和作用域完全不符,引入了无关信息,严重稀释了原始问题的聚焦度,降低了内容的针对性。\n【最终得分 -0.44】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20% + 规则3:核心维度严重负向,上限=0",
  1045. "strategy": "推荐词",
  1046. "iteration": 1,
  1047. "is_selected": true,
  1048. "scoreColor": "#ef4444",
  1049. "parentQScore": 0.09
  1050. },
  1051. "sug_猫咪头像_r1_q6_3": {
  1052. "type": "sug",
  1053. "query": "[SUG] 猫咪头像",
  1054. "level": 13,
  1055. "relevance_score": -0.19000000000000003,
  1056. "evaluationReason": "【评估对象】词条\"猫咪头像\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作(表情包梗图)\n【动机维度 0.00】原始问题意图是「制作」表情包梗图,而sug词条「猫咪头像」是纯名词,不包含任何动作意图,因此动机匹配度为0。\n【品类维度 -0.20】原始问题是关于『猫咪表情包梗图』,sug词条是『猫咪头像』。对象层「猫咪」匹配,但原始问题有更具体的「表情包梗图」这一核心对象,而sug词条是「头像」,存在品类错位,无法满足核心需求。\n【延伸词维度 -0.15】原始问题聚焦于「制作反映人类双标行为的猫咪表情包梗图」,强调制作、双标行为、表情包和梗图。sug词条「猫咪头像」与原始问题的核心目的「制作表情包梗图」关联度低,且「头像」与「表情包梗图」并非同义或细化关系,属于无关型延伸词。它稀释了原始问题中「制作」和「双标行为」的聚焦度,降低了内容的针对性。\n【最终得分 -0.19】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  1057. "strategy": "推荐词",
  1058. "iteration": 1,
  1059. "is_selected": true,
  1060. "scoreColor": "#ef4444",
  1061. "parentQScore": 0.09
  1062. },
  1063. "sug_猫咪取名_r1_q6_4": {
  1064. "type": "sug",
  1065. "query": "[SUG] 猫咪取名",
  1066. "level": 13,
  1067. "relevance_score": -0.23500000000000004,
  1068. "evaluationReason": "【评估对象】词条\"猫咪取名\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作表情包\n【动机维度 0.00】原始问题意图是「制作表情包」,而sug词条「猫咪取名」意图是「取名」。两者动作意图完全不匹配,且sug词条无明确动机层。因此,动机维度得分为0。\n【品类维度 -0.55】原始问题核心对象是《猫咪表情包梗图》,作用域包含《人类双标行为》。Sug词条核心对象为《猫咪取名》,两者对象完全错位,品类冲突严重,因此得分低。\n【延伸词维度 -0.15】原始问题聚焦于「制作反映人类双标行为的猫咪表情包梗图」,核心是「制作」和「表情包梗图」。「猫咪取名」与原始问题的核心目的和作用域完全不相关,引入了无关信息,稀释了原始问题的聚焦度,属于作用域稀释型。\n【最终得分 -0.24】\n【规则说明】规则3:核心维度严重负向,上限=0",
  1069. "strategy": "推荐词",
  1070. "iteration": 1,
  1071. "is_selected": true,
  1072. "scoreColor": "#ef4444",
  1073. "parentQScore": 0.09
  1074. },
  1075. "sug_猫咪品种_r1_q6_5": {
  1076. "type": "sug",
  1077. "query": "[SUG] 猫咪品种",
  1078. "level": 13,
  1079. "relevance_score": -0.43000000000000005,
  1080. "evaluationReason": "【评估对象】词条\"猫咪品种\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作表情包\n【动机维度 0.00】原始问题意图是「制作」表情包,sug词条「猫咪品种」无任何动作意图,因此无法评估动作匹配度。\n【品类维度 -0.50】原始问题核心对象为「猫咪表情包梗图」及「双标行为」,限定词为「人类」。sug词条「猫咪品种」虽含「猫咪」,但将对象层从「表情包梗图」变为「品种」,完全不匹配,且缺失所有限定词。\n【延伸词维度 -0.15】原始问题聚焦于「制作」反映「双标行为」的「猫咪表情包梗图」,核心是创意和制作过程。「猫咪品种」与制作表情包梗图的核心目的和作用域无关,属于无关信息,稀释了原始问题的聚焦度。\n【最终得分 -0.43】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20% + 规则3:核心维度严重负向,上限=0",
  1081. "strategy": "推荐词",
  1082. "iteration": 1,
  1083. "is_selected": true,
  1084. "scoreColor": "#ef4444",
  1085. "parentQScore": 0.09
  1086. },
  1087. "sug_猫咪搞笑视频_r1_q6_6": {
  1088. "type": "sug",
  1089. "query": "[SUG] 猫咪搞笑视频",
  1090. "level": 13,
  1091. "relevance_score": 0.010000000000000009,
  1092. "evaluationReason": "【评估对象】词条\"猫咪搞笑视频\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作梗图\n【动机维度 0.00】原始问题意图是「制作」反映人类双标行为的猫咪表情包梗图,核心动作是「制作」。sug词条「猫咪搞笑视频」没有包含制作的动作意图。因此,该词条与原始问题的动机不匹配。\n【品类维度 0.05】sug词条《猫咪搞笑视频》与原始问题《如何制作反映人类双标行为的猫咪表情包梗图》完全不同。原始问题是关于特定主题的表情包梗图,而sug词条是通用的搞笑视频,缺乏匹配的限定词和具体对象层。但有主体词《猫咪》,主题和形式都不一致。\n【延伸词维度 -0.15】原始问题聚焦于「制作」反映「人类双标行为」的「猫咪表情包梗图」。sug词条「猫咪搞笑视频」中的「搞笑视频」是延伸词,它将原始问题的「表情包梗图」这一对象层替换为「视频」,且「搞笑」这一动机层也与原始问题的「反映双标行为」这一深层动机不符,稀释了原始问题的核心目的和对象。\n【最终得分 0.01】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  1093. "strategy": "推荐词",
  1094. "iteration": 1,
  1095. "is_selected": true,
  1096. "scoreColor": "#ef4444",
  1097. "parentQScore": 0.09
  1098. },
  1099. "sug_猫咪叫声_r1_q6_7": {
  1100. "type": "sug",
  1101. "query": "[SUG] 猫咪叫声",
  1102. "level": 13,
  1103. "relevance_score": -0.43000000000000005,
  1104. "evaluationReason": "【评估对象】词条\"猫咪叫声\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作\n【动机维度 0.00】原始问题的核心动机是“制作”。sug词条“猫咪叫声”缺乏明确的动机意图,无法与原始问题的“制作”动作匹配。\n【品类维度 -0.50】原始问题核心是「猫咪表情包梗图」,场景为「反映人类双标行为」。sug词条「猫咪叫声」是完全不同的品类,与原始问题的核心对象和场景均不匹配,存在品类冲突。\n【延伸词维度 -0.15】原始问题聚焦于「制作反映人类双标行为的猫咪表情包梗图」,核心是创意和制作。sug词条「猫咪叫声」与原始问题的核心目的和作用域完全不符,属于无关信息,稀释了原始问题的聚焦度。\n【最终得分 -0.43】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20% + 规则3:核心维度严重负向,上限=0",
  1105. "strategy": "推荐词",
  1106. "iteration": 1,
  1107. "is_selected": true,
  1108. "scoreColor": "#ef4444",
  1109. "parentQScore": 0.09
  1110. },
  1111. "sug_猫咪驱虫药推荐_r1_q6_8": {
  1112. "type": "sug",
  1113. "query": "[SUG] 猫咪驱虫药推荐",
  1114. "level": 13,
  1115. "relevance_score": -0.38000000000000006,
  1116. "evaluationReason": "【评估对象】词条\"猫咪驱虫药推荐\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作表情包梗图\n【动机维度 0.00】原始问题的核心动机是\"制作\"表情包梗图。sug词条\"猫咪驱虫药推荐\"的动机是\"获取推荐\"信息,与原始问题的\"制作\"动机完全不相关。\n【品类维度 -0.80】原始问题核心对象为「猫咪表情包梗图」及限定词「人类双标行为」,sug词条核心对象为「驱虫药」,限定词为「猫咪」,两者主体物品完全不一致,品类冲突严重。\n【延伸词维度 -0.60】原始问题聚焦于「制作表情包梗图」这一创意行为,对象是「猫咪」和「人类双标行为」。sug词条「猫咪驱虫药推荐」引入了与原始问题完全无关的「驱虫药」和「推荐」概念,属于作用域无关型延伸词,且与原始问题核心目的完全不符,严重稀释了原始问题的聚焦度,导致负向评分。\n【最终得分 -0.38】\n【规则说明】规则3:核心维度严重负向,上限=0",
  1117. "strategy": "推荐词",
  1118. "iteration": 1,
  1119. "is_selected": true,
  1120. "scoreColor": "#ef4444",
  1121. "parentQScore": 0.09
  1122. },
  1123. "sug_猫咪黑下巴怎么处理_r1_q6_9": {
  1124. "type": "sug",
  1125. "query": "[SUG] 猫咪黑下巴怎么处理",
  1126. "level": 13,
  1127. "relevance_score": -0.218,
  1128. "evaluationReason": "【评估对象】词条\"猫咪黑下巴怎么处理\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作(表情包梗图)\n【动机维度 0.00】原始问题意图是「制作」表情包梗图,sug词条意图是「处理」猫咪黑下巴问题。两者动作意图完全不匹配,且一个侧重内容创作,一个侧重问题解决方案。\n【品类维度 -0.50】原始问题对象层为「人类双标行为的猫咪表情包梗图」,场景层无。sug词条对象层为「猫咪黑下巴」,场景层无。两者对象层完全不同,品类错位。\n【延伸词维度 -0.18】原始问题聚焦于「制作」反映「人类双标行为」的「猫咪表情包梗图」,核心是创意和制作。sug词条「猫咪黑下巴怎么处理」引入了「猫咪健康护理」这一完全不相关的领域,与原始问题的「制作」和「双标行为」主题没有任何关联,严重稀释了原始问题的聚焦度,属于作用域稀释型。\n【最终得分 -0.22】\n【规则说明】规则3:核心维度严重负向,上限=0",
  1129. "strategy": "推荐词",
  1130. "iteration": 1,
  1131. "is_selected": true,
  1132. "scoreColor": "#ef4444",
  1133. "parentQScore": 0.09
  1134. },
  1135. "q_表情包_r1_7": {
  1136. "type": "q",
  1137. "query": "[Q] 表情包",
  1138. "level": 12,
  1139. "relevance_score": 0.15,
  1140. "evaluationReason": "",
  1141. "strategy": "Query",
  1142. "iteration": 1,
  1143. "is_selected": true,
  1144. "type_label": "",
  1145. "domain_index": 3,
  1146. "domain_type": "中心名词"
  1147. },
  1148. "sug_表情包抽象_r1_q7_0": {
  1149. "type": "sug",
  1150. "query": "[SUG] 表情包抽象",
  1151. "level": 13,
  1152. "relevance_score": 0.034,
  1153. "evaluationReason": "【评估对象】词条\"表情包抽象\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作梗图\n【动机维度 0.00】原始问题的核心动机是「制作」反映特定主题的梗图。sug词条「表情包抽象」仅为名词短语,无明确的动作意图,无法评估动作匹配度。\n【品类维度 0.08】原始问题意图明确且限定词清晰,对象层是『梗图』,限定词包括『人类双标行为』和『猫咪表情包』;sug词是『表情包抽象』,仅包含『表情包』这一个核心名词,且是抽象概念,与原问题具体概念差距大,覆盖度较低。\n【延伸词维度 -0.15】sug词条「抽象」与原始问题「制作反映人类双标行为的猫咪表情包梗图」的核心目的和对象均不匹配,稀释了原始问题的具体性和聚焦度,属于作用域稀释型。\n【最终得分 0.03】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  1154. "strategy": "推荐词",
  1155. "iteration": 1,
  1156. "is_selected": true,
  1157. "scoreColor": "#ef4444",
  1158. "parentQScore": 0.15
  1159. },
  1160. "sug_表情包怎么制作_r1_q7_1": {
  1161. "type": "sug",
  1162. "query": "[SUG] 表情包怎么制作",
  1163. "level": 13,
  1164. "relevance_score": 0.695,
  1165. "evaluationReason": "【评估对象】词条\"表情包怎么制作\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作\n【动机维度 0.98】原始问题核心动机是“制作”,sug词条「表情包怎么制作」的核心动机也是“制作”,两者核心动作完全一致,具备高度匹配性。\n【品类维度 0.55】原始问题对象层包含「表情包」「梗图」「猫咪」,场景层包含「双标行为」;sug词条仅包含对象层「表情包」。匹配度一般,因为sug词条只部分提及了核心对象,而大量相关限定词缺失。\n【延伸词维度 -0.15】sug词条「表情包怎么制作」仅提及制作方法,而原始问题明确了制作对象「猫咪表情包梗图」、主题「反映人类双标行为」,sug词条的延伸词「怎么制作」过于宽泛,稀释了原始问题的具体性和聚焦度,属于作用域稀释型。\n【最终得分 0.69】",
  1166. "strategy": "推荐词",
  1167. "iteration": 1,
  1168. "is_selected": true,
  1169. "scoreColor": "#22c55e",
  1170. "parentQScore": 0.15
  1171. },
  1172. "sug_表情包可爱_r1_q7_2": {
  1173. "type": "sug",
  1174. "query": "[SUG] 表情包可爱",
  1175. "level": 13,
  1176. "relevance_score": 0.010000000000000009,
  1177. "evaluationReason": "【评估对象】词条\"表情包可爱\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作\n【动机维度 0.00】原始问题的核心动机是「制作」,sug词条「表情包可爱」没有体现任何动作意图,因此无法评估动作匹配度。\n【品类维度 0.05】原始问题涉及“猫咪表情包梗图”,sug词为“表情包”,对象层有部分匹配,但sug词过度泛化且缺失了“猫咪”、“梗图”以及“双标行为”等所有限定词。\n【延伸词维度 -0.15】原始问题聚焦于「制作」反映「人类双标行为」的「猫咪表情包梗图」,强调内容和形式的特定性。「可爱」作为延伸词,与原始问题中的「双标行为」和「梗图」的核心目的不符,稀释了原始问题的聚焦度,降低了内容的针对性。\n【最终得分 0.01】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  1178. "strategy": "推荐词",
  1179. "iteration": 1,
  1180. "is_selected": true,
  1181. "scoreColor": "#ef4444",
  1182. "parentQScore": 0.15
  1183. },
  1184. "sug_表情包图片大全_r1_q7_3": {
  1185. "type": "sug",
  1186. "query": "[SUG] 表情包图片大全",
  1187. "level": 13,
  1188. "relevance_score": 0.17,
  1189. "evaluationReason": "【评估对象】词条\"表情包图片大全\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作(表情包梗图),通过描绘猫咪来反映人类双标行为。\n【动机维度 0.00】原始问题的核心动机是\"制作\"某种具有特定主题和目的的表情包梗图。Sug词条\"表情包图片大全\"是纯名词短语,无任何动作意图,因此无法与原始问题的\"制作\"动作进行匹配,动机维度得分为0。\n【品类维度 0.25】sug词条仅包含核心对象“表情包图片”,但缺失了原始问题中所有的限定词和更具体的对象描述(人类双标行为、猫咪、梗图),覆盖度低,但品类仍相关。\n【延伸词维度 -0.15】原始问题聚焦于「制作」特定主题的「猫咪表情包梗图」,强调「人类双标行为」这一核心概念。sug词条「图片大全」与原始问题的「制作」和「特定主题」无直接关联,稀释了原始问题的核心目的和聚焦度,属于作用域稀释型。\n【最终得分 0.17】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  1190. "strategy": "推荐词",
  1191. "iteration": 1,
  1192. "is_selected": true,
  1193. "scoreColor": "#22c55e",
  1194. "parentQScore": 0.15
  1195. },
  1196. "sug_表情包搞笑配文_r1_q7_4": {
  1197. "type": "sug",
  1198. "query": "[SUG] 表情包搞笑配文",
  1199. "level": 13,
  1200. "relevance_score": -0.19,
  1201. "evaluationReason": "【评估对象】词条\"表情包搞笑配文\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作(表情包梗图)\n【动机维度 -0.15】原始问题的核心动机是「制作」反映人类双标行为的猫咪表情包梗图。sug词条「表情包搞笑配文」的隐含动机是「使用/寻找」搞笑配文,与原始问题的「制作」存在一定偏离,但两者都是围绕表情包展开动作。\n【品类维度 -0.25】原始问题涉及“猫咪表情包梗图”和“人类双标行为”的特定主题。sug词条「表情包搞笑配文」虽有“表情包”这一共同对象,但限定过于泛化,未体现「猫咪」和「双标行为」的核心场景与性质,且「配文」未完全匹配「梗图」的图文结合形式。\n【延伸词维度 -0.15】原始问题聚焦于「制作」反映「人类双标行为」的「猫咪表情包梗图」,强调了制作方法、主题和对象。sug词条「搞笑配文」虽然与表情包相关,但它将主题从「人类双标行为」泛化为「搞笑」,且将「制作」行为缩小为「配文」,稀释了原始问题的核心主题和制作的复杂性,属于作用域稀释型。\n【最终得分 -0.19】",
  1202. "strategy": "推荐词",
  1203. "iteration": 1,
  1204. "is_selected": true,
  1205. "scoreColor": "#ef4444",
  1206. "parentQScore": 0.15
  1207. },
  1208. "sug_表情包发给女朋友_r1_q7_5": {
  1209. "type": "sug",
  1210. "query": "[SUG] 表情包发给女朋友",
  1211. "level": 13,
  1212. "relevance_score": -0.12000000000000001,
  1213. "evaluationReason": "【评估对象】词条\"表情包发给女朋友\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作表情包梗图\n【动机维度 -0.05】原始问题是“制作”表情包梗图,而sug词条是“发给”表情包,两者都包含表情包,但原始问题为主动的制作行为,sug词条是分享行为,两者动作意图走向不同但有微弱关联。\n【品类维度 -0.20】原始问题需求的是制作「反映人类双标行为的猫咪表情包梗图」,而sug词条「表情包发给女朋友」限定了接收对象,失去了主体和客体以及限定词。\n【延伸词维度 -0.15】sug词条「表情包发给女朋友」中的“发给女朋友”是延伸词,它引入了原始问题未提及的社交场景和接收对象,稀释了原始问题关于“制作”和“内容”的核心聚焦,降低了内容的针对性。\n【最终得分 -0.12】",
  1214. "strategy": "推荐词",
  1215. "iteration": 1,
  1216. "is_selected": true,
  1217. "scoreColor": "#ef4444",
  1218. "parentQScore": 0.15
  1219. },
  1220. "sug_表情包简笔画_r1_q7_6": {
  1221. "type": "sug",
  1222. "query": "[SUG] 表情包简笔画",
  1223. "level": 13,
  1224. "relevance_score": 0.18,
  1225. "evaluationReason": "【评估对象】词条\"表情包简笔画\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作表情包\n【动机维度 0.35】原始问题核心动机是「制作」反映双标行为的猫咪表情包梗图。sug词条「表情包简笔画」包含「表情包」这一对象和「简笔画」这一制作方式,与原始问题的「制作」动机有一定关联但语义不完全一致,因此为弱相关。\n【品类维度 0.05】原始问题对象层为「猫咪表情包梗图」,场景层为「人类双标行为」。Sug词条对象层为「表情包简笔画」。核心对象「表情包」匹配,但sug词条内容主体缺失「猫咪个体」及所有限定词,且泛化为「简笔画」\n【延伸词维度 -0.15】原始问题聚焦于「人类双标行为」和「猫咪表情包梗图」的特定主题创作,而sug词条「简笔画」引入了与原始问题主题和目的关联度较低的绘画风格,稀释了原始问题的核心创作意图,降低了内容的针对性。\n【最终得分 0.18】",
  1226. "strategy": "推荐词",
  1227. "iteration": 1,
  1228. "is_selected": true,
  1229. "scoreColor": "#22c55e",
  1230. "parentQScore": 0.15
  1231. },
  1232. "sug_表情包模板_r1_q7_7": {
  1233. "type": "sug",
  1234. "query": "[SUG] 表情包模板",
  1235. "level": 13,
  1236. "relevance_score": 0.034,
  1237. "evaluationReason": "【评估对象】词条\"表情包模板\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作表情包梗图\n【动机维度 0.00】原始问题是关于『制作』表情包梗图,而sug词条「表情包模板」没有明确的动作意图。因此,sug词条在动机维度上无法匹配。\n【品类维度 0.08】原始问题是关于“制作人类双标行为的猫咪表情包梗图”,sug词条仅有“表情包模板”,是宽泛概念,无法具体匹配原始问题的核心主体“猫咪表情包梗图”和限定词“人类双标行为”。仅在最泛化的对象层面上匹配,故得分较低。\n【延伸词维度 -0.15】原始问题聚焦于「制作反映人类双标行为的猫咪表情包梗图」这一具体创意和内容,而sug词条「表情包模板」仅提供了制作工具的通用素材,与原始问题的核心创意和内容关联度低,稀释了原始问题的聚焦度。\n【最终得分 0.03】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  1238. "strategy": "推荐词",
  1239. "iteration": 1,
  1240. "is_selected": true,
  1241. "scoreColor": "#ef4444",
  1242. "parentQScore": 0.15
  1243. },
  1244. "sug_表情包发给男朋友_r1_q7_8": {
  1245. "type": "sug",
  1246. "query": "[SUG] 表情包发给男朋友",
  1247. "level": 13,
  1248. "relevance_score": -0.14500000000000002,
  1249. "evaluationReason": "【评估对象】词条\"表情包发给男朋友\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作梗图\n【动机维度 -0.10】原始问题动机是“制作”梗图,而sug词条的动机是“发送/分享”表情包。两者虽然都与表情包相关,但动作意图存在方向性差异,制作是生成行为,发送是传播行为。\n【品类维度 -0.20】原始问题求“猫咪表情包梗图”,sug词条为“表情包”。sug词条对象层有“表情包”匹配,但限定词“猫咪”、“梗图”、“双标行为”缺失;sug词条加入新的限定词“男朋友”形成语义错位,故评分偏低。\n【延伸词维度 -0.15】延伸词“发给男朋友”引入了新的场景和对象,与原始问题“制作”表情包的核心目的和内容(人类双标行为的猫咪表情包梗图)无关,稀释了原始问题的聚焦度。\n【最终得分 -0.15】",
  1250. "strategy": "推荐词",
  1251. "iteration": 1,
  1252. "is_selected": true,
  1253. "scoreColor": "#ef4444",
  1254. "parentQScore": 0.15
  1255. },
  1256. "sug_表情包制作赚钱_r1_q7_9": {
  1257. "type": "sug",
  1258. "query": "[SUG] 表情包制作赚钱",
  1259. "level": 13,
  1260. "relevance_score": -0.16500000000000004,
  1261. "evaluationReason": "【评估对象】词条\"表情包制作赚钱\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作梗图\n【动机维度 -0.10】原始问题意图是「制作」表情包,sug词条意图是「制作」并「赚钱」。虽然都包含「制作」,但sug多了「赚钱」这个目的,导致动机方向略有偏离。\n【品类维度 -0.25】原始问题对象层为「表情包梗图」,场景层为「人类双标行为」和「猫咪」。Sug词仅对象层有「表情包」,但新增了意图「赚钱」,且限定词均不匹配,存在误导性。\n【延伸词维度 -0.15】原始问题聚焦于「制作反映人类双标行为的猫咪表情包梗图」这一特定内容和主题,而sug词条「赚钱」引入了商业变现的维度。这与原始问题的创作目的和内容方向无关,稀释了原始问题的聚焦度,使其偏离了核心的创作意图。\n【最终得分 -0.17】",
  1262. "strategy": "推荐词",
  1263. "iteration": 1,
  1264. "is_selected": true,
  1265. "scoreColor": "#ef4444",
  1266. "parentQScore": 0.15
  1267. },
  1268. "q_梗图_r1_8": {
  1269. "type": "q",
  1270. "query": "[Q] 梗图",
  1271. "level": 12,
  1272. "relevance_score": 0.024,
  1273. "evaluationReason": "",
  1274. "strategy": "Query",
  1275. "iteration": 1,
  1276. "is_selected": true,
  1277. "type_label": "",
  1278. "domain_index": 3,
  1279. "domain_type": "中心名词"
  1280. },
  1281. "sug_梗图素材_r1_q8_0": {
  1282. "type": "sug",
  1283. "query": "[SUG] 梗图素材",
  1284. "level": 13,
  1285. "relevance_score": 0.21000000000000002,
  1286. "evaluationReason": "【评估对象】词条\"梗图素材\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作表情包梗图\n【动机维度 0.00】原始问题意图是「制作」反映人类双标行为的猫咪表情包梗图。Sug词条「梗图素材」指向的是「获取素材」的动机,其本身无明确动词,无法与制作的动作匹配。\n【品类维度 0.50】sug词条《梗图素材》与原始问题中的核心对象词《梗图》匹配。原始问题中的《表情包》可以被《梗图》包含,作为一种具体的《梗图》类型。缺失了《猫咪》、《双标行为》等所有的限定词,但核心对象仍匹配。\n【延伸词维度 0.10】原始问题是制作梗图,sug词条「素材」是制作梗图的必要组成部分,属于作用域辅助型延伸词,对核心目的有辅助作用。\n【最终得分 0.21】",
  1287. "strategy": "推荐词",
  1288. "iteration": 1,
  1289. "is_selected": true,
  1290. "scoreColor": "#22c55e",
  1291. "parentQScore": 0.024
  1292. },
  1293. "sug_梗图搞笑_r1_q8_1": {
  1294. "type": "sug",
  1295. "query": "[SUG] 梗图搞笑",
  1296. "level": 13,
  1297. "relevance_score": 0.034,
  1298. "evaluationReason": "【评估对象】词条\"梗图搞笑\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作(表情包梗图)\n【动机维度 0.00】原始问题意图是“制作”梗图,而sug词条“梗图搞笑”无法识别明确的动作意图。sug词条缺失动机层,因此动机维度评分为0。\n【品类维度 0.08】原始问题核心对象为「猫咪表情包梗图」,场景为「反映人类双标行为」。sug词条「梗图搞笑」只泛化匹配到“梗图”,且缺失所有限定词,匹配度低。\n【延伸词维度 -0.15】原始问题聚焦于「制作」反映「人类双标行为」的「猫咪表情包梗图」,强调制作方法和内容主题。「搞笑」是梗图的普遍属性,但并非原始问题核心,且「梗图搞笑」未能体现原始问题中的「制作」和「人类双标行为」等关键信息,稀释了原始问题的聚焦度。\n【最终得分 0.03】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  1299. "strategy": "推荐词",
  1300. "iteration": 1,
  1301. "is_selected": true,
  1302. "scoreColor": "#ef4444",
  1303. "parentQScore": 0.024
  1304. },
  1305. "sug_梗图精神状态_r1_q8_2": {
  1306. "type": "sug",
  1307. "query": "[SUG] 梗图精神状态",
  1308. "level": 13,
  1309. "relevance_score": -0.19000000000000003,
  1310. "evaluationReason": "【评估对象】词条\"梗图精神状态\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作(表情包梗图)\n【动机维度 0.00】原始问题的核心动机是“制作”梗图,而sug词条“梗图精神状态”中没有明确的动作意图(即无法识别是制作、查找还是欣赏等)。\n【品类维度 -0.20】原始问题核心对象为「猫咪表情包梗图」,限定词较多。Sug词条「梗图精神状态」对象为「梗图」但限定词「精神状态」与原始问题语义不符且无法推断出「猫咪」限定,品类冲突。\n【延伸词维度 -0.15】原始问题聚焦于「制作」特定主题的「猫咪表情包梗图」,强调创作过程和具体内容。「精神状态」作为延伸词,与原始问题的核心「制作」和「猫咪表情包」无直接关联,且稀释了原始问题中「人类双标行为」这一具体主题的聚焦度,属于作用域稀释型。\n【最终得分 -0.19】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  1311. "strategy": "推荐词",
  1312. "iteration": 1,
  1313. "is_selected": true,
  1314. "scoreColor": "#ef4444",
  1315. "parentQScore": 0.024
  1316. },
  1317. "sug_梗图meme_r1_q8_3": {
  1318. "type": "sug",
  1319. "query": "[SUG] 梗图meme",
  1320. "level": 13,
  1321. "relevance_score": 0.17,
  1322. "evaluationReason": "【评估对象】词条\"梗图meme\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作表情包/梗图\n【动机维度 0.00】原始问题意图是「制作」反映特定主题的「猫咪表情包梗图」,而sug词条「梗图meme」只提及了对象「梗图」,没有包含任何动作意图,因此动机匹配度为0。\n【品类维度 0.25】原始问题对象层为「猫咪表情包梗图」,场景层为「反映人类双标行为」。Sug词条仅包含通用对象层「梗图」,缺失核心限定词「猫咪表情包」和所有场景层信息,覆盖度较低。\n【延伸词维度 -0.15】sug词条「梗图meme」中的「meme」是「梗图」的同义词,不构成延伸。但sug词条仅包含「梗图」,未能体现原始问题中「制作」、「人类双标行为」、「猫咪表情包」等核心要素,导致信息缺失,稀释了原始问题的聚焦度。\n【最终得分 0.17】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  1323. "strategy": "推荐词",
  1324. "iteration": 1,
  1325. "is_selected": true,
  1326. "scoreColor": "#22c55e",
  1327. "parentQScore": 0.024
  1328. },
  1329. "sug_梗图双人_r1_q8_4": {
  1330. "type": "sug",
  1331. "query": "[SUG] 梗图双人",
  1332. "level": 13,
  1333. "relevance_score": -0.19000000000000003,
  1334. "evaluationReason": "【评估对象】词条\"梗图双人\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作(表情包梗图)\n【动机维度 0.00】原始问题的核心动机是学习「制作」表情包梗图。平台sug词条「梗图双人」描述了梗图这一对象类型,但没有包含任何动机动作,因此动机维度评分为0。\n【品类维度 -0.20】原始问题核心对象为「猫咪表情包梗图」,限定词为「反映人类双标行为」。Sug词条虽然有「梗图」,但主体从「猫咪」变为「双人」,核心对象错位,且丢失限定词。\n【延伸词维度 -0.15】sug词条「双人」与原始问题「猫咪表情包梗图」的核心对象和制作目的无关,引入了不必要的限定,稀释了原始问题的聚焦度,属于作用域稀释型。\n【最终得分 -0.19】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  1335. "strategy": "推荐词",
  1336. "iteration": 1,
  1337. "is_selected": true,
  1338. "scoreColor": "#ef4444",
  1339. "parentQScore": 0.024
  1340. },
  1341. "sug_梗图抽象_r1_q8_5": {
  1342. "type": "sug",
  1343. "query": "[SUG] 梗图抽象",
  1344. "level": 13,
  1345. "relevance_score": 0.034,
  1346. "evaluationReason": "【评估对象】词条\"梗图抽象\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作表情包梗图\n【动机维度 0.00】原始问题的核心动机是“制作梗图”,而sug词条“梗图抽象”中未包含明确的动词,无法识别其动作意图,因此动机匹配度为0。\n【品类维度 0.08】原始问题涉及“猫咪表情包梗图”,sug词条仅提到“梗图”,且主体是泛化词“抽象”。sug词过度泛化,与原始问题核心对象“猫咪表情包”差距较大。作用域覆盖度低。\n【延伸词维度 -0.15】原始问题聚焦于「制作反映人类双标行为的猫咪表情包梗图」这一具体内容和形式。sug词条「抽象」作为延伸词,与原始问题中的「双标行为」和「猫咪表情包」等具体内容无关,稀释了原始问题的聚焦度,降低了内容的针对性。\n【最终得分 0.03】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  1347. "strategy": "推荐词",
  1348. "iteration": 1,
  1349. "is_selected": true,
  1350. "scoreColor": "#ef4444",
  1351. "parentQScore": 0.024
  1352. },
  1353. "sug_梗图描改_r1_q8_6": {
  1354. "type": "sug",
  1355. "query": "[SUG] 梗图描改",
  1356. "level": 13,
  1357. "relevance_score": 0.192,
  1358. "evaluationReason": "【评估对象】词条\"梗图描改\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作/生成(猫咪表情包梗图)\n【动机维度 0.35】原始问题意图是「制作」梗图,sug词条「梗图描改」中的「描改」是制作梗图的一种具体方法或过程,「描改」与「制作」在动作意图上存在一定的关联性,属于弱相关。\n【品类维度 0.08】原始问题涉及“猫咪表情包梗图”,sug词为“梗图描改”,sug词是制作梗图的一种方法,是制作层面的描述。主体词“梗图”匹配但缺乏其他限定,属于过度泛化,因此得分较低。\n【延伸词维度 -0.15】原始问题聚焦于「猫咪表情包梗图」的「制作」和「反映人类双标行为」这一主题。sug词条「描改」是制作梗图的一种具体方法,但它没有提及「猫咪表情包」和「人类双标行为」这两个核心对象和主题,稀释了原始问题的聚焦度,使其偏离了核心需求。\n【最终得分 0.19】",
  1359. "strategy": "推荐词",
  1360. "iteration": 1,
  1361. "is_selected": true,
  1362. "scoreColor": "#22c55e",
  1363. "parentQScore": 0.024
  1364. },
  1365. "sug_梗图模版_r1_q8_7": {
  1366. "type": "sug",
  1367. "query": "[SUG] 梗图模版",
  1368. "level": 13,
  1369. "relevance_score": 0.19400000000000003,
  1370. "evaluationReason": "【评估对象】词条\"梗图模版\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作/制作梗图\n【动机维度 0.00】原始问题询问的是如何“制作”梗图,包含明确的制作动作。sug词条“梗图模版”仅提供了制作梗图的辅助工具/对象,未能体现任何动作意图,因此动机匹配度为0。\n【品类维度 0.28】sug词条只包含对象层“梗图”,但原始问题的主体“猫咪双标行为表情包梗图”更为具体。sug词条只包含部分主体的泛化概念,缺失所有限定词,覆盖度低。\n【延伸词维度 -0.15】原始问题聚焦于「制作」特定主题的「猫咪表情包梗图」,强调创意和内容。sug词条「梗图模版」作为延伸词,虽然与「梗图」相关,但它将用户的需求从「制作」具体内容的创意过程,稀释为对通用「模版」的寻找。这偏离了原始问题中「反映人类双标行为」和「猫咪表情包」的特定主题和创作目的,降低了内容的针对性。\n【最终得分 0.19】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  1371. "strategy": "推荐词",
  1372. "iteration": 1,
  1373. "is_selected": true,
  1374. "scoreColor": "#22c55e",
  1375. "parentQScore": 0.024
  1376. },
  1377. "sug_梗图分享_r1_q8_8": {
  1378. "type": "sug",
  1379. "query": "[SUG] 梗图分享",
  1380. "level": 13,
  1381. "relevance_score": 0.085,
  1382. "evaluationReason": "【评估对象】词条\"梗图分享\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作\n【动机维度 0.00】原始问题核心动机是“制作”,平台sug词条「梗图分享」的核心动机是“分享”,两者动机不匹配。sug词属于原始问题制作后的相关行为,但并非原始问题所需动机,故评分为0。\n【品类维度 0.25】sug词条《梗图分享》包含了原始问题中的核心对象《梗图》,但过度泛化且缺失了「反映人类双标行为的猫咪」这一所有限定词,匹配度一般。\n【延伸词维度 -0.15】原始问题聚焦于「制作」特定主题的「猫咪表情包梗图」,而sug词条「梗图分享」将重点从「制作」转移到「分享」,且未提及「猫咪」或「双标行为」等核心对象和主题,稀释了原始问题的目的和聚焦度。\n【最终得分 0.09】",
  1383. "strategy": "推荐词",
  1384. "iteration": 1,
  1385. "is_selected": true,
  1386. "scoreColor": "#22c55e",
  1387. "parentQScore": 0.024
  1388. },
  1389. "sug_梗图大全_r1_q8_9": {
  1390. "type": "sug",
  1391. "query": "[SUG] 梗图大全",
  1392. "level": 13,
  1393. "relevance_score": 0.034,
  1394. "evaluationReason": "【评估对象】词条\"梗图大全\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作\n【动机维度 0.00】原始问题的核心动机是“制作”,而sug词条“梗图大全”没有明确的动作意图。因此,sug词条与原始问题的动机不匹配。\n【品类维度 0.08】原始问题涉及“猫咪表情包梗图”,sug词为“梗图大全”。sug词是原始问题对象层的过度泛化,只涵盖了通用对象,未提及核心对象“猫咪表情包”及其他限定词。\n【延伸词维度 -0.15】原始问题聚焦于「制作」特定主题「猫咪表情包梗图」,而sug词条「梗图大全」引入了与「制作」无关的「大全」概念,且未提及「猫咪表情包」和「双标行为」等核心对象,稀释了原始问题的聚焦度。\n【最终得分 0.03】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  1395. "strategy": "推荐词",
  1396. "iteration": 1,
  1397. "is_selected": true,
  1398. "scoreColor": "#ef4444",
  1399. "parentQScore": 0.024
  1400. },
  1401. "step_comb_r1": {
  1402. "type": "step",
  1403. "query": "步骤2: 域内组合 (15个组合)",
  1404. "level": 11,
  1405. "relevance_score": 0,
  1406. "strategy": "域内组词",
  1407. "iteration": 1,
  1408. "is_selected": true
  1409. },
  1410. "comb_反映人类_r1_0": {
  1411. "type": "domain_combination",
  1412. "query": "反映人类",
  1413. "level": 12,
  1414. "relevance_score": 0.0702,
  1415. "evaluationReason": "【Round 1 域内评估】\n【评估对象】组合\"反映人类\" vs 作用域\"反映人类双标行为的\"\n【品类得分】0.78 - 核心主体“反映人类”完全匹配,但限定词“双标行为”缺失,属于核心主体匹配,存在限定词匹配的情况。\n【原始域得分】0.09\n【计算公式】品类得分 × 域得分 = 0.78 × 0.09\n【最终得分】0.07",
  1416. "strategy": "域内组合",
  1417. "iteration": 1,
  1418. "is_selected": true,
  1419. "type_label": "[修饰短语]",
  1420. "source_words": [
  1421. [
  1422. "反映",
  1423. "人类"
  1424. ]
  1425. ],
  1426. "from_segments": [
  1427. "反映人类双标行为的"
  1428. ],
  1429. "domains": [
  1430. 2
  1431. ],
  1432. "domains_str": "D2",
  1433. "source_word_details": [
  1434. {
  1435. "domain_index": 2,
  1436. "segment_type": "修饰短语",
  1437. "segment_text": "反映人类双标行为的",
  1438. "words": [
  1439. {
  1440. "text": "反映",
  1441. "score": 0.024
  1442. },
  1443. {
  1444. "text": "人类",
  1445. "score": 0.024
  1446. }
  1447. ]
  1448. }
  1449. ],
  1450. "source_scores": [
  1451. 0.024,
  1452. 0.024
  1453. ],
  1454. "is_above_sources": true,
  1455. "max_source_score": 0.024,
  1456. "scoreColor": "#22c55e"
  1457. },
  1458. "comb_反映双标_r1_1": {
  1459. "type": "domain_combination",
  1460. "query": "反映双标",
  1461. "level": 12,
  1462. "relevance_score": 0.081,
  1463. "evaluationReason": "【Round 1 域内评估】\n【评估对象】组合\"反映双标\" vs 作用域\"反映人类双标行为的\"\n【品类得分】0.90 - 核心主体“双标”和限定词“反映”均匹配,但缺少了“人类行为”这一限定,因此给予高分但非满分。\n【原始域得分】0.09\n【计算公式】品类得分 × 域得分 = 0.90 × 0.09\n【最终得分】0.08",
  1464. "strategy": "域内组合",
  1465. "iteration": 1,
  1466. "is_selected": true,
  1467. "type_label": "[修饰短语]",
  1468. "source_words": [
  1469. [
  1470. "反映",
  1471. "双标"
  1472. ]
  1473. ],
  1474. "from_segments": [
  1475. "反映人类双标行为的"
  1476. ],
  1477. "domains": [
  1478. 2
  1479. ],
  1480. "domains_str": "D2",
  1481. "source_word_details": [
  1482. {
  1483. "domain_index": 2,
  1484. "segment_type": "修饰短语",
  1485. "segment_text": "反映人类双标行为的",
  1486. "words": [
  1487. {
  1488. "text": "反映",
  1489. "score": 0.024
  1490. },
  1491. {
  1492. "text": "双标",
  1493. "score": 0.024
  1494. }
  1495. ]
  1496. }
  1497. ],
  1498. "source_scores": [
  1499. 0.024,
  1500. 0.024
  1501. ],
  1502. "is_above_sources": true,
  1503. "max_source_score": 0.024,
  1504. "scoreColor": "#22c55e"
  1505. },
  1506. "comb_反映行为_r1_2": {
  1507. "type": "domain_combination",
  1508. "query": "反映行为",
  1509. "level": 12,
  1510. "relevance_score": 0.0072,
  1511. "evaluationReason": "【Round 1 域内评估】\n【评估对象】组合\"反映行为\" vs 作用域\"反映人类双标行为的\"\n【品类得分】0.08 - sug词是通用概念“反映行为”,原始问题是特定概念“反映人类双标行为的”,通用概念不等于特定概念,因此品类不匹配,评分较低。\n【原始域得分】0.09\n【计算公式】品类得分 × 域得分 = 0.08 × 0.09\n【最终得分】0.01",
  1512. "strategy": "域内组合",
  1513. "iteration": 1,
  1514. "is_selected": true,
  1515. "type_label": "[修饰短语]",
  1516. "source_words": [
  1517. [
  1518. "反映",
  1519. "行为"
  1520. ]
  1521. ],
  1522. "from_segments": [
  1523. "反映人类双标行为的"
  1524. ],
  1525. "domains": [
  1526. 2
  1527. ],
  1528. "domains_str": "D2",
  1529. "source_word_details": [
  1530. {
  1531. "domain_index": 2,
  1532. "segment_type": "修饰短语",
  1533. "segment_text": "反映人类双标行为的",
  1534. "words": [
  1535. {
  1536. "text": "反映",
  1537. "score": 0.024
  1538. },
  1539. {
  1540. "text": "行为",
  1541. "score": 0.024
  1542. }
  1543. ]
  1544. }
  1545. ],
  1546. "source_scores": [
  1547. 0.024,
  1548. 0.024
  1549. ],
  1550. "is_above_sources": false,
  1551. "max_source_score": 0.024,
  1552. "scoreColor": "#ef4444"
  1553. },
  1554. "comb_人类双标_r1_3": {
  1555. "type": "domain_combination",
  1556. "query": "人类双标",
  1557. "level": 12,
  1558. "relevance_score": 0.081,
  1559. "evaluationReason": "【Round 1 域内评估】\n【评估对象】组合\"人类双标\" vs 作用域\"反映人类双标行为的\"\n【品类得分】0.90 - 核心主体'人类双标'完全匹配,限定词'行为的'在词条中被省略,但语义上高度相关,属于合理泛化。\n【原始域得分】0.09\n【计算公式】品类得分 × 域得分 = 0.90 × 0.09\n【最终得分】0.08",
  1560. "strategy": "域内组合",
  1561. "iteration": 1,
  1562. "is_selected": true,
  1563. "type_label": "[修饰短语]",
  1564. "source_words": [
  1565. [
  1566. "人类",
  1567. "双标"
  1568. ]
  1569. ],
  1570. "from_segments": [
  1571. "反映人类双标行为的"
  1572. ],
  1573. "domains": [
  1574. 2
  1575. ],
  1576. "domains_str": "D2",
  1577. "source_word_details": [
  1578. {
  1579. "domain_index": 2,
  1580. "segment_type": "修饰短语",
  1581. "segment_text": "反映人类双标行为的",
  1582. "words": [
  1583. {
  1584. "text": "人类",
  1585. "score": 0.024
  1586. },
  1587. {
  1588. "text": "双标",
  1589. "score": 0.024
  1590. }
  1591. ]
  1592. }
  1593. ],
  1594. "source_scores": [
  1595. 0.024,
  1596. 0.024
  1597. ],
  1598. "is_above_sources": true,
  1599. "max_source_score": 0.024,
  1600. "scoreColor": "#22c55e"
  1601. },
  1602. "comb_人类行为_r1_4": {
  1603. "type": "domain_combination",
  1604. "query": "人类行为",
  1605. "level": 12,
  1606. "relevance_score": 0.045,
  1607. "evaluationReason": "【Round 1 域内评估】\n【评估对象】组合\"人类行为\" vs 作用域\"反映人类双标行为的\"\n【品类得分】0.50 - 核心主体'人类行为'匹配,但限定词'双标'缺失,属于合理泛化。\n【原始域得分】0.09\n【计算公式】品类得分 × 域得分 = 0.50 × 0.09\n【最终得分】0.04",
  1608. "strategy": "域内组合",
  1609. "iteration": 1,
  1610. "is_selected": true,
  1611. "type_label": "[修饰短语]",
  1612. "source_words": [
  1613. [
  1614. "人类",
  1615. "行为"
  1616. ]
  1617. ],
  1618. "from_segments": [
  1619. "反映人类双标行为的"
  1620. ],
  1621. "domains": [
  1622. 2
  1623. ],
  1624. "domains_str": "D2",
  1625. "source_word_details": [
  1626. {
  1627. "domain_index": 2,
  1628. "segment_type": "修饰短语",
  1629. "segment_text": "反映人类双标行为的",
  1630. "words": [
  1631. {
  1632. "text": "人类",
  1633. "score": 0.024
  1634. },
  1635. {
  1636. "text": "行为",
  1637. "score": 0.024
  1638. }
  1639. ]
  1640. }
  1641. ],
  1642. "source_scores": [
  1643. 0.024,
  1644. 0.024
  1645. ],
  1646. "is_above_sources": true,
  1647. "max_source_score": 0.024,
  1648. "scoreColor": "#22c55e"
  1649. },
  1650. "comb_双标行为_r1_5": {
  1651. "type": "domain_combination",
  1652. "query": "双标行为",
  1653. "level": 12,
  1654. "relevance_score": 0.0765,
  1655. "evaluationReason": "【Round 1 域内评估】\n【评估对象】组合\"双标行为\" vs 作用域\"反映人类双标行为的\"\n【品类得分】0.85 - 核心主体词“双标行为”完全匹配,但原始问题中包含“反映人类的”这一限定词,sug词未包含,因此略有缺失。\n【原始域得分】0.09\n【计算公式】品类得分 × 域得分 = 0.85 × 0.09\n【最终得分】0.08",
  1656. "strategy": "域内组合",
  1657. "iteration": 1,
  1658. "is_selected": true,
  1659. "type_label": "[修饰短语]",
  1660. "source_words": [
  1661. [
  1662. "双标",
  1663. "行为"
  1664. ]
  1665. ],
  1666. "from_segments": [
  1667. "反映人类双标行为的"
  1668. ],
  1669. "domains": [
  1670. 2
  1671. ],
  1672. "domains_str": "D2",
  1673. "source_word_details": [
  1674. {
  1675. "domain_index": 2,
  1676. "segment_type": "修饰短语",
  1677. "segment_text": "反映人类双标行为的",
  1678. "words": [
  1679. {
  1680. "text": "双标",
  1681. "score": 0.024
  1682. },
  1683. {
  1684. "text": "行为",
  1685. "score": 0.024
  1686. }
  1687. ]
  1688. }
  1689. ],
  1690. "source_scores": [
  1691. 0.024,
  1692. 0.024
  1693. ],
  1694. "is_above_sources": true,
  1695. "max_source_score": 0.024,
  1696. "scoreColor": "#22c55e"
  1697. },
  1698. "comb_反映人类双标_r1_6": {
  1699. "type": "domain_combination",
  1700. "query": "反映人类双标",
  1701. "level": 12,
  1702. "relevance_score": 0.0882,
  1703. "evaluationReason": "【Round 1 域内评估】\n【评估对象】组合\"反映人类双标\" vs 作用域\"反映人类双标行为的\"\n【品类得分】0.98 - 核心主体和限定词完全匹配,仅缺少一个助词,语义完全一致。\n【原始域得分】0.09\n【计算公式】品类得分 × 域得分 = 0.98 × 0.09\n【最终得分】0.09",
  1704. "strategy": "域内组合",
  1705. "iteration": 1,
  1706. "is_selected": true,
  1707. "type_label": "[修饰短语]",
  1708. "source_words": [
  1709. [
  1710. "反映",
  1711. "人类",
  1712. "双标"
  1713. ]
  1714. ],
  1715. "from_segments": [
  1716. "反映人类双标行为的"
  1717. ],
  1718. "domains": [
  1719. 2
  1720. ],
  1721. "domains_str": "D2",
  1722. "source_word_details": [
  1723. {
  1724. "domain_index": 2,
  1725. "segment_type": "修饰短语",
  1726. "segment_text": "反映人类双标行为的",
  1727. "words": [
  1728. {
  1729. "text": "反映",
  1730. "score": 0.024
  1731. },
  1732. {
  1733. "text": "人类",
  1734. "score": 0.024
  1735. },
  1736. {
  1737. "text": "双标",
  1738. "score": 0.024
  1739. }
  1740. ]
  1741. }
  1742. ],
  1743. "source_scores": [
  1744. 0.024,
  1745. 0.024,
  1746. 0.024
  1747. ],
  1748. "is_above_sources": true,
  1749. "max_source_score": 0.024,
  1750. "scoreColor": "#22c55e"
  1751. },
  1752. "comb_反映人类行为_r1_7": {
  1753. "type": "domain_combination",
  1754. "query": "反映人类行为",
  1755. "level": 12,
  1756. "relevance_score": 0.0702,
  1757. "evaluationReason": "【Round 1 域内评估】\n【评估对象】组合\"反映人类行为\" vs 作用域\"反映人类双标行为的\"\n【品类得分】0.78 - 核心主体'人类行为'匹配,限定词'双标'在词条中缺失,但词条是同一作用域词条的合理泛化,因此给予较高分数。\n【原始域得分】0.09\n【计算公式】品类得分 × 域得分 = 0.78 × 0.09\n【最终得分】0.07",
  1758. "strategy": "域内组合",
  1759. "iteration": 1,
  1760. "is_selected": true,
  1761. "type_label": "[修饰短语]",
  1762. "source_words": [
  1763. [
  1764. "反映",
  1765. "人类",
  1766. "行为"
  1767. ]
  1768. ],
  1769. "from_segments": [
  1770. "反映人类双标行为的"
  1771. ],
  1772. "domains": [
  1773. 2
  1774. ],
  1775. "domains_str": "D2",
  1776. "source_word_details": [
  1777. {
  1778. "domain_index": 2,
  1779. "segment_type": "修饰短语",
  1780. "segment_text": "反映人类双标行为的",
  1781. "words": [
  1782. {
  1783. "text": "反映",
  1784. "score": 0.024
  1785. },
  1786. {
  1787. "text": "人类",
  1788. "score": 0.024
  1789. },
  1790. {
  1791. "text": "行为",
  1792. "score": 0.024
  1793. }
  1794. ]
  1795. }
  1796. ],
  1797. "source_scores": [
  1798. 0.024,
  1799. 0.024,
  1800. 0.024
  1801. ],
  1802. "is_above_sources": true,
  1803. "max_source_score": 0.024,
  1804. "scoreColor": "#22c55e"
  1805. },
  1806. "comb_反映双标行为_r1_8": {
  1807. "type": "domain_combination",
  1808. "query": "反映双标行为",
  1809. "level": 12,
  1810. "relevance_score": 0.0765,
  1811. "evaluationReason": "【Round 1 域内评估】\n【评估对象】组合\"反映双标行为\" vs 作用域\"反映人类双标行为的\"\n【品类得分】0.85 - 核心主体“双标行为”匹配,限定词“反映”匹配,但缺少“人类”这一限定词,因此给予较高但非满分评分。\n【原始域得分】0.09\n【计算公式】品类得分 × 域得分 = 0.85 × 0.09\n【最终得分】0.08",
  1812. "strategy": "域内组合",
  1813. "iteration": 1,
  1814. "is_selected": true,
  1815. "type_label": "[修饰短语]",
  1816. "source_words": [
  1817. [
  1818. "反映",
  1819. "双标",
  1820. "行为"
  1821. ]
  1822. ],
  1823. "from_segments": [
  1824. "反映人类双标行为的"
  1825. ],
  1826. "domains": [
  1827. 2
  1828. ],
  1829. "domains_str": "D2",
  1830. "source_word_details": [
  1831. {
  1832. "domain_index": 2,
  1833. "segment_type": "修饰短语",
  1834. "segment_text": "反映人类双标行为的",
  1835. "words": [
  1836. {
  1837. "text": "反映",
  1838. "score": 0.024
  1839. },
  1840. {
  1841. "text": "双标",
  1842. "score": 0.024
  1843. },
  1844. {
  1845. "text": "行为",
  1846. "score": 0.024
  1847. }
  1848. ]
  1849. }
  1850. ],
  1851. "source_scores": [
  1852. 0.024,
  1853. 0.024,
  1854. 0.024
  1855. ],
  1856. "is_above_sources": true,
  1857. "max_source_score": 0.024,
  1858. "scoreColor": "#22c55e"
  1859. },
  1860. "comb_人类双标行为_r1_9": {
  1861. "type": "domain_combination",
  1862. "query": "人类双标行为",
  1863. "level": 12,
  1864. "relevance_score": 0.081,
  1865. "evaluationReason": "【Round 1 域内评估】\n【评估对象】组合\"人类双标行为\" vs 作用域\"反映人类双标行为的\"\n【品类得分】0.90 - 核心主体“人类双标行为”完全匹配,但原始问题中的“反映”是动词,在品类维度评估中不予考虑,因此无法达到1.0分。\n【原始域得分】0.09\n【计算公式】品类得分 × 域得分 = 0.90 × 0.09\n【最终得分】0.08",
  1866. "strategy": "域内组合",
  1867. "iteration": 1,
  1868. "is_selected": true,
  1869. "type_label": "[修饰短语]",
  1870. "source_words": [
  1871. [
  1872. "人类",
  1873. "双标",
  1874. "行为"
  1875. ]
  1876. ],
  1877. "from_segments": [
  1878. "反映人类双标行为的"
  1879. ],
  1880. "domains": [
  1881. 2
  1882. ],
  1883. "domains_str": "D2",
  1884. "source_word_details": [
  1885. {
  1886. "domain_index": 2,
  1887. "segment_type": "修饰短语",
  1888. "segment_text": "反映人类双标行为的",
  1889. "words": [
  1890. {
  1891. "text": "人类",
  1892. "score": 0.024
  1893. },
  1894. {
  1895. "text": "双标",
  1896. "score": 0.024
  1897. },
  1898. {
  1899. "text": "行为",
  1900. "score": 0.024
  1901. }
  1902. ]
  1903. }
  1904. ],
  1905. "source_scores": [
  1906. 0.024,
  1907. 0.024,
  1908. 0.024
  1909. ],
  1910. "is_above_sources": true,
  1911. "max_source_score": 0.024,
  1912. "scoreColor": "#22c55e"
  1913. },
  1914. "comb_反映人类双标行为_r1_10": {
  1915. "type": "domain_combination",
  1916. "query": "反映人类双标行为",
  1917. "level": 12,
  1918. "relevance_score": 0.0882,
  1919. "evaluationReason": "【Round 1 域内评估】\n【评估对象】组合\"反映人类双标行为\" vs 作用域\"反映人类双标行为的\"\n【品类得分】0.98 - 核心主体和限定词完全匹配,仅缺少一个助词,语义完全一致。\n【原始域得分】0.09\n【计算公式】品类得分 × 域得分 = 0.98 × 0.09\n【最终得分】0.09",
  1920. "strategy": "域内组合",
  1921. "iteration": 1,
  1922. "is_selected": true,
  1923. "type_label": "[修饰短语]",
  1924. "source_words": [
  1925. [
  1926. "反映",
  1927. "人类",
  1928. "双标",
  1929. "行为"
  1930. ]
  1931. ],
  1932. "from_segments": [
  1933. "反映人类双标行为的"
  1934. ],
  1935. "domains": [
  1936. 2
  1937. ],
  1938. "domains_str": "D2",
  1939. "source_word_details": [
  1940. {
  1941. "domain_index": 2,
  1942. "segment_type": "修饰短语",
  1943. "segment_text": "反映人类双标行为的",
  1944. "words": [
  1945. {
  1946. "text": "反映",
  1947. "score": 0.024
  1948. },
  1949. {
  1950. "text": "人类",
  1951. "score": 0.024
  1952. },
  1953. {
  1954. "text": "双标",
  1955. "score": 0.024
  1956. },
  1957. {
  1958. "text": "行为",
  1959. "score": 0.024
  1960. }
  1961. ]
  1962. }
  1963. ],
  1964. "source_scores": [
  1965. 0.024,
  1966. 0.024,
  1967. 0.024,
  1968. 0.024
  1969. ],
  1970. "is_above_sources": true,
  1971. "max_source_score": 0.024,
  1972. "scoreColor": "#22c55e"
  1973. },
  1974. "comb_猫咪表情包_r1_11": {
  1975. "type": "domain_combination",
  1976. "query": "猫咪表情包",
  1977. "level": 12,
  1978. "relevance_score": 0.21059999999999998,
  1979. "evaluationReason": "【Round 1 域内评估】\n【评估对象】组合\"猫咪表情包\" vs 作用域\"猫咪表情包梗图\"\n【品类得分】0.90 - 核心主体“猫咪表情包”完全匹配,限定词“梗图”在词条中缺失,但“猫咪表情包”本身就常包含梗图,属于合理泛化,因此给予高分。\n【原始域得分】0.23\n【计算公式】品类得分 × 域得分 = 0.90 × 0.23\n【最终得分】0.21",
  1980. "strategy": "域内组合",
  1981. "iteration": 1,
  1982. "is_selected": true,
  1983. "type_label": "[中心名词]",
  1984. "source_words": [
  1985. [
  1986. "猫咪",
  1987. "表情包"
  1988. ]
  1989. ],
  1990. "from_segments": [
  1991. "猫咪表情包梗图"
  1992. ],
  1993. "domains": [
  1994. 3
  1995. ],
  1996. "domains_str": "D3",
  1997. "source_word_details": [
  1998. {
  1999. "domain_index": 3,
  2000. "segment_type": "中心名词",
  2001. "segment_text": "猫咪表情包梗图",
  2002. "words": [
  2003. {
  2004. "text": "猫咪",
  2005. "score": 0.09
  2006. },
  2007. {
  2008. "text": "表情包",
  2009. "score": 0.15
  2010. }
  2011. ]
  2012. }
  2013. ],
  2014. "source_scores": [
  2015. 0.09,
  2016. 0.15
  2017. ],
  2018. "is_above_sources": true,
  2019. "max_source_score": 0.15,
  2020. "scoreColor": "#22c55e"
  2021. },
  2022. "comb_猫咪梗图_r1_12": {
  2023. "type": "domain_combination",
  2024. "query": "猫咪梗图",
  2025. "level": 12,
  2026. "relevance_score": 0.21059999999999998,
  2027. "evaluationReason": "【Round 1 域内评估】\n【评估对象】组合\"猫咪梗图\" vs 作用域\"猫咪表情包梗图\"\n【品类得分】0.90 - 核心主体“猫咪梗图”完全匹配,限定词“表情包”缺失,但“梗图”本身就包含“表情包”的含义,属于合理泛化。\n【原始域得分】0.23\n【计算公式】品类得分 × 域得分 = 0.90 × 0.23\n【最终得分】0.21",
  2028. "strategy": "域内组合",
  2029. "iteration": 1,
  2030. "is_selected": true,
  2031. "type_label": "[中心名词]",
  2032. "source_words": [
  2033. [
  2034. "猫咪",
  2035. "梗图"
  2036. ]
  2037. ],
  2038. "from_segments": [
  2039. "猫咪表情包梗图"
  2040. ],
  2041. "domains": [
  2042. 3
  2043. ],
  2044. "domains_str": "D3",
  2045. "source_word_details": [
  2046. {
  2047. "domain_index": 3,
  2048. "segment_type": "中心名词",
  2049. "segment_text": "猫咪表情包梗图",
  2050. "words": [
  2051. {
  2052. "text": "猫咪",
  2053. "score": 0.09
  2054. },
  2055. {
  2056. "text": "梗图",
  2057. "score": 0.024
  2058. }
  2059. ]
  2060. }
  2061. ],
  2062. "source_scores": [
  2063. 0.09,
  2064. 0.024
  2065. ],
  2066. "is_above_sources": true,
  2067. "max_source_score": 0.09,
  2068. "scoreColor": "#22c55e"
  2069. },
  2070. "comb_表情包梗图_r1_13": {
  2071. "type": "domain_combination",
  2072. "query": "表情包梗图",
  2073. "level": 12,
  2074. "relevance_score": 0.1755,
  2075. "evaluationReason": "【Round 1 域内评估】\n【评估对象】组合\"表情包梗图\" vs 作用域\"猫咪表情包梗图\"\n【品类得分】0.75 - 核心主体'表情包梗图'完全匹配,但限定词'猫咪'缺失,属于合理泛化。\n【原始域得分】0.23\n【计算公式】品类得分 × 域得分 = 0.75 × 0.23\n【最终得分】0.18",
  2076. "strategy": "域内组合",
  2077. "iteration": 1,
  2078. "is_selected": true,
  2079. "type_label": "[中心名词]",
  2080. "source_words": [
  2081. [
  2082. "表情包",
  2083. "梗图"
  2084. ]
  2085. ],
  2086. "from_segments": [
  2087. "猫咪表情包梗图"
  2088. ],
  2089. "domains": [
  2090. 3
  2091. ],
  2092. "domains_str": "D3",
  2093. "source_word_details": [
  2094. {
  2095. "domain_index": 3,
  2096. "segment_type": "中心名词",
  2097. "segment_text": "猫咪表情包梗图",
  2098. "words": [
  2099. {
  2100. "text": "表情包",
  2101. "score": 0.15
  2102. },
  2103. {
  2104. "text": "梗图",
  2105. "score": 0.024
  2106. }
  2107. ]
  2108. }
  2109. ],
  2110. "source_scores": [
  2111. 0.15,
  2112. 0.024
  2113. ],
  2114. "is_above_sources": true,
  2115. "max_source_score": 0.15,
  2116. "scoreColor": "#22c55e"
  2117. },
  2118. "comb_猫咪表情包梗图_r1_14": {
  2119. "type": "domain_combination",
  2120. "query": "猫咪表情包梗图",
  2121. "level": 12,
  2122. "relevance_score": 0.23399999999999999,
  2123. "evaluationReason": "【Round 1 域内评估】\n【评估对象】组合\"猫咪表情包梗图\" vs 作用域\"猫咪表情包梗图\"\n【品类得分】1.00 - 核心主体“猫咪表情包梗图”与所有关键限定词完全匹配,达到完美匹配。\n【原始域得分】0.23\n【计算公式】品类得分 × 域得分 = 1.00 × 0.23\n【最终得分】0.23",
  2124. "strategy": "域内组合",
  2125. "iteration": 1,
  2126. "is_selected": true,
  2127. "type_label": "[中心名词]",
  2128. "source_words": [
  2129. [
  2130. "猫咪",
  2131. "表情包",
  2132. "梗图"
  2133. ]
  2134. ],
  2135. "from_segments": [
  2136. "猫咪表情包梗图"
  2137. ],
  2138. "domains": [
  2139. 3
  2140. ],
  2141. "domains_str": "D3",
  2142. "source_word_details": [
  2143. {
  2144. "domain_index": 3,
  2145. "segment_type": "中心名词",
  2146. "segment_text": "猫咪表情包梗图",
  2147. "words": [
  2148. {
  2149. "text": "猫咪",
  2150. "score": 0.09
  2151. },
  2152. {
  2153. "text": "表情包",
  2154. "score": 0.15
  2155. },
  2156. {
  2157. "text": "梗图",
  2158. "score": 0.024
  2159. }
  2160. ]
  2161. }
  2162. ],
  2163. "source_scores": [
  2164. 0.09,
  2165. 0.15,
  2166. 0.024
  2167. ],
  2168. "is_above_sources": true,
  2169. "max_source_score": 0.15,
  2170. "scoreColor": "#22c55e"
  2171. },
  2172. "step_search_r1": {
  2173. "type": "step",
  2174. "query": "步骤3: 筛选并执行搜索 (筛选2个高分词,搜索2次,undefined个帖子)",
  2175. "level": 11,
  2176. "relevance_score": 0,
  2177. "strategy": "筛选并执行搜索",
  2178. "iteration": 1,
  2179. "is_selected": true
  2180. },
  2181. "search_制作表情包_r1_0": {
  2182. "type": "search_word",
  2183. "query": "[SEARCH] 制作表情包",
  2184. "level": 12,
  2185. "relevance_score": 0.815,
  2186. "strategy": "搜索词",
  2187. "iteration": 1,
  2188. "is_selected": true
  2189. },
  2190. "post_66f9046a000000002a033202_0_0": {
  2191. "type": "post",
  2192. "query": "[R] 微信自制表情教程",
  2193. "level": 23,
  2194. "relevance_score": 0,
  2195. "strategy": "帖子",
  2196. "iteration": 2,
  2197. "is_selected": true,
  2198. "note_id": "66f9046a000000002a033202",
  2199. "note_url": "https://www.xiaohongshu.com/explore/66f9046a000000002a033202",
  2200. "body_text": "[拔草R]方法一:搜索即所得(图1-5) 用已有的表情包配上定制的文字,省心又省力[赞R] [拔草R]方法二:图库加表情",
  2201. "images": [
  2202. "https://ci.xiaohongshu.com/1040g008318as11gc445g4be7ut8lflqs4df9uh8?imageView2/2/w/1080/format/webp",
  2203. "https://ci.xiaohongshu.com/1040g008318as11gc44504be7ut8lflqskgfuu80?imageView2/2/w/1080/format/webp",
  2204. "https://ci.xiaohongshu.com/1040g008318as11gc44004be7ut8lflqsai35qm8?imageView2/2/w/1080/format/webp",
  2205. "https://ci.xiaohongshu.com/1040g008318as11gc444g4be7ut8lflqshvdu428?imageView2/2/w/1080/format/webp",
  2206. "https://ci.xiaohongshu.com/1040g008318as11gc446g4be7ut8lflqslatfn98?imageView2/2/w/1080/format/webp",
  2207. "https://ci.xiaohongshu.com/1040g008318as11gc44304be7ut8lflqsg8kajfo?imageView2/2/w/1080/format/webp",
  2208. "https://ci.xiaohongshu.com/1040g008318as11gc442g4be7ut8lflqs3rko7p0?imageView2/2/w/1080/format/webp",
  2209. "https://ci.xiaohongshu.com/1040g008318as11gc44204be7ut8lflqsdnoccuo?imageView2/2/w/1080/format/webp",
  2210. "https://ci.xiaohongshu.com/1040g008318as11gc441g4be7ut8lflqsq87bfm0?imageView2/2/w/1080/format/webp",
  2211. "https://ci.xiaohongshu.com/1040g008318as11gc44404be7ut8lflqsj8g29qo?imageView2/2/w/1080/format/webp"
  2212. ],
  2213. "image_list": [
  2214. {
  2215. "image_url": "https://ci.xiaohongshu.com/1040g008318as11gc445g4be7ut8lflqs4df9uh8?imageView2/2/w/1080/format/webp"
  2216. },
  2217. {
  2218. "image_url": "https://ci.xiaohongshu.com/1040g008318as11gc44504be7ut8lflqskgfuu80?imageView2/2/w/1080/format/webp"
  2219. },
  2220. {
  2221. "image_url": "https://ci.xiaohongshu.com/1040g008318as11gc44004be7ut8lflqsai35qm8?imageView2/2/w/1080/format/webp"
  2222. },
  2223. {
  2224. "image_url": "https://ci.xiaohongshu.com/1040g008318as11gc444g4be7ut8lflqshvdu428?imageView2/2/w/1080/format/webp"
  2225. },
  2226. {
  2227. "image_url": "https://ci.xiaohongshu.com/1040g008318as11gc446g4be7ut8lflqslatfn98?imageView2/2/w/1080/format/webp"
  2228. },
  2229. {
  2230. "image_url": "https://ci.xiaohongshu.com/1040g008318as11gc44304be7ut8lflqsg8kajfo?imageView2/2/w/1080/format/webp"
  2231. },
  2232. {
  2233. "image_url": "https://ci.xiaohongshu.com/1040g008318as11gc442g4be7ut8lflqs3rko7p0?imageView2/2/w/1080/format/webp"
  2234. },
  2235. {
  2236. "image_url": "https://ci.xiaohongshu.com/1040g008318as11gc44204be7ut8lflqsdnoccuo?imageView2/2/w/1080/format/webp"
  2237. },
  2238. {
  2239. "image_url": "https://ci.xiaohongshu.com/1040g008318as11gc441g4be7ut8lflqsq87bfm0?imageView2/2/w/1080/format/webp"
  2240. },
  2241. {
  2242. "image_url": "https://ci.xiaohongshu.com/1040g008318as11gc44404be7ut8lflqsj8g29qo?imageView2/2/w/1080/format/webp"
  2243. }
  2244. ],
  2245. "interact_info": {
  2246. "liked_count": 3275,
  2247. "collected_count": 1284,
  2248. "comment_count": 201,
  2249. "shared_count": 1262
  2250. },
  2251. "extraction": null,
  2252. "is_knowledge": true,
  2253. "knowledge_reason": "帖子提供了制作微信表情包的具体方法和步骤,包括利用现有表情和从图库添加图片制作,是可复用的创作教程。",
  2254. "post_relevance_score": 0.5,
  2255. "relevance_level": "中度相关",
  2256. "relevance_reason": "帖子提供了制作表情包的通用方法,这对于制作猫咪表情包梗图是可复用的基础知识。但它没有直接涉及“反映人类双标行为”这一内容主题,也未提供具体的梗图创作技巧,因此是中度相关。"
  2257. },
  2258. "post_668e06cd00000000250145fe_0_1": {
  2259. "type": "post",
  2260. "query": "[R] 如何把照片变成表情包!",
  2261. "level": 23,
  2262. "relevance_score": 0,
  2263. "strategy": "帖子",
  2264. "iteration": 2,
  2265. "is_selected": true,
  2266. "note_id": "668e06cd00000000250145fe",
  2267. "note_url": "https://www.xiaohongshu.com/explore/668e06cd00000000250145fe",
  2268. "body_text": "微信-我的-表情-设置-添加单个表情-添加 只能一个一个添加哦 #表情管理 #我是表情包 #每日表情包分享 #手机",
  2269. "images": [
  2270. "https://ci.xiaohongshu.com/1040g2sg3151cqcmp0k5g5ph1r8choq4phkf6g9o?imageView2/2/w/1080/format/webp",
  2271. "https://ci.xiaohongshu.com/1040g2sg3151cqcmp0k505ph1r8choq4pe27ihoo?imageView2/2/w/1080/format/webp",
  2272. "https://ci.xiaohongshu.com/1040g2sg3151cqcmp0k4g5ph1r8choq4pvpkd1ro?imageView2/2/w/1080/format/webp",
  2273. "https://ci.xiaohongshu.com/1040g2sg3151cqcmp0k2g5ph1r8choq4pmbjtuqo?imageView2/2/w/1080/format/webp"
  2274. ],
  2275. "image_list": [
  2276. {
  2277. "image_url": "https://ci.xiaohongshu.com/1040g2sg3151cqcmp0k5g5ph1r8choq4phkf6g9o?imageView2/2/w/1080/format/webp"
  2278. },
  2279. {
  2280. "image_url": "https://ci.xiaohongshu.com/1040g2sg3151cqcmp0k505ph1r8choq4pe27ihoo?imageView2/2/w/1080/format/webp"
  2281. },
  2282. {
  2283. "image_url": "https://ci.xiaohongshu.com/1040g2sg3151cqcmp0k4g5ph1r8choq4pvpkd1ro?imageView2/2/w/1080/format/webp"
  2284. },
  2285. {
  2286. "image_url": "https://ci.xiaohongshu.com/1040g2sg3151cqcmp0k2g5ph1r8choq4pmbjtuqo?imageView2/2/w/1080/format/webp"
  2287. }
  2288. ],
  2289. "interact_info": {
  2290. "liked_count": 1416,
  2291. "collected_count": 720,
  2292. "comment_count": 108,
  2293. "shared_count": 390
  2294. },
  2295. "extraction": null,
  2296. "is_knowledge": true,
  2297. "knowledge_reason": "该帖子提供了将手机照片添加为微信表情包的具体操作步骤,包括菜单路径和添加方式,属于可复用的工具使用和流程指导。",
  2298. "post_relevance_score": 0.4,
  2299. "relevance_level": "中度相关",
  2300. "relevance_reason": "该帖子提供了将照片添加为表情包的通用方法,但原始问题是关于“制作反映人类双标行为的猫咪表情包梗图”。帖子内容不涉及“制作”梗图的创意、图片编辑、内容设计等核心知识,仅提供了上传已完成图片为表情包的最后一步,因此相关性较低。"
  2301. },
  2302. "post_68282bbd000000002001f349_0_2": {
  2303. "type": "post",
  2304. "query": "[R] 表情包P图素材抠图用",
  2305. "level": 13,
  2306. "relevance_score": 0,
  2307. "strategy": "帖子",
  2308. "iteration": 1,
  2309. "is_selected": true,
  2310. "note_id": "68282bbd000000002001f349",
  2311. "note_url": "https://www.xiaohongshu.com/explore/68282bbd000000002001f349",
  2312. "body_text": "1️⃣醒图导入以上表情图,放大截图就行没水印 2️⃣再导入一张自己的图片,把五官抠图下来放进表情图 3️⃣调节: 亮度",
  2313. "images": [
  2314. "https://ci.xiaohongshu.com/1040g2sg31hitil85jie05oni2p56dljo632j3dg?imageView2/2/w/1080/format/webp",
  2315. "https://ci.xiaohongshu.com/1040g2sg31hitil85jieg5oni2p56dljof6v1da8?imageView2/2/w/1080/format/webp",
  2316. "https://ci.xiaohongshu.com/1040g2sg31hitil85jif05oni2p56dljoj488ivg?imageView2/2/w/1080/format/webp",
  2317. "https://ci.xiaohongshu.com/1040g2sg31hitil85jifg5oni2p56dljo7r8c1s8?imageView2/2/w/1080/format/webp",
  2318. "https://ci.xiaohongshu.com/1040g2sg31hitil85jig05oni2p56dljokvtrd08?imageView2/2/w/1080/format/webp",
  2319. "https://ci.xiaohongshu.com/1040g2sg31hitil85jigg5oni2p56dljocns0amo?imageView2/2/w/1080/format/webp",
  2320. "https://ci.xiaohongshu.com/1040g2sg31hitil85jih05oni2p56dljo6mdks3g?imageView2/2/w/1080/format/webp",
  2321. "https://ci.xiaohongshu.com/1040g2sg31hitil85jihg5oni2p56dljo0nmkpg8?imageView2/2/w/1080/format/webp",
  2322. "https://ci.xiaohongshu.com/1040g2sg31hitil85jii05oni2p56dljoj4dqga0?imageView2/2/w/1080/format/webp",
  2323. "https://ci.xiaohongshu.com/1040g2sg31hitil85jiig5oni2p56dljo0a13c88?imageView2/2/w/1080/format/webp"
  2324. ],
  2325. "image_list": [
  2326. {
  2327. "image_url": "https://ci.xiaohongshu.com/1040g2sg31hitil85jie05oni2p56dljo632j3dg?imageView2/2/w/1080/format/webp"
  2328. },
  2329. {
  2330. "image_url": "https://ci.xiaohongshu.com/1040g2sg31hitil85jieg5oni2p56dljof6v1da8?imageView2/2/w/1080/format/webp"
  2331. },
  2332. {
  2333. "image_url": "https://ci.xiaohongshu.com/1040g2sg31hitil85jif05oni2p56dljoj488ivg?imageView2/2/w/1080/format/webp"
  2334. },
  2335. {
  2336. "image_url": "https://ci.xiaohongshu.com/1040g2sg31hitil85jifg5oni2p56dljo7r8c1s8?imageView2/2/w/1080/format/webp"
  2337. },
  2338. {
  2339. "image_url": "https://ci.xiaohongshu.com/1040g2sg31hitil85jig05oni2p56dljokvtrd08?imageView2/2/w/1080/format/webp"
  2340. },
  2341. {
  2342. "image_url": "https://ci.xiaohongshu.com/1040g2sg31hitil85jigg5oni2p56dljocns0amo?imageView2/2/w/1080/format/webp"
  2343. },
  2344. {
  2345. "image_url": "https://ci.xiaohongshu.com/1040g2sg31hitil85jih05oni2p56dljo6mdks3g?imageView2/2/w/1080/format/webp"
  2346. },
  2347. {
  2348. "image_url": "https://ci.xiaohongshu.com/1040g2sg31hitil85jihg5oni2p56dljo0nmkpg8?imageView2/2/w/1080/format/webp"
  2349. },
  2350. {
  2351. "image_url": "https://ci.xiaohongshu.com/1040g2sg31hitil85jii05oni2p56dljoj4dqga0?imageView2/2/w/1080/format/webp"
  2352. },
  2353. {
  2354. "image_url": "https://ci.xiaohongshu.com/1040g2sg31hitil85jiig5oni2p56dljo0a13c88?imageView2/2/w/1080/format/webp"
  2355. }
  2356. ],
  2357. "interact_info": {
  2358. "liked_count": 3070,
  2359. "collected_count": 1581,
  2360. "comment_count": 67,
  2361. "shared_count": 314
  2362. },
  2363. "extraction": null,
  2364. "is_knowledge": true,
  2365. "knowledge_reason": "帖子提供了利用“醒图”App进行表情包P图的具体步骤和技巧,包括导入、截图、抠图、调整等,是可复用的工具使用和创作方法指导。",
  2366. "post_relevance_score": 0.4,
  2367. "relevance_level": "中度相关",
  2368. "relevance_reason": "帖子提供了制作表情包的基础P图方法,但未涉及如何将猫咪形象与人类双标行为结合来表达特定主题,缺乏创意层面的指导,仅提供了工具性知识,与原始问题的核心目标(反映人类双标行为)相关性弱。"
  2369. },
  2370. "post_67d1b6c9000000002802a550_0_3": {
  2371. "type": "post",
  2372. "query": "[R] 两眼一睁就是p,谁能懂我一下啊!!",
  2373. "level": 13,
  2374. "relevance_score": 0,
  2375. "strategy": "帖子",
  2376. "iteration": 1,
  2377. "is_selected": true,
  2378. "note_id": "67d1b6c9000000002802a550",
  2379. "note_url": "https://www.xiaohongshu.com/explore/67d1b6c9000000002802a550",
  2380. "body_text": "谁懂!!给朋友p的专属龙图表情包真的太太太好用了[哇R][哇R][皱眉R]#龙图 #表情包 #表情包制作",
  2381. "images": [
  2382. "https://ci.xiaohongshu.com/1040g2sg31eufppj6mid05puaiv1hi7vosk8e360?imageView2/2/w/1080/format/webp",
  2383. "https://ci.xiaohongshu.com/1040g2sg31eufppj6me5g5puaiv1hi7vo634cf7o?imageView2/2/w/1080/format/webp",
  2384. "https://ci.xiaohongshu.com/1040g2sg31eufpprs6adg5puaiv1hi7von0q4ab0?imageView2/2/w/1080/format/webp",
  2385. "https://ci.xiaohongshu.com/1040g2sg31eufpplmmodg5puaiv1hi7vovr7cjro?imageView2/2/w/1080/format/webp",
  2386. "https://ci.xiaohongshu.com/1040g2sg31eufppja6id05puaiv1hi7vo8j10o5g?imageView2/2/w/1080/format/webp",
  2387. "https://ci.xiaohongshu.com/1040g2sg31eufppja6o605puaiv1hi7voup7hvcg?imageView2/2/w/1080/format/webp",
  2388. "https://ci.xiaohongshu.com/1040g00831eufppj666605puaiv1hi7vo3oi99l0?imageView2/2/w/1080/format/webp"
  2389. ],
  2390. "image_list": [
  2391. {
  2392. "image_url": "https://ci.xiaohongshu.com/1040g2sg31eufppj6mid05puaiv1hi7vosk8e360?imageView2/2/w/1080/format/webp"
  2393. },
  2394. {
  2395. "image_url": "https://ci.xiaohongshu.com/1040g2sg31eufppj6me5g5puaiv1hi7vo634cf7o?imageView2/2/w/1080/format/webp"
  2396. },
  2397. {
  2398. "image_url": "https://ci.xiaohongshu.com/1040g2sg31eufpprs6adg5puaiv1hi7von0q4ab0?imageView2/2/w/1080/format/webp"
  2399. },
  2400. {
  2401. "image_url": "https://ci.xiaohongshu.com/1040g2sg31eufpplmmodg5puaiv1hi7vovr7cjro?imageView2/2/w/1080/format/webp"
  2402. },
  2403. {
  2404. "image_url": "https://ci.xiaohongshu.com/1040g2sg31eufppja6id05puaiv1hi7vo8j10o5g?imageView2/2/w/1080/format/webp"
  2405. },
  2406. {
  2407. "image_url": "https://ci.xiaohongshu.com/1040g2sg31eufppja6o605puaiv1hi7voup7hvcg?imageView2/2/w/1080/format/webp"
  2408. },
  2409. {
  2410. "image_url": "https://ci.xiaohongshu.com/1040g00831eufppj666605puaiv1hi7vo3oi99l0?imageView2/2/w/1080/format/webp"
  2411. }
  2412. ],
  2413. "interact_info": {
  2414. "liked_count": 330,
  2415. "collected_count": 105,
  2416. "comment_count": 5,
  2417. "shared_count": 27
  2418. },
  2419. "extraction": null,
  2420. "is_knowledge": false,
  2421. "knowledge_reason": "帖子正文和图片未提供任何表情包制作方法、技巧、工具使用或流程指导,仅为个人分享制作成品及其使用感受。",
  2422. "post_relevance_score": 0.05,
  2423. "relevance_level": "低度相关",
  2424. "relevance_reason": "原始问题是关于如何制作反映人类双标行为的猫咪表情包梗图,而该帖子只是展示了“龙图”表情包成品及其个人感受,与猫咪主题和双标行为均不相关,也未提供任何制作方法,因此相关性极低。"
  2425. },
  2426. "post_68ef01ad000000000302f388_0_4": {
  2427. "type": "post",
  2428. "query": "[R] 企鹅空白表情包,就这样自制",
  2429. "level": 13,
  2430. "relevance_score": 0,
  2431. "strategy": "帖子",
  2432. "iteration": 1,
  2433. "is_selected": true,
  2434. "note_id": "68ef01ad000000000302f388",
  2435. "note_url": "https://www.xiaohongshu.com/explore/68ef01ad000000000302f388",
  2436. "body_text": "#表情包 #抽象",
  2437. "images": [
  2438. "https://ci.xiaohongshu.com/1040g00831nl36c1s6mag5pbs46co62bokf5ildo?imageView2/2/w/1080/format/webp",
  2439. "https://ci.xiaohongshu.com/1040g00831nl36c1s6m705pbs46co62bo81uu7bo?imageView2/2/w/1080/format/webp",
  2440. "https://ci.xiaohongshu.com/1040g00831nl36c1s6ma05pbs46co62bo7mgchdo?imageView2/2/w/1080/format/webp",
  2441. "https://ci.xiaohongshu.com/1040g00831nl36c1s6mb05pbs46co62bohqu3rao?imageView2/2/w/1080/format/webp",
  2442. "https://ci.xiaohongshu.com/1040g00831nl36c1s6m7g5pbs46co62boc77qqp0?imageView2/2/w/1080/format/webp",
  2443. "https://ci.xiaohongshu.com/1040g00831nl36c1s6m9g5pbs46co62bou1kikd8?imageView2/2/w/1080/format/webp",
  2444. "https://ci.xiaohongshu.com/1040g00831nl36c1s6m805pbs46co62bog00p37o?imageView2/2/w/1080/format/webp",
  2445. "https://ci.xiaohongshu.com/1040g00831nl36c1s6m8g5pbs46co62bonva4cfg?imageView2/2/w/1080/format/webp",
  2446. "https://ci.xiaohongshu.com/1040g00831nl36c1s6m905pbs46co62bop2kook0?imageView2/2/w/1080/format/webp"
  2447. ],
  2448. "image_list": [
  2449. {
  2450. "image_url": "https://ci.xiaohongshu.com/1040g00831nl36c1s6mag5pbs46co62bokf5ildo?imageView2/2/w/1080/format/webp"
  2451. },
  2452. {
  2453. "image_url": "https://ci.xiaohongshu.com/1040g00831nl36c1s6m705pbs46co62bo81uu7bo?imageView2/2/w/1080/format/webp"
  2454. },
  2455. {
  2456. "image_url": "https://ci.xiaohongshu.com/1040g00831nl36c1s6ma05pbs46co62bo7mgchdo?imageView2/2/w/1080/format/webp"
  2457. },
  2458. {
  2459. "image_url": "https://ci.xiaohongshu.com/1040g00831nl36c1s6mb05pbs46co62bohqu3rao?imageView2/2/w/1080/format/webp"
  2460. },
  2461. {
  2462. "image_url": "https://ci.xiaohongshu.com/1040g00831nl36c1s6m7g5pbs46co62boc77qqp0?imageView2/2/w/1080/format/webp"
  2463. },
  2464. {
  2465. "image_url": "https://ci.xiaohongshu.com/1040g00831nl36c1s6m9g5pbs46co62bou1kikd8?imageView2/2/w/1080/format/webp"
  2466. },
  2467. {
  2468. "image_url": "https://ci.xiaohongshu.com/1040g00831nl36c1s6m805pbs46co62bog00p37o?imageView2/2/w/1080/format/webp"
  2469. },
  2470. {
  2471. "image_url": "https://ci.xiaohongshu.com/1040g00831nl36c1s6m8g5pbs46co62bonva4cfg?imageView2/2/w/1080/format/webp"
  2472. },
  2473. {
  2474. "image_url": "https://ci.xiaohongshu.com/1040g00831nl36c1s6m905pbs46co62bop2kook0?imageView2/2/w/1080/format/webp"
  2475. }
  2476. ],
  2477. "interact_info": {
  2478. "liked_count": 296,
  2479. "collected_count": 122,
  2480. "comment_count": 12,
  2481. "shared_count": 33
  2482. },
  2483. "extraction": null,
  2484. "is_knowledge": false,
  2485. "knowledge_reason": "帖子标题称“自制”,但实际内容仅展示了9张现成的企鹅表情包图片,没有提供任何关于如何制作或自制表情包的实用方法、技巧、工具使用或流程步骤指导。因此,不包含面向创作的内容知识。",
  2486. "post_relevance_score": 0.1,
  2487. "relevance_level": "低度相关",
  2488. "relevance_reason": "该帖子与原始问题“如何制作反映人类双标行为的猫咪表情包梗图”的相关性极低。帖子内容是企鹅表情包,而非猫咪表情包;仅提供了表情包图片,并非制作方法。更没有涉及“人类双标行为”这一主题,完全不能解决原始问题。"
  2489. },
  2490. "post_66ea4e30000000001e01964b_0_5": {
  2491. "type": "post",
  2492. "query": "[R] 教你DIY宝宝表情包~",
  2493. "level": 13,
  2494. "relevance_score": 0,
  2495. "strategy": "帖子",
  2496. "iteration": 1,
  2497. "is_selected": true,
  2498. "note_id": "66ea4e30000000001e01964b",
  2499. "note_url": "https://www.xiaohongshu.com/explore/66ea4e30000000001e01964b",
  2500. "body_text": "亲妈会做的有趣小事儿之一 拍很多宝宝的小表情,做成微信表情包😊 三步教你完成✅ 🉑美图秀秀,选择“图片美化",
  2501. "images": [
  2502. "https://ci.xiaohongshu.com/1040g008317sg969u3u705o4jptig9f90d1cgkpo?imageView2/2/w/1080/format/webp",
  2503. "https://ci.xiaohongshu.com/1040g008317sg969uju005o4jptig9f90779odk0?imageView2/2/w/1080/format/webp",
  2504. "https://ci.xiaohongshu.com/1040g008317sg969uju0g5o4jptig9f90dr2v328?imageView2/2/w/1080/format/webp",
  2505. "https://ci.xiaohongshu.com/1040g008317sg969uju105o4jptig9f90dm7ka6o?imageView2/2/w/1080/format/webp",
  2506. "https://ci.xiaohongshu.com/1040g008317sg969uju1g5o4jptig9f90sn9d1d8?imageView2/2/w/1080/format/webp",
  2507. "https://ci.xiaohongshu.com/1040g008317sg969uju205o4jptig9f90o1h9l0o?imageView2/2/w/1080/format/webp",
  2508. "https://ci.xiaohongshu.com/1040g008317sg969uju2g5o4jptig9f90juhvb88?imageView2/2/w/1080/format/webp"
  2509. ],
  2510. "image_list": [
  2511. {
  2512. "image_url": "https://ci.xiaohongshu.com/1040g008317sg969u3u705o4jptig9f90d1cgkpo?imageView2/2/w/1080/format/webp"
  2513. },
  2514. {
  2515. "image_url": "https://ci.xiaohongshu.com/1040g008317sg969uju005o4jptig9f90779odk0?imageView2/2/w/1080/format/webp"
  2516. },
  2517. {
  2518. "image_url": "https://ci.xiaohongshu.com/1040g008317sg969uju0g5o4jptig9f90dr2v328?imageView2/2/w/1080/format/webp"
  2519. },
  2520. {
  2521. "image_url": "https://ci.xiaohongshu.com/1040g008317sg969uju105o4jptig9f90dm7ka6o?imageView2/2/w/1080/format/webp"
  2522. },
  2523. {
  2524. "image_url": "https://ci.xiaohongshu.com/1040g008317sg969uju1g5o4jptig9f90sn9d1d8?imageView2/2/w/1080/format/webp"
  2525. },
  2526. {
  2527. "image_url": "https://ci.xiaohongshu.com/1040g008317sg969uju205o4jptig9f90o1h9l0o?imageView2/2/w/1080/format/webp"
  2528. },
  2529. {
  2530. "image_url": "https://ci.xiaohongshu.com/1040g008317sg969uju2g5o4jptig9f90juhvb88?imageView2/2/w/1080/format/webp"
  2531. }
  2532. ],
  2533. "interact_info": {
  2534. "liked_count": 2802,
  2535. "collected_count": 1506,
  2536. "comment_count": 66,
  2537. "shared_count": 1137
  2538. },
  2539. "extraction": null,
  2540. "is_knowledge": true,
  2541. "knowledge_reason": "帖子提供了制作表情包的具体步骤、使用的工具(美图秀秀)和操作流程(编辑、文字、添加),是可复用的创作方法和教程。",
  2542. "post_relevance_score": 0.5,
  2543. "relevance_level": "中度相关",
  2544. "relevance_reason": "帖子提供了制作表情包的方法,这与原始问题“如何制作表情包梗图”这一通用需求有部分重叠。然而,它专注于宝宝表情包,且未涉及“猫咪”、“双标行为”等主题,因此相关性中等偏低。"
  2545. },
  2546. "post_67c72549000000000602a376_0_6": {
  2547. "type": "post",
  2548. "query": "[R] 神图",
  2549. "level": 13,
  2550. "relevance_score": 0,
  2551. "strategy": "帖子",
  2552. "iteration": 1,
  2553. "is_selected": true,
  2554. "note_id": "67c72549000000000602a376",
  2555. "note_url": "https://www.xiaohongshu.com/explore/67c72549000000000602a376",
  2556. "body_text": "#龙图 #龙图表情包 #制作表情包 #神图 可以用醒图做哟 方法如下:先导入图片,然后导入图片涂鸦你选的人物五官",
  2557. "images": [
  2558. "https://ci.xiaohongshu.com/1040g00831ek5hebr10605p5g3g6amt105e4fh40?imageView2/2/w/1080/format/webp",
  2559. "https://ci.xiaohongshu.com/1040g2sg31ek5heekh0dg5p5g3g6amt10vl3jgl8?imageView2/2/w/1080/format/webp",
  2560. "https://ci.xiaohongshu.com/1040g2sg31ek5heee0kdg5p5g3g6amt10fcpf5eg?imageView2/2/w/1080/format/webp",
  2561. "https://ci.xiaohongshu.com/1040g00831ek5hee8h06g5p5g3g6amt10hofg0l8?imageView2/2/w/1080/format/webp",
  2562. "https://ci.xiaohongshu.com/1040g2sg31ek5hedvgs6g5p5g3g6amt101bpf39o?imageView2/2/w/1080/format/webp",
  2563. "https://ci.xiaohongshu.com/1040g2sg31ek5heea0mk05p5g3g6amt10cbotjs8?imageView2/2/w/1080/format/webp",
  2564. "https://ci.xiaohongshu.com/1040g00831ek5hecgguk05p5g3g6amt103brrdm8?imageView2/2/w/1080/format/webp",
  2565. "https://ci.xiaohongshu.com/1040g2sg31ek5hec4gscg5p5g3g6amt10aqe8cng?imageView2/2/w/1080/format/webp",
  2566. "https://ci.xiaohongshu.com/1040g2sg31ek5hecs0ucg5p5g3g6amt10nppf9vo?imageView2/2/w/1080/format/webp",
  2567. "https://ci.xiaohongshu.com/1040g2sg31ek5hec8h0dg5p5g3g6amt102v23658?imageView2/2/w/1080/format/webp",
  2568. "https://ci.xiaohongshu.com/1040g00831ek5hec8106g5p5g3g6amt108o8v6qo?imageView2/2/w/1080/format/webp"
  2569. ],
  2570. "image_list": [
  2571. {
  2572. "image_url": "https://ci.xiaohongshu.com/1040g00831ek5hebr10605p5g3g6amt105e4fh40?imageView2/2/w/1080/format/webp"
  2573. },
  2574. {
  2575. "image_url": "https://ci.xiaohongshu.com/1040g2sg31ek5heekh0dg5p5g3g6amt10vl3jgl8?imageView2/2/w/1080/format/webp"
  2576. },
  2577. {
  2578. "image_url": "https://ci.xiaohongshu.com/1040g2sg31ek5heee0kdg5p5g3g6amt10fcpf5eg?imageView2/2/w/1080/format/webp"
  2579. },
  2580. {
  2581. "image_url": "https://ci.xiaohongshu.com/1040g00831ek5hee8h06g5p5g3g6amt10hofg0l8?imageView2/2/w/1080/format/webp"
  2582. },
  2583. {
  2584. "image_url": "https://ci.xiaohongshu.com/1040g2sg31ek5hedvgs6g5p5g3g6amt101bpf39o?imageView2/2/w/1080/format/webp"
  2585. },
  2586. {
  2587. "image_url": "https://ci.xiaohongshu.com/1040g2sg31ek5heea0mk05p5g3g6amt10cbotjs8?imageView2/2/w/1080/format/webp"
  2588. },
  2589. {
  2590. "image_url": "https://ci.xiaohongshu.com/1040g00831ek5hecgguk05p5g3g6amt103brrdm8?imageView2/2/w/1080/format/webp"
  2591. },
  2592. {
  2593. "image_url": "https://ci.xiaohongshu.com/1040g2sg31ek5hec4gscg5p5g3g6amt10aqe8cng?imageView2/2/w/1080/format/webp"
  2594. },
  2595. {
  2596. "image_url": "https://ci.xiaohongshu.com/1040g2sg31ek5hecs0ucg5p5g3g6amt10nppf9vo?imageView2/2/w/1080/format/webp"
  2597. },
  2598. {
  2599. "image_url": "https://ci.xiaohongshu.com/1040g2sg31ek5hec8h0dg5p5g3g6amt102v23658?imageView2/2/w/1080/format/webp"
  2600. },
  2601. {
  2602. "image_url": "https://ci.xiaohongshu.com/1040g00831ek5hec8106g5p5g3g6amt108o8v6qo?imageView2/2/w/1080/format/webp"
  2603. }
  2604. ],
  2605. "interact_info": {
  2606. "liked_count": 5687,
  2607. "collected_count": 2915,
  2608. "comment_count": 270,
  2609. "shared_count": 586
  2610. },
  2611. "extraction": null,
  2612. "is_knowledge": true,
  2613. "knowledge_reason": "帖子提供了制作表情包的具体方法(使用醒图导入图片、涂鸦人物五官),包含可复用的工具使用和操作步骤。",
  2614. "post_relevance_score": 0.45,
  2615. "relevance_level": "中度相关",
  2616. "relevance_reason": "帖子提供制作表情包的通用方法,这与原始问题中“制作…表情包梗图”这一部分有一定相关性。但它没有直接解决“反映人类双标行为的猫咪表情包梗图”的特定内容创作需求,未涉及创意、主题或猫咪元素。"
  2617. },
  2618. "post_6876f73f0000000011002f0c_0_7": {
  2619. "type": "post",
  2620. "query": "[R] 小表情包制作diy教程",
  2621. "level": 13,
  2622. "relevance_score": 0,
  2623. "strategy": "帖子",
  2624. "iteration": 1,
  2625. "is_selected": true,
  2626. "note_id": "6876f73f0000000011002f0c",
  2627. "note_url": "https://www.xiaohongshu.com/explore/6876f73f0000000011002f0c",
  2628. "body_text": "1.醒图–人像–智能抠图抠一下,边边角角用快速画笔填充一下 2.美易–工具–调整大小,把抠出来的图改成萌萌的大小 这里统",
  2629. "images": [
  2630. "https://ci.xiaohongshu.com/1040g2sg31jvrkm7537a04a5222l1n0jlb6odpq0?imageView2/2/w/1080/format/webp",
  2631. "https://ci.xiaohongshu.com/1040g2sg31jvrkm7537ag4a5222l1n0jlj151t30?imageView2/2/w/1080/format/webp",
  2632. "https://ci.xiaohongshu.com/1040g2sg31jvrkm7537b04a5222l1n0jlhlk8a6o?imageView2/2/w/1080/format/webp",
  2633. "https://ci.xiaohongshu.com/1040g2sg31jvrkm7537bg4a5222l1n0jlrrvrc80?imageView2/2/w/1080/format/webp",
  2634. "https://ci.xiaohongshu.com/1040g2sg31jvrkm7537c04a5222l1n0jlgq5ts3o?imageView2/2/w/1080/format/webp",
  2635. "https://ci.xiaohongshu.com/1040g2sg31jvrkm7537cg4a5222l1n0jlpaujoqg?imageView2/2/w/1080/format/webp",
  2636. "https://ci.xiaohongshu.com/1040g2sg31jvrkm7537d04a5222l1n0jlu4tntr8?imageView2/2/w/1080/format/webp"
  2637. ],
  2638. "image_list": [
  2639. {
  2640. "image_url": "https://ci.xiaohongshu.com/1040g2sg31jvrkm7537a04a5222l1n0jlb6odpq0?imageView2/2/w/1080/format/webp"
  2641. },
  2642. {
  2643. "image_url": "https://ci.xiaohongshu.com/1040g2sg31jvrkm7537ag4a5222l1n0jlj151t30?imageView2/2/w/1080/format/webp"
  2644. },
  2645. {
  2646. "image_url": "https://ci.xiaohongshu.com/1040g2sg31jvrkm7537b04a5222l1n0jlhlk8a6o?imageView2/2/w/1080/format/webp"
  2647. },
  2648. {
  2649. "image_url": "https://ci.xiaohongshu.com/1040g2sg31jvrkm7537bg4a5222l1n0jlrrvrc80?imageView2/2/w/1080/format/webp"
  2650. },
  2651. {
  2652. "image_url": "https://ci.xiaohongshu.com/1040g2sg31jvrkm7537c04a5222l1n0jlgq5ts3o?imageView2/2/w/1080/format/webp"
  2653. },
  2654. {
  2655. "image_url": "https://ci.xiaohongshu.com/1040g2sg31jvrkm7537cg4a5222l1n0jlpaujoqg?imageView2/2/w/1080/format/webp"
  2656. },
  2657. {
  2658. "image_url": "https://ci.xiaohongshu.com/1040g2sg31jvrkm7537d04a5222l1n0jlu4tntr8?imageView2/2/w/1080/format/webp"
  2659. }
  2660. ],
  2661. "interact_info": {
  2662. "liked_count": 333,
  2663. "collected_count": 152,
  2664. "comment_count": 11,
  2665. "shared_count": 9
  2666. },
  2667. "extraction": null,
  2668. "is_knowledge": true,
  2669. "knowledge_reason": "该帖子提供了使用“醒图”和“美易”两款工具制作表情包的具体步骤、操作方法和技巧,包含可复用的创作流程和指导。",
  2670. "post_relevance_score": 0.45,
  2671. "relevance_level": "中度相关",
  2672. "relevance_reason": "帖子提供了制作表情包的基础方法和工具,对原始问题“如何制作…表情包”有一定参考价值。但其未涉及“反映人类双标行为”这一核心内容主题的创作构思,也未提供猫咪表情包的特定制作指导。"
  2673. },
  2674. "post_6613c01f000000001b00820c_0_8": {
  2675. "type": "post",
  2676. "query": "[R] 五步!🔥让你快速学会制作宝宝的表情包",
  2677. "level": 13,
  2678. "relevance_score": 0,
  2679. "strategy": "帖子",
  2680. "iteration": 1,
  2681. "is_selected": true,
  2682. "note_id": "6613c01f000000001b00820c",
  2683. "note_url": "https://www.xiaohongshu.com/explore/6613c01f000000001b00820c",
  2684. "body_text": "乐乐出生后,妈妈手机里全是他的视频,想着视频占空间,想把视频制作成表情包,方便朋友和亲友之间转发。 静态表情包,按照下面",
  2685. "images": [
  2686. "https://ci.xiaohongshu.com/1040g008311ave8gbmg005oslj57piakojpogkcg?imageView2/2/w/1080/format/webp",
  2687. "https://ci.xiaohongshu.com/1040g008311ave8gbmg305oslj57piakoo0chl3g?imageView2/2/w/1080/format/webp",
  2688. "https://ci.xiaohongshu.com/1040g008311ave8gbmg3g5oslj57piakogiir820?imageView2/2/w/1080/format/webp",
  2689. "https://ci.xiaohongshu.com/1040g008311ave8gbmg405oslj57piakovqkve20?imageView2/2/w/1080/format/webp",
  2690. "https://ci.xiaohongshu.com/1040g008311ave8gbmg4g5oslj57piakot7ht7l0?imageView2/2/w/1080/format/webp"
  2691. ],
  2692. "image_list": [
  2693. {
  2694. "image_url": "https://ci.xiaohongshu.com/1040g008311ave8gbmg005oslj57piakojpogkcg?imageView2/2/w/1080/format/webp"
  2695. },
  2696. {
  2697. "image_url": "https://ci.xiaohongshu.com/1040g008311ave8gbmg305oslj57piakoo0chl3g?imageView2/2/w/1080/format/webp"
  2698. },
  2699. {
  2700. "image_url": "https://ci.xiaohongshu.com/1040g008311ave8gbmg3g5oslj57piakogiir820?imageView2/2/w/1080/format/webp"
  2701. },
  2702. {
  2703. "image_url": "https://ci.xiaohongshu.com/1040g008311ave8gbmg405oslj57piakovqkve20?imageView2/2/w/1080/format/webp"
  2704. },
  2705. {
  2706. "image_url": "https://ci.xiaohongshu.com/1040g008311ave8gbmg4g5oslj57piakot7ht7l0?imageView2/2/w/1080/format/webp"
  2707. }
  2708. ],
  2709. "interact_info": {
  2710. "liked_count": 3342,
  2711. "collected_count": 2600,
  2712. "comment_count": 90,
  2713. "shared_count": 835
  2714. },
  2715. "extraction": null,
  2716. "is_knowledge": true,
  2717. "knowledge_reason": "帖子提供了详细的表情包制作教程,包括工具使用(美图秀秀、剪映)、具体步骤(裁剪、加文字、导出)等,具备可复用指导性。",
  2718. "post_relevance_score": 0.5,
  2719. "relevance_level": "中度相关",
  2720. "relevance_reason": "帖子提供了制作表情包的方法和工具,这与原始问题中“制作猫咪表情包梗图”的需求有通用性。然而,原始问题强调“反映人类双标行为”,这部分深层概念内容的创作指导在帖子中并未涉及,帖子侧重于技术层面而非创意内容,所以是中度相关。"
  2721. },
  2722. "post_61b81195000000002103b7ab_0_9": {
  2723. "type": "post",
  2724. "query": "[R] 自制表情包详细教程 | 一次过审 | 有手就行",
  2725. "level": 13,
  2726. "relevance_score": 0,
  2727. "strategy": "帖子",
  2728. "iteration": 1,
  2729. "is_selected": true,
  2730. "note_id": "61b81195000000002103b7ab",
  2731. "note_url": "https://www.xiaohongshu.com/explore/61b81195000000002103b7ab",
  2732. "body_text": "感谢姐妹们的支持[飞吻R]教程来啦[害羞R] . . 💕图2:我们需要准备的素材如图,注意格式和图片尺寸。(如果不想接",
  2733. "images": [
  2734. "https://ci.xiaohongshu.com/5e86dcc2-4a10-34b1-b8aa-7ff0a00d9a4c?imageView2/2/w/1080/format/webp",
  2735. "https://ci.xiaohongshu.com/1b97b7f3-f88a-3ef7-9c32-12c20399b114?imageView2/2/w/1080/format/webp",
  2736. "https://ci.xiaohongshu.com/ad49725f-1982-309a-8c35-dc6a809300d3?imageView2/2/w/1080/format/webp",
  2737. "https://ci.xiaohongshu.com/010276014j0xm9iyegd0115qjsu2io89ne?imageView2/2/w/1080/format/webp",
  2738. "https://ci.xiaohongshu.com/dad4aa54-8f4d-3f6c-9538-deae9b347f99?imageView2/2/w/1080/format/webp",
  2739. "https://ci.xiaohongshu.com/d4260339-157b-3139-81d0-83fb6ed664b2?imageView2/2/w/1080/format/webp",
  2740. "https://ci.xiaohongshu.com/f2e0aefc-5ace-30d5-8cc0-e5ac8e3e1738?imageView2/2/w/1080/format/webp",
  2741. "https://ci.xiaohongshu.com/2d306c8a-53ac-3a19-adfe-50d4e18768ce?imageView2/2/w/1080/format/webp",
  2742. "https://ci.xiaohongshu.com/56d82c8a-7089-355d-9dd9-330d26ab95f0?imageView2/2/w/1080/format/webp"
  2743. ],
  2744. "image_list": [
  2745. {
  2746. "image_url": "https://ci.xiaohongshu.com/5e86dcc2-4a10-34b1-b8aa-7ff0a00d9a4c?imageView2/2/w/1080/format/webp"
  2747. },
  2748. {
  2749. "image_url": "https://ci.xiaohongshu.com/1b97b7f3-f88a-3ef7-9c32-12c20399b114?imageView2/2/w/1080/format/webp"
  2750. },
  2751. {
  2752. "image_url": "https://ci.xiaohongshu.com/ad49725f-1982-309a-8c35-dc6a809300d3?imageView2/2/w/1080/format/webp"
  2753. },
  2754. {
  2755. "image_url": "https://ci.xiaohongshu.com/010276014j0xm9iyegd0115qjsu2io89ne?imageView2/2/w/1080/format/webp"
  2756. },
  2757. {
  2758. "image_url": "https://ci.xiaohongshu.com/dad4aa54-8f4d-3f6c-9538-deae9b347f99?imageView2/2/w/1080/format/webp"
  2759. },
  2760. {
  2761. "image_url": "https://ci.xiaohongshu.com/d4260339-157b-3139-81d0-83fb6ed664b2?imageView2/2/w/1080/format/webp"
  2762. },
  2763. {
  2764. "image_url": "https://ci.xiaohongshu.com/f2e0aefc-5ace-30d5-8cc0-e5ac8e3e1738?imageView2/2/w/1080/format/webp"
  2765. },
  2766. {
  2767. "image_url": "https://ci.xiaohongshu.com/2d306c8a-53ac-3a19-adfe-50d4e18768ce?imageView2/2/w/1080/format/webp"
  2768. },
  2769. {
  2770. "image_url": "https://ci.xiaohongshu.com/56d82c8a-7089-355d-9dd9-330d26ab95f0?imageView2/2/w/1080/format/webp"
  2771. }
  2772. ],
  2773. "interact_info": {
  2774. "liked_count": 99171,
  2775. "collected_count": 94670,
  2776. "comment_count": 978,
  2777. "shared_count": 8200
  2778. },
  2779. "extraction": null,
  2780. "is_knowledge": true,
  2781. "knowledge_reason": "该帖子提供了自制微信表情包的详细教程,包括素材准备、工具使用、图片格式和尺寸要求以及提交流程,是典型的可复用创作方法和步骤指导。",
  2782. "post_relevance_score": 0.45,
  2783. "relevance_level": "中度相关",
  2784. "relevance_reason": "该帖子提供了制作表情包的通用技术和流程,对于原始问题中“制作猫咪表情包梗图”这一创作行为有辅助作用。但它没有直接解决如何“反映人类双标行为”这一核心创意和内容策略问题,因此相关性中等偏低。"
  2785. },
  2786. "search_表情包怎么制作_r1_1": {
  2787. "type": "search_word",
  2788. "query": "[SEARCH] 表情包怎么制作",
  2789. "level": 12,
  2790. "relevance_score": 0.695,
  2791. "strategy": "搜索词",
  2792. "iteration": 1,
  2793. "is_selected": true
  2794. },
  2795. "step_next_round_r1": {
  2796. "type": "step",
  2797. "query": "步骤4: 构建下一轮 (25个查询)",
  2798. "level": 11,
  2799. "relevance_score": 0,
  2800. "strategy": "构建下一轮",
  2801. "iteration": 1,
  2802. "is_selected": true
  2803. },
  2804. "next_round_猫咪表情包梗图_r1_0": {
  2805. "type": "next_round_item",
  2806. "query": "[Q] 猫咪表情包梗图",
  2807. "level": 12,
  2808. "relevance_score": 0.23399999999999999,
  2809. "strategy": "域内组合",
  2810. "iteration": 1,
  2811. "is_selected": true,
  2812. "type_label": "[中心名词]",
  2813. "item_type": "combination",
  2814. "is_suggestion": false,
  2815. "suggestion_label": ""
  2816. },
  2817. "next_round_猫咪表情包_r1_1": {
  2818. "type": "next_round_item",
  2819. "query": "[Q] 猫咪表情包",
  2820. "level": 12,
  2821. "relevance_score": 0.21059999999999998,
  2822. "strategy": "域内组合",
  2823. "iteration": 1,
  2824. "is_selected": true,
  2825. "type_label": "[中心名词]",
  2826. "item_type": "combination",
  2827. "is_suggestion": false,
  2828. "suggestion_label": ""
  2829. },
  2830. "next_round_猫咪梗图_r1_2": {
  2831. "type": "next_round_item",
  2832. "query": "[Q] 猫咪梗图",
  2833. "level": 12,
  2834. "relevance_score": 0.21059999999999998,
  2835. "strategy": "域内组合",
  2836. "iteration": 1,
  2837. "is_selected": true,
  2838. "type_label": "[中心名词]",
  2839. "item_type": "combination",
  2840. "is_suggestion": false,
  2841. "suggestion_label": ""
  2842. },
  2843. "next_round_表情包梗图_r1_3": {
  2844. "type": "next_round_item",
  2845. "query": "[Q] 表情包梗图",
  2846. "level": 12,
  2847. "relevance_score": 0.1755,
  2848. "strategy": "域内组合",
  2849. "iteration": 1,
  2850. "is_selected": true,
  2851. "type_label": "[中心名词]",
  2852. "item_type": "combination",
  2853. "is_suggestion": false,
  2854. "suggestion_label": ""
  2855. },
  2856. "next_round_反映人类双标_r1_4": {
  2857. "type": "next_round_item",
  2858. "query": "[Q] 反映人类双标",
  2859. "level": 12,
  2860. "relevance_score": 0.0882,
  2861. "strategy": "域内组合",
  2862. "iteration": 1,
  2863. "is_selected": true,
  2864. "type_label": "[修饰短语]",
  2865. "item_type": "combination",
  2866. "is_suggestion": false,
  2867. "suggestion_label": ""
  2868. },
  2869. "next_round_反映人类双标行为_r1_5": {
  2870. "type": "next_round_item",
  2871. "query": "[Q] 反映人类双标行为",
  2872. "level": 12,
  2873. "relevance_score": 0.0882,
  2874. "strategy": "域内组合",
  2875. "iteration": 1,
  2876. "is_selected": true,
  2877. "type_label": "[修饰短语]",
  2878. "item_type": "combination",
  2879. "is_suggestion": false,
  2880. "suggestion_label": ""
  2881. },
  2882. "next_round_反映双标_r1_6": {
  2883. "type": "next_round_item",
  2884. "query": "[Q] 反映双标",
  2885. "level": 12,
  2886. "relevance_score": 0.081,
  2887. "strategy": "域内组合",
  2888. "iteration": 1,
  2889. "is_selected": true,
  2890. "type_label": "[修饰短语]",
  2891. "item_type": "combination",
  2892. "is_suggestion": false,
  2893. "suggestion_label": ""
  2894. },
  2895. "next_round_人类双标_r1_7": {
  2896. "type": "next_round_item",
  2897. "query": "[Q] 人类双标",
  2898. "level": 12,
  2899. "relevance_score": 0.081,
  2900. "strategy": "域内组合",
  2901. "iteration": 1,
  2902. "is_selected": true,
  2903. "type_label": "[修饰短语]",
  2904. "item_type": "combination",
  2905. "is_suggestion": false,
  2906. "suggestion_label": ""
  2907. },
  2908. "next_round_人类双标行为_r1_8": {
  2909. "type": "next_round_item",
  2910. "query": "[Q] 人类双标行为",
  2911. "level": 12,
  2912. "relevance_score": 0.081,
  2913. "strategy": "域内组合",
  2914. "iteration": 1,
  2915. "is_selected": true,
  2916. "type_label": "[修饰短语]",
  2917. "item_type": "combination",
  2918. "is_suggestion": false,
  2919. "suggestion_label": ""
  2920. },
  2921. "next_round_双标行为_r1_9": {
  2922. "type": "next_round_item",
  2923. "query": "[Q] 双标行为",
  2924. "level": 12,
  2925. "relevance_score": 0.0765,
  2926. "strategy": "域内组合",
  2927. "iteration": 1,
  2928. "is_selected": true,
  2929. "type_label": "[修饰短语]",
  2930. "item_type": "combination",
  2931. "is_suggestion": false,
  2932. "suggestion_label": ""
  2933. },
  2934. "next_round_反映双标行为_r1_10": {
  2935. "type": "next_round_item",
  2936. "query": "[Q] 反映双标行为",
  2937. "level": 12,
  2938. "relevance_score": 0.0765,
  2939. "strategy": "域内组合",
  2940. "iteration": 1,
  2941. "is_selected": true,
  2942. "type_label": "[修饰短语]",
  2943. "item_type": "combination",
  2944. "is_suggestion": false,
  2945. "suggestion_label": ""
  2946. },
  2947. "next_round_反映人类_r1_11": {
  2948. "type": "next_round_item",
  2949. "query": "[Q] 反映人类",
  2950. "level": 12,
  2951. "relevance_score": 0.0702,
  2952. "strategy": "域内组合",
  2953. "iteration": 1,
  2954. "is_selected": true,
  2955. "type_label": "[修饰短语]",
  2956. "item_type": "combination",
  2957. "is_suggestion": false,
  2958. "suggestion_label": ""
  2959. },
  2960. "next_round_反映人类行为_r1_12": {
  2961. "type": "next_round_item",
  2962. "query": "[Q] 反映人类行为",
  2963. "level": 12,
  2964. "relevance_score": 0.0702,
  2965. "strategy": "域内组合",
  2966. "iteration": 1,
  2967. "is_selected": true,
  2968. "type_label": "[修饰短语]",
  2969. "item_type": "combination",
  2970. "is_suggestion": false,
  2971. "suggestion_label": ""
  2972. },
  2973. "next_round_人类行为_r1_13": {
  2974. "type": "next_round_item",
  2975. "query": "[Q] 人类行为",
  2976. "level": 12,
  2977. "relevance_score": 0.045,
  2978. "strategy": "域内组合",
  2979. "iteration": 1,
  2980. "is_selected": true,
  2981. "type_label": "[修饰短语]",
  2982. "item_type": "combination",
  2983. "is_suggestion": false,
  2984. "suggestion_label": ""
  2985. },
  2986. "next_round_制作表情包_r1_14": {
  2987. "type": "next_round_item",
  2988. "query": "[Q] 制作表情包",
  2989. "level": 12,
  2990. "relevance_score": 0.815,
  2991. "strategy": "高增益SUG",
  2992. "iteration": 1,
  2993. "is_selected": true,
  2994. "type_label": "",
  2995. "item_type": "sug",
  2996. "is_suggestion": true,
  2997. "suggestion_label": "[suggestion]"
  2998. },
  2999. "next_round_表情包怎么制作_r1_15": {
  3000. "type": "next_round_item",
  3001. "query": "[Q] 表情包怎么制作",
  3002. "level": 12,
  3003. "relevance_score": 0.695,
  3004. "strategy": "高增益SUG",
  3005. "iteration": 1,
  3006. "is_selected": true,
  3007. "type_label": "",
  3008. "item_type": "sug",
  3009. "is_suggestion": true,
  3010. "suggestion_label": "[suggestion]"
  3011. },
  3012. "next_round_双标表情包_r1_16": {
  3013. "type": "next_round_item",
  3014. "query": "[Q] 双标表情包",
  3015. "level": 12,
  3016. "relevance_score": 0.4,
  3017. "strategy": "高增益SUG",
  3018. "iteration": 1,
  3019. "is_selected": true,
  3020. "type_label": "",
  3021. "item_type": "sug",
  3022. "is_suggestion": true,
  3023. "suggestion_label": "[suggestion]"
  3024. },
  3025. "next_round_梗图素材_r1_17": {
  3026. "type": "next_round_item",
  3027. "query": "[Q] 梗图素材",
  3028. "level": 12,
  3029. "relevance_score": 0.21000000000000002,
  3030. "strategy": "高增益SUG",
  3031. "iteration": 1,
  3032. "is_selected": true,
  3033. "type_label": "",
  3034. "item_type": "sug",
  3035. "is_suggestion": true,
  3036. "suggestion_label": "[suggestion]"
  3037. },
  3038. "next_round_梗图模版_r1_18": {
  3039. "type": "next_round_item",
  3040. "query": "[Q] 梗图模版",
  3041. "level": 12,
  3042. "relevance_score": 0.19400000000000003,
  3043. "strategy": "高增益SUG",
  3044. "iteration": 1,
  3045. "is_selected": true,
  3046. "type_label": "",
  3047. "item_type": "sug",
  3048. "is_suggestion": true,
  3049. "suggestion_label": "[suggestion]"
  3050. },
  3051. "next_round_梗图描改_r1_19": {
  3052. "type": "next_round_item",
  3053. "query": "[Q] 梗图描改",
  3054. "level": 12,
  3055. "relevance_score": 0.192,
  3056. "strategy": "高增益SUG",
  3057. "iteration": 1,
  3058. "is_selected": true,
  3059. "type_label": "",
  3060. "item_type": "sug",
  3061. "is_suggestion": true,
  3062. "suggestion_label": "[suggestion]"
  3063. },
  3064. "next_round_表情包简笔画_r1_20": {
  3065. "type": "next_round_item",
  3066. "query": "[Q] 表情包简笔画",
  3067. "level": 12,
  3068. "relevance_score": 0.18,
  3069. "strategy": "高增益SUG",
  3070. "iteration": 1,
  3071. "is_selected": true,
  3072. "type_label": "",
  3073. "item_type": "sug",
  3074. "is_suggestion": true,
  3075. "suggestion_label": "[suggestion]"
  3076. },
  3077. "next_round_双标图片_r1_21": {
  3078. "type": "next_round_item",
  3079. "query": "[Q] 双标图片",
  3080. "level": 12,
  3081. "relevance_score": 0.17,
  3082. "strategy": "高增益SUG",
  3083. "iteration": 1,
  3084. "is_selected": true,
  3085. "type_label": "",
  3086. "item_type": "sug",
  3087. "is_suggestion": true,
  3088. "suggestion_label": "[suggestion]"
  3089. },
  3090. "next_round_表情包图片大全_r1_22": {
  3091. "type": "next_round_item",
  3092. "query": "[Q] 表情包图片大全",
  3093. "level": 12,
  3094. "relevance_score": 0.17,
  3095. "strategy": "高增益SUG",
  3096. "iteration": 1,
  3097. "is_selected": true,
  3098. "type_label": "",
  3099. "item_type": "sug",
  3100. "is_suggestion": true,
  3101. "suggestion_label": "[suggestion]"
  3102. },
  3103. "next_round_梗图meme_r1_23": {
  3104. "type": "next_round_item",
  3105. "query": "[Q] 梗图meme",
  3106. "level": 12,
  3107. "relevance_score": 0.17,
  3108. "strategy": "高增益SUG",
  3109. "iteration": 1,
  3110. "is_selected": true,
  3111. "type_label": "",
  3112. "item_type": "sug",
  3113. "is_suggestion": true,
  3114. "suggestion_label": "[suggestion]"
  3115. },
  3116. "next_round_梗图分享_r1_24": {
  3117. "type": "next_round_item",
  3118. "query": "[Q] 梗图分享",
  3119. "level": 12,
  3120. "relevance_score": 0.085,
  3121. "strategy": "高增益SUG",
  3122. "iteration": 1,
  3123. "is_selected": true,
  3124. "type_label": "",
  3125. "item_type": "sug",
  3126. "is_suggestion": true,
  3127. "suggestion_label": "[suggestion]"
  3128. },
  3129. "round_2": {
  3130. "type": "round",
  3131. "query": "Round 2",
  3132. "level": 20,
  3133. "relevance_score": 0,
  3134. "strategy": "第2轮",
  3135. "iteration": 2,
  3136. "is_selected": true
  3137. },
  3138. "step_sug_r2": {
  3139. "type": "step",
  3140. "query": "步骤1: 请求&评估推荐词 (179个)",
  3141. "level": 21,
  3142. "relevance_score": 0,
  3143. "strategy": "请求&评估推荐词",
  3144. "iteration": 2,
  3145. "is_selected": true
  3146. },
  3147. "q_制作表情包_r2_0": {
  3148. "type": "q",
  3149. "query": "[Q] 制作表情包",
  3150. "level": 22,
  3151. "relevance_score": 0.815,
  3152. "evaluationReason": "",
  3153. "strategy": "Query",
  3154. "iteration": 2,
  3155. "is_selected": true,
  3156. "type_label": "",
  3157. "domain_index": -1,
  3158. "domain_type": ""
  3159. },
  3160. "sug_制作表情包用什么软件_r2_q0_0": {
  3161. "type": "sug",
  3162. "query": "[SUG] 制作表情包用什么软件",
  3163. "level": 23,
  3164. "relevance_score": 0.31699999999999995,
  3165. "evaluationReason": "【评估对象】词条\"制作表情包用什么软件\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作(表情包梗图)\n【动机维度 0.60】原始问题是“制作”表情包梗图,sug词条是“制作”表情包用什么软件。sug词条的动作意图和原始问题一致,且提供了实现原始问题中「制作」这一动作所需要的工具辅助信息\n【品类维度 0.08】原始问题关心的是制作特定主题的猫咪表情包梗图,sug词条「制作表情包用什么软件」对象层仅为「表情包」,无限定词,且过度泛化,覆盖度低。\n【延伸词维度 -0.15】原始问题聚焦于「制作反映人类双标行为的猫咪表情包梗图」这一具体内容和主题,而sug词条「制作表情包用什么软件」引入了「软件」这一工具维度。虽然软件是制作表情包的辅助工具,但它偏离了原始问题对内容和主题的关注,稀释了原始问题的聚焦度,属于作用域稀释型延伸词。\n【最终得分 0.32】",
  3166. "strategy": "推荐词",
  3167. "iteration": 2,
  3168. "is_selected": true,
  3169. "scoreColor": "#ef4444",
  3170. "parentQScore": 0.815
  3171. },
  3172. "sug_制作表情包微信_r2_q0_1": {
  3173. "type": "sug",
  3174. "query": "[SUG] 制作表情包微信",
  3175. "level": 23,
  3176. "relevance_score": 0.18,
  3177. "evaluationReason": "【评估对象】词条\"制作表情包微信\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作(表情包梗图)\n【动机维度 0.35】原始问题的核心动机是学习「制作」表情包。sug词条「制作表情包微信」也包含「制作」的动作意图。虽然sug词条只涉及制作的「方式/平台」(微信),未能涵盖原始问题更具体的对象(反映人类双标行为的猫咪表情包梗图),但动作意图是相关的。\n【品类维度 0.05】原始问题对象层为「猫咪表情包梗图」,场景层为「人类双标行为」。sug词条仅包含「制作表情包」,在对象层上仅部分匹配,缺乏「猫咪」和「梗图」限定,场景层完全缺失。内容主体覆盖度低。\n【延伸词维度 -0.15】延伸词「微信」引入了平台限制,与原始问题中制作表情包的核心目的无关,稀释了用户对表情包制作方法和创意的关注,属于作用域稀释型。\n【最终得分 0.18】",
  3178. "strategy": "推荐词",
  3179. "iteration": 2,
  3180. "is_selected": true,
  3181. "scoreColor": "#ef4444",
  3182. "parentQScore": 0.815
  3183. },
  3184. "sug_制作表情包怎么赚钱_r2_q0_2": {
  3185. "type": "sug",
  3186. "query": "[SUG] 制作表情包怎么赚钱",
  3187. "level": 23,
  3188. "relevance_score": -0.17000000000000004,
  3189. "evaluationReason": "【评估对象】词条\"制作表情包怎么赚钱\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作(表情包梗图)\n【动机维度 -0.15】原始问题的核心动机是“制作”表情包,sug词条的动机是“赚钱”。两者都包含了“表情包”这个对象,但原始问题关注制作,sug词条关注赚钱,动机方向不同,属于轻度偏离。\n【品类维度 -0.20】原始问题核心对象是“猫咪表情包梗图”,限定词是“人类双标行为”;sug词条核心对象是“表情包”,限定词是“赚钱”。sug词条缺少原始核心对象“猫咪”和“梗图”,且限定词也完全不匹配,存在误导性。\n【延伸词维度 -0.15】sug词条「怎么赚钱」引入了原始问题未提及的商业化目的,稀释了原始问题「制作表情包」的创作和表达意图,属于作用域稀释型延伸词。\n【最终得分 -0.17】",
  3190. "strategy": "推荐词",
  3191. "iteration": 2,
  3192. "is_selected": true,
  3193. "scoreColor": "#ef4444",
  3194. "parentQScore": 0.815
  3195. },
  3196. "sug_制作表情包教程_r2_q0_3": {
  3197. "type": "sug",
  3198. "query": "[SUG] 制作表情包教程",
  3199. "level": 23,
  3200. "relevance_score": 0.6799999999999999,
  3201. "evaluationReason": "【评估对象】词条\"制作表情包教程\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作(表情包梗图)\n【动机维度 0.95】原始问题的核心动机是「制作」表情包梗图,sug词条的动机也是「制作」表情包的「教程」,两者核心动作「制作」一致且sug词更加具象化为制作的教程,高度相关。\n【品类维度 0.05】原始问题对象层为“猫咪表情包梗图”,限定词为“反映人类双标行为”;sug词对象层为“表情包教程”,属于对象匹配但限定词缺失,通用度较高,评分较低。\n【延伸词维度 0.00】sug词条未引入延伸词,所有词汇均属于原始问题作用域范围。原始问题是关于“制作”表情包,sug词条“制作表情包教程”中的“教程”是对“制作”这一动机的细化,不属于延伸词。\n【最终得分 0.68】\n【规则说明】情况4:无延伸词,权重调整为 动机70% + 品类30%",
  3202. "strategy": "推荐词",
  3203. "iteration": 2,
  3204. "is_selected": true,
  3205. "scoreColor": "#ef4444",
  3206. "parentQScore": 0.815
  3207. },
  3208. "sug_制作表情包软件_r2_q0_4": {
  3209. "type": "sug",
  3210. "query": "[SUG] 制作表情包软件",
  3211. "level": 23,
  3212. "relevance_score": 0.192,
  3213. "evaluationReason": "【评估对象】词条\"制作表情包软件\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作表情包梗图\n【动机维度 0.35】原始问题的核心动机是“制作”,sug词条“制作表情包软件”也包含了“制作”这一动作,但sug词条重心偏向于『制作所需工具』而非『制作内容或技巧』。虽然都是关于制作,但需求方向有差异,因此属于弱相关。\n【品类维度 0.08】原始问题核心对象是“猫咪表情包梗图”,限定词为“反映人类双标行为”;sug词是“制作表情包软件”。sug词过度泛化,仅包含原始问题中“制作”和“表情包”的泛化概念,缺失核心主体和所有限定词,匹配度低。\n【延伸词维度 -0.15】原始问题聚焦于「制作反映人类双标行为的猫咪表情包梗图」这一具体内容创作,而sug词条「制作表情包软件」引入了工具维度,稀释了原始问题对内容和创意的关注,降低了聚焦度。\n【最终得分 0.19】",
  3214. "strategy": "推荐词",
  3215. "iteration": 2,
  3216. "is_selected": true,
  3217. "scoreColor": "#ef4444",
  3218. "parentQScore": 0.815
  3219. },
  3220. "sug_制作表情包gif_r2_q0_5": {
  3221. "type": "sug",
  3222. "query": "[SUG] 制作表情包gif",
  3223. "level": 23,
  3224. "relevance_score": 0.5599999999999999,
  3225. "evaluationReason": "【评估对象】词条\"制作表情包gif\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作(表情包梗图)\n【动机维度 0.95】原始问题的核心动机是「制作表情包梗图」,sug词条「制作表情包gif」的核心动机是「制作表情包」,两者核心动作与意图高度一致。原始问题对『表情包』的使用场景和内容进行了限定,但sug词条仍然保留了核心的动机动作。gif是表情包的一种表现形式,因此属于具体化范畴。\n【品类维度 0.25】sug词条「制作表情包gif」包含了原始问题的核心对象层元素“制作表情包”,但缺失了核心修饰性对象“猫咪表情包”。sug词的范围更泛化,覆盖度较低。\n【延伸词维度 -0.15】原始问题聚焦于「猫咪表情包梗图」的内容创作,而sug词条「gif」引入了新的格式维度,稀释了原始问题对内容和主题的关注,降低了聚焦度。\n【最终得分 0.56】",
  3226. "strategy": "推荐词",
  3227. "iteration": 2,
  3228. "is_selected": true,
  3229. "scoreColor": "#ef4444",
  3230. "parentQScore": 0.815
  3231. },
  3232. "sug_制作表情包动图_r2_q0_6": {
  3233. "type": "sug",
  3234. "query": "[SUG] 制作表情包动图",
  3235. "level": 23,
  3236. "relevance_score": 0.492,
  3237. "evaluationReason": "【评估对象】词条\"制作表情包动图\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作(表情包梗图)\n【动机维度 0.95】原始问题的核心动机是「制作」表情包梗图。sug词条的动机也是「制作」表情包动图。虽然一个是梗图一个是动图,但「制作」动作的语义高度一致,且都指向表情包。\n【品类维度 0.08】原始问题对象层为「猫咪表情包梗图」,场景层为「反映人类双标行为」。Sug词条仅包含「表情包动图」这一泛化的对象,未提及具体主体「猫咪」及限定词「双标行为」。覆盖度极低。\n【延伸词维度 -0.15】原始问题聚焦于“梗图”这一静态或多格图片形式,而sug词条引入了“动图”这一新的表现形式,稀释了原始问题的聚焦度,降低了内容的针对性。\n【最终得分 0.49】",
  3238. "strategy": "推荐词",
  3239. "iteration": 2,
  3240. "is_selected": true,
  3241. "scoreColor": "#ef4444",
  3242. "parentQScore": 0.815
  3243. },
  3244. "sug_视频制作表情包_r2_q0_7": {
  3245. "type": "sug",
  3246. "query": "[SUG] 视频制作表情包",
  3247. "level": 23,
  3248. "relevance_score": 0.43,
  3249. "evaluationReason": "【评估对象】词条\"视频制作表情包\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作表情包\n【动机维度 0.85】原始问题和sug词条的核心动作意图都是“制作表情包”,具有高度的匹配性。sug词提供了“视频”这种制作方式,是原始意图的子集或具体化场景。\n【品类维度 0.05】原始问题核心对象是《猫咪表情包梗图》,限定词有《人类双标行为》。sug词条核心对象是《表情包》,是原始问题核心对象的泛化,但完全缺失核心限定词,且存在对象错位(视频制作)。\n【延伸词维度 -0.15】原始问题聚焦于「猫咪表情包梗图」的制作,而sug词条引入了「视频」这一新的载体形式,稀释了原始问题对「梗图」这一特定形式的聚焦,降低了内容的针对性。\n【最终得分 0.43】",
  3250. "strategy": "推荐词",
  3251. "iteration": 2,
  3252. "is_selected": true,
  3253. "scoreColor": "#ef4444",
  3254. "parentQScore": 0.815
  3255. },
  3256. "sug_美图秀秀制作表情包图片_r2_q0_8": {
  3257. "type": "sug",
  3258. "query": "[SUG] 美图秀秀制作表情包图片",
  3259. "level": 23,
  3260. "relevance_score": 0.43,
  3261. "evaluationReason": "【评估对象】词条\"美图秀秀制作表情包图片\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作(表情包梗图)\n【动机维度 0.85】原始问题的核心动机是「制作」表情包梗图。sug词条明确提到了「制作」表情包图片,虽然对象、场景和目的有所差异,但核心制作动作是高度匹配的。\n【品类维度 0.05】原始问题对象层为《猫咪表情包梗图》,场景层为《反映人类双标行为》。sug词条对象层为《表情包图片》。对象层部分匹配。sug词条完全缺失所有场景层限定,对象层匹配度低,但属于相关品类,故分数较低。\n【延伸词维度 -0.15】延伸词“美图秀秀”和“图片”与原始问题“制作反映人类双标行为的猫咪表情包梗图”的核心目的和内容无关,引入了不必要的工具和通用概念,稀释了原始问题的聚焦度,降低了内容的针对性。\n【最终得分 0.43】",
  3262. "strategy": "推荐词",
  3263. "iteration": 2,
  3264. "is_selected": true,
  3265. "scoreColor": "#ef4444",
  3266. "parentQScore": 0.815
  3267. },
  3268. "sug_制作表情包文字_r2_q0_9": {
  3269. "type": "sug",
  3270. "query": "[SUG] 制作表情包文字",
  3271. "level": 23,
  3272. "relevance_score": 0.44199999999999995,
  3273. "evaluationReason": "【评估对象】词条\"制作表情包文字\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】用户想要「制作」表情包梗图,核心动作是创作或生成一个具体产物。\n【动机维度 0.85】原始问题的核心动机是「制作」表情包梗图,sug词条「制作表情包文字」的动词「制作」与原始问题完全一致,匹配度极高。尽管sug词条限定了制作「文字」,但「制作」这一核心动作和方向完全一致。\n【品类维度 0.08】原始问题核心对象层为「猫咪表情包梗图」,场景层包括「双标行为」和「人类」。sug词条「制作表情包文字」仅模糊包含「表情包」对象层,限定词「文字」与原始问题「梗图」有差异,主体元素大部分缺失。\n【延伸词维度 -0.15】延伸词「文字」与原始问题「猫咪表情包梗图」的核心对象不符,稀释了原始问题对图像和特定主题(猫咪、双标行为)的聚焦,降低了内容针对性。\n【最终得分 0.44】",
  3274. "strategy": "推荐词",
  3275. "iteration": 2,
  3276. "is_selected": true,
  3277. "scoreColor": "#ef4444",
  3278. "parentQScore": 0.815
  3279. },
  3280. "q_表情包怎么制作_r2_1": {
  3281. "type": "q",
  3282. "query": "[Q] 表情包怎么制作",
  3283. "level": 22,
  3284. "relevance_score": 0.695,
  3285. "evaluationReason": "",
  3286. "strategy": "Query",
  3287. "iteration": 2,
  3288. "is_selected": true,
  3289. "type_label": "",
  3290. "domain_index": -1,
  3291. "domain_type": ""
  3292. },
  3293. "sug_表情包怎么制作gif_r2_q1_0": {
  3294. "type": "sug",
  3295. "query": "[SUG] 表情包怎么制作gif",
  3296. "level": 23,
  3297. "relevance_score": 0.33,
  3298. "evaluationReason": "【评估对象】词条\"表情包怎么制作gif\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作表情包\n【动机维度 0.65】原始问题核心动机是「制作」表情包,sug词条是「制作」gif。gif是表情包的常见形式,制作gif可以服务于制作表情包,二者动作意图高度相关。\n【品类维度 0.05】原始问题核心是「猫咪表情包梗图」这一特定类型内容。sug词仅有「表情包」这一泛化对象层,缺少核心限定词「猫咪」、「梗图」以及行为层面描述。二者品类存在代沟。\n【延伸词维度 -0.15】原始问题聚焦于「猫咪表情包梗图」的内容和主题,而sug词条「gif」引入了无关的格式限定,稀释了原始问题的核心内容,属于作用域稀释型。\n【最终得分 0.33】",
  3299. "strategy": "推荐词",
  3300. "iteration": 2,
  3301. "is_selected": true,
  3302. "scoreColor": "#ef4444",
  3303. "parentQScore": 0.695
  3304. },
  3305. "sug_表情包怎么制作动态_r2_q1_1": {
  3306. "type": "sug",
  3307. "query": "[SUG] 表情包怎么制作动态",
  3308. "level": 23,
  3309. "relevance_score": 0.272,
  3310. "evaluationReason": "【评估对象】词条\"表情包怎么制作动态\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作表情包梗图\n【动机维度 0.35】原始问题意图是「制作」反映特定主题的「梗图」,sug词条意图是「制作」能「动态」的「表情包」。两者核心动作「制作」一致,但sug词条具体化为「动态表情包」,原始问题则侧重「梗图」,并包含更复杂的表意需求,因此是弱相关。\n【品类维度 0.28】原始问题对象层为「猫咪表情包梗图」,场景层为「反映人类双标行为」。Sug词条对象层为「动态表情包制作」。Sug词条仅命中表情包,但限定词“动态”与原问题场景不符,且对象层缺失“猫咪”和“梗图”限定”。\n【延伸词维度 -0.15】原始问题聚焦于「猫咪表情包梗图」的「制作」方法,并强调其「反映人类双标行为」这一主题。sug词条「动态」引入了新的制作形式,与原始问题中未提及的「动态」制作方式不符,稀释了原始问题对特定主题和内容的聚焦,属于作用域稀释型。\n【最终得分 0.27】",
  3311. "strategy": "推荐词",
  3312. "iteration": 2,
  3313. "is_selected": true,
  3314. "scoreColor": "#ef4444",
  3315. "parentQScore": 0.695
  3316. },
  3317. "sug_表情包怎么制作微信_r2_q1_2": {
  3318. "type": "sug",
  3319. "query": "[SUG] 表情包怎么制作微信",
  3320. "level": 23,
  3321. "relevance_score": 0.31,
  3322. "evaluationReason": "【评估对象】词条\"表情包怎么制作微信\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作\n【动机维度 0.45】原始问题的核心动机是\"制作\"表情包。sug词条的动机也是\"制作\"表情包,但原始问题中的制作更加具体,指向制作梗图。两者都是制作表情包,但侧重点不同。\n【品类维度 0.25】原始问题对象层为「猫咪表情包梗图」,场景层为「人类双标行为」。sug词条只涉及「表情包」这一部分对象,但缺少核心对象「猫咪」和所有限定词,覆盖度低。\n【延伸词维度 -0.15】原始问题聚焦于「人类双标行为的猫咪表情包梗图」的制作方法,而sug词条「微信」引入了新的平台限定,稀释了原始问题的核心内容,使其偏离了对表情包内容和主题的关注。\n【最终得分 0.31】",
  3323. "strategy": "推荐词",
  3324. "iteration": 2,
  3325. "is_selected": true,
  3326. "scoreColor": "#ef4444",
  3327. "parentQScore": 0.695
  3328. },
  3329. "sug_表情包怎么制作文字_r2_q1_3": {
  3330. "type": "sug",
  3331. "query": "[SUG] 表情包怎么制作文字",
  3332. "level": 23,
  3333. "relevance_score": 0.455,
  3334. "evaluationReason": "【评估对象】词条\"表情包怎么制作文字\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作(表情包梗图)\n【动机维度 0.90】原始问题的核心动机是学习「制作」表情包梗图。sug词条「表情包怎么制作文字」的核心动机是学习「制作」表情包。两者的核心动作「制作」完全一致,只是sug词条限定了制作的内容为「文字」\n【品类维度 0.05】原始问题对象层为「猫咪表情包梗图」,场景层为「反映人类双标行为」。Sug词条对象层为「表情包」,无限定词。核心对象层部分匹配,但限定词全部缺失且语义错位。泛化相似。\n【延伸词维度 -0.15】原始问题聚焦于「猫咪表情包梗图」的「内容创意」(反映人类双标行为),而sug词条「文字」是表情包制作的通用元素,与原始问题特指的「猫咪」和「双标行为」内容无关,稀释了原始问题的核心内容和创意目的。\n【最终得分 0.46】",
  3335. "strategy": "推荐词",
  3336. "iteration": 2,
  3337. "is_selected": true,
  3338. "scoreColor": "#ef4444",
  3339. "parentQScore": 0.695
  3340. },
  3341. "sug_小红书表情包怎么制作的_r2_q1_4": {
  3342. "type": "sug",
  3343. "query": "[SUG] 小红书表情包怎么制作的",
  3344. "level": 23,
  3345. "relevance_score": 0.0049999999999999906,
  3346. "evaluationReason": "【评估对象】词条\"小红书表情包怎么制作的\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作(表情包梗图)\n【动机维度 0.20】原始问题意图是「制作」表情包梗图,sug词条意图是「制作」小红书表情包。两者都包含制作动作,但在制作对象上有差异,原始问题侧重意图表达,sug词条侧重平台属性,相关性较弱。\n【品类维度 -0.20】原始问题核心对象是《猫咪双标行为表情包梗图》,限定词有《人类双标行为》、《猫咪》。sug词条核心对象是《小红书表情包》,限定词是《小红书》。两者核心主体部分重合,但限定词完全不同,且《小红书》的限定范围无法涵盖《猫咪双标行为》。\n【延伸词维度 -0.15】延伸词“小红书”和“怎么制作的”与原始问题“反映人类双标行为的猫咪表情包梗图”的核心内容和目的不符。“小红书”引入了平台限定,稀释了原始问题对内容创作本身的关注;“怎么制作的”是通用制作方法,与原始问题中“反映人类双标行为的猫咪表情包梗图”的特定主题和创意需求无关,降低了内容的针对性。\n【最终得分 0.00】",
  3347. "strategy": "推荐词",
  3348. "iteration": 2,
  3349. "is_selected": true,
  3350. "scoreColor": "#ef4444",
  3351. "parentQScore": 0.695
  3352. },
  3353. "sug_原创表情包怎么制作_r2_q1_5": {
  3354. "type": "sug",
  3355. "query": "[SUG] 原创表情包怎么制作",
  3356. "level": 23,
  3357. "relevance_score": 0.46699999999999997,
  3358. "evaluationReason": "【评估对象】词条\"原创表情包怎么制作\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作表情包梗图\n【动机维度 0.90】原始问题的核心动机是\"制作表情包梗图\",sug词条的动机是\"制作表情包\"。sug词条的动作\"制作\"与原始问题完全一致,属于高度匹配。\n【品类维度 0.08】原始问题对象层为「人类双标行为的猫咪表情包梗图」,场景层无。sug词条对象层为「原创表情包」。sug词条仅泛化匹配了部分对象(表情包),限定词「人类双标行为的猫咪」、「梗图」以及「原创」均未覆盖,覆盖度低,属于过度泛化。\n【延伸词维度 -0.15】sug词条「原创表情包怎么制作」中的“原创”和“怎么制作”属于原始问题作用域内的词汇,但“表情包”这一对象层面的词汇,与原始问题中的“反映人类双标行为的猫咪表情包梗图”相比,过于宽泛,稀释了原始问题中对“猫咪”和“双标行为”的特定要求,降低了内容的针对性。\n【最终得分 0.47】",
  3359. "strategy": "推荐词",
  3360. "iteration": 2,
  3361. "is_selected": true,
  3362. "scoreColor": "#ef4444",
  3363. "parentQScore": 0.695
  3364. },
  3365. "sug_表情包怎么制作视频_r2_q1_6": {
  3366. "type": "sug",
  3367. "query": "[SUG] 表情包怎么制作视频",
  3368. "level": 23,
  3369. "relevance_score": 0.07999999999999997,
  3370. "evaluationReason": "【评估对象】词条\"表情包怎么制作视频\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作\n【动机维度 0.35】原始问题核心动机是「制作」表情包梗图,sug词条核心动机是「制作」视频。两者动作都是「制作」,但对象不同,一个针对表情包梗图,一个针对视频,属于弱相关。\n【品类维度 -0.20】原始问题需求的核心对象是「人类双标行为的猫咪表情包梗图」,涉及主题「双标行为」和主体「猫咪」,而sug词条仅提及「表情包」,且关注点是「制作视频」,与原始问题的主要对象、主题和形式均不匹配,存在误导性。\n【延伸词维度 -0.15】原始问题聚焦于「表情包梗图」的制作,而sug词条引入了「视频」这一延伸词。视频制作与梗图制作是两种不同的媒介和技能,稀释了原始问题对「梗图」的聚焦,降低了内容的针对性。\n【最终得分 0.08】",
  3371. "strategy": "推荐词",
  3372. "iteration": 2,
  3373. "is_selected": true,
  3374. "scoreColor": "#ef4444",
  3375. "parentQScore": 0.695
  3376. },
  3377. "sug_表情包怎么制作动态图_r2_q1_7": {
  3378. "type": "sug",
  3379. "query": "[SUG] 表情包怎么制作动态图",
  3380. "level": 23,
  3381. "relevance_score": 0.21999999999999997,
  3382. "evaluationReason": "【评估对象】词条\"表情包怎么制作动态图\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作(表情包梗图)\n【动机维度 0.35】原始问题的核心动机是「制作」表情包梗图。sug词条的动机也是「制作」表情包相关内容,但其侧重于「动态图」的制作,而非原始问题中「反映人类双标行为的猫咪表情包梗图」的特定内容制作,因此关联度较弱。\n【品类维度 0.15】原始问题对象层为「猫咪表情包梗图」,场景层为「人类双标行为」。sug词条对象层为「表情包」,场景层为「动态图」,两者对象层有部分重叠,但限定词偏差较大,且sug词条缺少猫咪的限定。\n【延伸词维度 -0.15】原始问题聚焦于「猫咪表情包梗图」的「制作」和「反映双标行为」这一特定主题。sug词条「动态图」是制作方式的延伸,但原始问题并未提及对动态图的需求,且「动态图」的制作方式与「梗图」的制作方式可能存在差异,稀释了原始问题的核心目的和聚焦度。\n【最终得分 0.22】",
  3383. "strategy": "推荐词",
  3384. "iteration": 2,
  3385. "is_selected": true,
  3386. "scoreColor": "#ef4444",
  3387. "parentQScore": 0.695
  3388. },
  3389. "sug_表情包怎么制作动图_r2_q1_8": {
  3390. "type": "sug",
  3391. "query": "[SUG] 表情包怎么制作动图",
  3392. "level": 23,
  3393. "relevance_score": 0.5599999999999999,
  3394. "evaluationReason": "【评估对象】词条\"表情包怎么制作动图\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作(表情包梗图)\n【动机维度 0.95】原始问题的核心动机是“制作”表情包梗图,Sug词条的核心动机是“制作”动图。动作上制作和制作完全匹配,仅对象存在差异,因此匹配度很高。\n【品类维度 0.25】原始问题对象层为「猫咪表情包梗图」,场景层为「反映人类双标行为」。Sug词条对象层为「表情包」,场景层为「动图」。核心对象「表情包」匹配,但sug词缺失关键限定词「猫咪」、「梗图」,并有不匹配的限定词「动图」。\n【延伸词维度 -0.15】原始问题聚焦于“猫咪表情包梗图”这一特定内容,而延伸词“动图”引入了新的形式要求,稀释了对内容本身的关注,且与原始问题中的“梗图”概念不完全匹配,可能导致用户偏离创作核心。\n【最终得分 0.56】",
  3395. "strategy": "推荐词",
  3396. "iteration": 2,
  3397. "is_selected": true,
  3398. "scoreColor": "#ef4444",
  3399. "parentQScore": 0.695
  3400. },
  3401. "sug_制作表情包怎么赚钱_r2_q1_9": {
  3402. "type": "sug",
  3403. "query": "[SUG] 制作表情包怎么赚钱",
  3404. "level": 23,
  3405. "relevance_score": -0.17000000000000004,
  3406. "evaluationReason": "【评估对象】词条\"制作表情包怎么赚钱\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作(表情包梗图)\n【动机维度 -0.15】原始问题的核心动机是“制作”表情包,sug词条的动机是“赚钱”。两者都包含了“表情包”这个对象,但原始问题关注制作,sug词条关注赚钱,动机方向不同,属于轻度偏离。\n【品类维度 -0.20】原始问题核心对象是“猫咪表情包梗图”,限定词是“人类双标行为”;sug词条核心对象是“表情包”,限定词是“赚钱”。sug词条缺少原始核心对象“猫咪”和“梗图”,且限定词也完全不匹配,存在误导性。\n【延伸词维度 -0.15】sug词条「怎么赚钱」引入了原始问题未提及的商业化目的,稀释了原始问题「制作表情包」的创作和表达意图,属于作用域稀释型延伸词。\n【最终得分 -0.17】",
  3407. "strategy": "推荐词",
  3408. "iteration": 2,
  3409. "is_selected": true,
  3410. "scoreColor": "#ef4444",
  3411. "parentQScore": 0.695
  3412. },
  3413. "q_双标表情包_r2_2": {
  3414. "type": "q",
  3415. "query": "[Q] 双标表情包",
  3416. "level": 22,
  3417. "relevance_score": 0.4,
  3418. "evaluationReason": "",
  3419. "strategy": "Query",
  3420. "iteration": 2,
  3421. "is_selected": true,
  3422. "type_label": "",
  3423. "domain_index": -1,
  3424. "domain_type": ""
  3425. },
  3426. "sug_双标表情包内涵_r2_q2_0": {
  3427. "type": "sug",
  3428. "query": "[SUG] 双标表情包内涵",
  3429. "level": 23,
  3430. "relevance_score": 0.32000000000000006,
  3431. "evaluationReason": "【评估对象】词条\"双标表情包内涵\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作\n【动机维度 0.00】原始问题明确意图是\"制作\"表情包,而sug词条\"双标表情包内涵\"聚焦于\"内涵\"这一主题,不包含制作这一动作意图,因此动机不匹配。\n【品类维度 0.40】原始问题对象层为「人类双标行为的猫咪表情包梗图」,场景层为「制作反映」。sug词条仅包含部分对象层「双标表情包」,核心主体和限定词有匹配但缺失「猫咪」限定和「梗图」限定,覆盖度较低。\n【延伸词维度 0.00】sug词条未引入延伸词,所有词汇均属于原始问题作用域范围。原始问题中的“双标”和“表情包”在sug词条中被直接使用,而“内涵”可以视为对“反映”这一动机的细化或同义表达。\n【最终得分 0.32】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  3432. "strategy": "推荐词",
  3433. "iteration": 2,
  3434. "is_selected": true,
  3435. "scoreColor": "#ef4444",
  3436. "parentQScore": 0.4
  3437. },
  3438. "sug_双标表情包图片_r2_q2_1": {
  3439. "type": "sug",
  3440. "query": "[SUG] 双标表情包图片",
  3441. "level": 23,
  3442. "relevance_score": 0.48,
  3443. "evaluationReason": "【评估对象】词条\"双标表情包图片\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作\n【动机维度 0.00】原始问题的核心动机是\"制作\",而sug词条\"双标表情包图片\"是一个名词短语,没有包含任何动作意图,因此sug词条在此维度上缺失动作意图。\n【品类维度 0.60】sug词条「双标表情包图片」包含了原始问题中的核心对象「表情包」和限定词「双标」。缺失了对象「猫咪」和「梗图」。主体部分匹配,但限定词不完全。\n【延伸词维度 0.00】sug词条未引入延伸词,所有词汇均属于原始问题作用域范围。原始问题中的“人类双标行为”被简化为“双标”,但核心概念未变;“猫咪表情包梗图”被简化为“表情包图片”,属于细化或同义词,不构成延伸。\n【最终得分 0.48】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  3444. "strategy": "推荐词",
  3445. "iteration": 2,
  3446. "is_selected": true,
  3447. "scoreColor": "#22c55e",
  3448. "parentQScore": 0.4
  3449. },
  3450. "sug_怼双标的人表情包_r2_q2_2": {
  3451. "type": "sug",
  3452. "query": "[SUG] 怼双标的人表情包",
  3453. "level": 23,
  3454. "relevance_score": 0.655,
  3455. "evaluationReason": "【评估对象】词条\"怼双标的人表情包\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作(表情包梗图)\n【动机维度 0.90】原始问题重点在“制作”表情包梗图,sug词条虽然是直接给出表情包,但不排除用户的制作意图,可以理解为寻找制作灵感或素材,因此动机一致。\n【品类维度 0.55】原始问题对象层为「猫咪表情包梗图」,场景层为「双标行为」。sug词条对象层为「表情包」,场景层为「怼双标的人」。对象层部分匹配(都为表情包),场景层部分匹配(都与双标相关)。内容主体有重叠。\n【延伸词维度 -0.15】原始问题聚焦于「制作」猫咪表情包梗图,且主题是「人类双标行为」。sug词条「怼双标的人表情包」将「制作」这一核心动机替换为「怼」,且未提及「猫咪」,稀释了原始问题的核心目的和对象。\n【最终得分 0.66】",
  3456. "strategy": "推荐词",
  3457. "iteration": 2,
  3458. "is_selected": true,
  3459. "scoreColor": "#22c55e",
  3460. "parentQScore": 0.4
  3461. },
  3462. "sug_可爱又双标的表情包_r2_q2_3": {
  3463. "type": "sug",
  3464. "query": "[SUG] 可爱又双标的表情包",
  3465. "level": 23,
  3466. "relevance_score": 0.68,
  3467. "evaluationReason": "【评估对象】词条\"可爱又双标的表情包\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作(表情包梗图),通过表情包梗图反映人类双标行为,主体是猫咪\n【动机维度 0.00】原始问题的核心动机是「制作」表情包梗图。sug词条「可爱又双标的表情包」没有包含任何动作意图,因此动机匹配度为0。\n【品类维度 0.85】原始问题对象层为「猫咪表情包梗图」,场景层为「人类双标行为」。sug词条对象层为「表情包」,场景层为「可爱又双标」。虽然未提及「猫咪」和「梗图」,但「双标」和「表情包」核心主体匹配,故属于部分场景层(双标)的匹配。\n【延伸词维度 0.00】sug词条未引入延伸词,所有词汇均属于原始问题作用域范围。原始问题中的“猫咪”被“可爱”所概括,而“梗图”被“表情包”所概括,均属于同义词或细化词。\n【最终得分 0.68】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  3468. "strategy": "推荐词",
  3469. "iteration": 2,
  3470. "is_selected": true,
  3471. "scoreColor": "#22c55e",
  3472. "parentQScore": 0.4
  3473. },
  3474. "sug_讽刺双标的图片_r2_q2_4": {
  3475. "type": "sug",
  3476. "query": "[SUG] 讽刺双标的图片",
  3477. "level": 23,
  3478. "relevance_score": 0.49,
  3479. "evaluationReason": "【评估对象】词条\"讽刺双标的图片\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作(猫咪表情包梗图),这个表情包梗图需用于反映/讽刺人类双标行为,因此‘制作’是核心动机,‘反映/讽刺’是目的。\n【动机维度 0.00】原始问题意图是“制作”表情包梗图,而sug词条「讽刺双标的图片」是名词描述,无明确动作意图。sug词条未包含原始问题的核心动机。\n【品类维度 0.65】原始问题核心对象为「猫咪表情包梗图」,限定词为「反映人类双标行为」。sug词核心对象为「图片」,限定词为「讽刺双标」。其中「图片」是「梗图」的泛化,且「讽刺双标」与「反映人类双标行为」高度匹配,但缺失核心对象「猫咪」的限定。覆盖度较高,但有一定泛化和缺失,故给0.65分。\n【延伸词维度 -0.15】原始问题聚焦于「猫咪表情包梗图」这一特定形式,而sug词条「图片」泛化了对象,稀释了原始问题的具体性和趣味性,属于作用域稀释型。\n【最终得分 0.49】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  3480. "strategy": "推荐词",
  3481. "iteration": 2,
  3482. "is_selected": true,
  3483. "scoreColor": "#22c55e",
  3484. "parentQScore": 0.4
  3485. },
  3486. "sug_双标梗图模板_r2_q2_5": {
  3487. "type": "sug",
  3488. "query": "[SUG] 双标梗图模板",
  3489. "level": 23,
  3490. "relevance_score": 0.29000000000000004,
  3491. "evaluationReason": "【评估对象】词条\"双标梗图模板\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作梗图\n【动机维度 0.00】原始问题是「制作」反映人类双标行为的猫咪表情包梗图,sug词条是「双标梗图模板」。sug词条没有明确的动作,可以理解为学习、查看或获取模板,与原始问题的「制作」动作方向存在差异,因此动作方向上不匹配。考虑到sug词条本身无明确动机,得分为0。\n【品类维度 0.40】原始问题对象层为「猫咪表情包梗图」,场景层为「人类双标行为」。sug词条对象层为「梗图模板」,是原始问题对象层「梗图」的泛化且增加了「模板」限定,场景层为「双标」。主体匹配但限定有所泛化。\n【延伸词维度 -0.15】原始问题聚焦于「猫咪表情包」这一特定对象,而sug词条「模板」将范围扩大到所有「双标梗图」,稀释了原始问题的核心对象,降低了内容的针对性。\n【最终得分 0.29】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  3492. "strategy": "推荐词",
  3493. "iteration": 2,
  3494. "is_selected": true,
  3495. "scoreColor": "#ef4444",
  3496. "parentQScore": 0.4
  3497. },
  3498. "sug_讽刺双标的人的文案_r2_q2_6": {
  3499. "type": "sug",
  3500. "query": "[SUG] 讽刺双标的人的文案",
  3501. "level": 23,
  3502. "relevance_score": -0.14,
  3503. "evaluationReason": "【评估对象】词条\"讽刺双标的人的文案\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作(表情包梗图)\n【动机维度 -0.05】原始问题的核心动机是「制作」表情包梗图。sug词条的动机是「讽刺双标的人的文案」,这是一种「创作」行为或「寻找」行为,与原始问题的「制作」方向有轻微偏离。原始问题侧重行为主体,sug词条侧重内容主题。\n【品类维度 -0.25】原始问题核心对象是「猫咪表情包梗图」,场景限定为「人类双标行为」。sug词条核心对象为「文案」,场景限定为「讽刺双标的人」。对象错位,且场景限定差异较大。\n【延伸词维度 -0.15】原始问题聚焦于「制作猫咪表情包梗图」这一具体行为和对象,延伸词「文案」和「讽刺双标的人」偏离了制作表情包的动作和猫咪这一核心对象,稀释了原始问题的聚焦度。\n【最终得分 -0.14】",
  3504. "strategy": "推荐词",
  3505. "iteration": 2,
  3506. "is_selected": true,
  3507. "scoreColor": "#ef4444",
  3508. "parentQScore": 0.4
  3509. },
  3510. "sug_很双标的朋友圈文案_r2_q2_7": {
  3511. "type": "sug",
  3512. "query": "[SUG] 很双标的朋友圈文案",
  3513. "level": 23,
  3514. "relevance_score": -0.19000000000000003,
  3515. "evaluationReason": "【评估对象】词条\"很双标的朋友圈文案\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作\n【动机维度 0.00】原始问题核心动机是“制作”,sug词条“朋友圈文案”无明确动作意图,因此动机维度得分设为0。\n【品类维度 -0.20】原始问题核心是《猫咪表情包梗图》,限定词有《人类双标行为》。sug词条核心是《朋友圈文案》,限定词是《很双标》。sug与原始问题的主体“猫咪表情包梗图”完全不匹配,但限定词《双标》部分匹配,因此给予负分。\n【延伸词维度 -0.15】sug词条「朋友圈文案」与原始问题「猫咪表情包梗图」在内容形式上完全不符,且「朋友」与「人类」的范围差异,稀释了原始问题的聚焦度,导致内容偏离。\n【最终得分 -0.19】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  3516. "strategy": "推荐词",
  3517. "iteration": 2,
  3518. "is_selected": true,
  3519. "scoreColor": "#ef4444",
  3520. "parentQScore": 0.4
  3521. },
  3522. "sug_这可是要砍头的表情包_r2_q2_8": {
  3523. "type": "sug",
  3524. "query": "[SUG] 这可是要砍头的表情包",
  3525. "level": 23,
  3526. "relevance_score": -0.19000000000000003,
  3527. "evaluationReason": "【评估对象】词条\"这可是要砍头的表情包\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作/生成\n【动机维度 0.00】原始问题的核心动机是「制作/生成」,sug词条「这可是要砍头的表情包」仅是一句描述性短语,没有体现任何动作或意图。\n【品类维度 -0.20】原始问题核心是关于《人类双标行为》、《猫咪表情包》以及《梗图》的主体内容。平台sug词条仅包含《表情包》,且带有负面情绪限定,主体高度不匹配。\n【延伸词维度 -0.15】sug词条「这可是要砍头的表情包」与原始问题「如何制作反映人类双标行为的猫咪表情包梗图」的核心目的和作用域完全不符,引入了无关的、具有误导性的信息,稀释了原始问题的聚焦度,属于作用域稀释型。\n【最终得分 -0.19】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  3528. "strategy": "推荐词",
  3529. "iteration": 2,
  3530. "is_selected": true,
  3531. "scoreColor": "#ef4444",
  3532. "parentQScore": 0.4
  3533. },
  3534. "sug_双标的人怎么怼_r2_q2_9": {
  3535. "type": "sug",
  3536. "query": "[SUG] 双标的人怎么怼",
  3537. "level": 23,
  3538. "relevance_score": -0.17500000000000004,
  3539. "evaluationReason": "【评估对象】词条\"双标的人怎么怼\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作(表情包梗图)\n【动机维度 0.00】原始问题意图是「制作」表情包梗图,而sug词条「怎么怼」意图是「反击/对抗」。两者动作意图完全不匹配。\n【品类维度 -0.40】原始问题内容主体为「人类双标行为」和「猫咪表情包梗图」,sug词条内容主体为「双标的人」。sug只有「双标」相关概念,缺少「猫咪表情包梗图」这一核心对象,且sug词侧重于互动反驳,与原始问题制作内容的主体含义有较大差异,存在品类错位。\n【延伸词维度 -0.15】sug词条「双标的人怎么怼」中的“怼”是延伸词,它引入了与原始问题“制作表情包梗图”完全不相关的行为,稀释了原始问题的创作和表达目的,偏离了核心需求。\n【最终得分 -0.18】",
  3540. "strategy": "推荐词",
  3541. "iteration": 2,
  3542. "is_selected": true,
  3543. "scoreColor": "#ef4444",
  3544. "parentQScore": 0.4
  3545. },
  3546. "q_梗图素材_r2_3": {
  3547. "type": "q",
  3548. "query": "[Q] 梗图素材",
  3549. "level": 22,
  3550. "relevance_score": 0.21000000000000002,
  3551. "evaluationReason": "",
  3552. "strategy": "Query",
  3553. "iteration": 2,
  3554. "is_selected": true,
  3555. "type_label": "",
  3556. "domain_index": -1,
  3557. "domain_type": ""
  3558. },
  3559. "sug_梗图素材模板_r2_q3_0": {
  3560. "type": "sug",
  3561. "query": "[SUG] 梗图素材模板",
  3562. "level": 23,
  3563. "relevance_score": 0.084,
  3564. "evaluationReason": "【评估对象】词条\"梗图素材模板\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作\n【动机维度 0.00】原始问题的核心动机是\"制作\",而sug词条\"梗图素材模板\"不包含任何动作意图,因此动机维度评分为0。\n【品类维度 0.08】原始问题涉及“猫咪表情包梗图”这一特定对象,sug词条“梗图素材模板”仅包含泛化的“梗图”对象,且限定词几乎为零,覆盖度极低。\n【延伸词维度 0.10】原始问题是制作梗图,sug词条中的“素材模板”是制作梗图的辅助工具,对原始问题有辅助作用,但非必需,属于作用域辅助型延伸词。\n【最终得分 0.08】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  3565. "strategy": "推荐词",
  3566. "iteration": 2,
  3567. "is_selected": true,
  3568. "scoreColor": "#ef4444",
  3569. "parentQScore": 0.21000000000000002
  3570. },
  3571. "sug_梗图素材抽象_r2_q3_1": {
  3572. "type": "sug",
  3573. "query": "[SUG] 梗图素材抽象",
  3574. "level": 23,
  3575. "relevance_score": 0.41000000000000003,
  3576. "evaluationReason": "【评估对象】词条\"梗图素材抽象\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作表情包梗图\n【动机维度 0.00】原始问题的核心动机是\"制作\"梗图,而sug词条只提供了\"梗图素材\",没有明确的动作意图。因此,sug词条缺失了动机层。\n【品类维度 0.55】原始问题核心对象是「猫咪表情包梗图」,限定词「反映人类双标行为」。sug词条核心对象「梗图素材」,限定词「抽象」。sug词条对象「梗图素材」与原始问题「猫咪表情包梗图」的主对象「梗图」匹配,但对象上缺失「猫咪表情包」限定词,限定词差异较大,故评为中等偏上匹配。\n【延伸词维度 -0.15】原始问题聚焦于「制作反映人类双标行为的猫咪表情包梗图」,强调了主题、对象和行为。sug词条「梗图素材抽象」中的「素材」和「抽象」是延伸词。「素材」属于作用域辅助型,对制作有辅助作用,但「抽象」与原始问题明确的「双标行为」主题相悖,稀释了原始问题的聚焦度,降低了内容的针对性,属于作用域稀释型。\n【最终得分 0.41】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  3577. "strategy": "推荐词",
  3578. "iteration": 2,
  3579. "is_selected": true,
  3580. "scoreColor": "#22c55e",
  3581. "parentQScore": 0.21000000000000002
  3582. },
  3583. "sug_梗图素材双人_r2_q3_2": {
  3584. "type": "sug",
  3585. "query": "[SUG] 梗图素材双人",
  3586. "level": 23,
  3587. "relevance_score": 0.010000000000000009,
  3588. "evaluationReason": "【评估对象】词条\"梗图素材双人\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作(表情包、梗图)\n【动机维度 0.00】sug词条「梗图素材双人」缺乏明确的动作意图。原始问题的核心动作是「制作」,sug词条虽然提及「梗图」,但无明确制作动作,因此无法评估动机匹配度。\n【品类维度 0.05】原始问题核心对象为「猫咪表情包梗图」,限定词为「反映人类双标行为」。sug词条「梗图素材双人」仅包含「梗图」这一核心对象的部分特征。内容主体匹配度极低,仅能弱关联。\n【延伸词维度 -0.15】原始问题聚焦于「猫咪表情包梗图」的制作,而sug词条「双人」引入了与原始问题对象不符的元素,稀释了对「猫咪」这一核心对象的关注,降低了内容的针对性。\n【最终得分 0.01】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  3589. "strategy": "推荐词",
  3590. "iteration": 2,
  3591. "is_selected": true,
  3592. "scoreColor": "#ef4444",
  3593. "parentQScore": 0.21000000000000002
  3594. },
  3595. "sug_梗图素材单人_r2_q3_3": {
  3596. "type": "sug",
  3597. "query": "[SUG] 梗图素材单人",
  3598. "level": 23,
  3599. "relevance_score": 0.034,
  3600. "evaluationReason": "【评估对象】词条\"梗图素材单人\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作(表情包梗图)\n【动机维度 0.00】原始问题的核心动机是“制作”表情包梗图。sug词条“梗图素材单人”仅提供了制作梗图所需的部分对象(素材),但没有包含任何动机层信息,无法评估动机匹配度。\n【品类维度 0.08】原始问题涉及“猫咪表情包梗图”和“双标行为”两个核心对象,sug词条仅包含“梗图”这一通用对象,且加入“单人”这一与原问题中“猫咪”和“双标行为”不符的限定,对象覆盖度极低并存在语义错位,为过度泛化。\n【延伸词维度 -0.15】原始问题聚焦于「制作」反映「人类双标行为」的「猫咪表情包梗图」,强调主题和内容。sug词条「素材」是制作梗图的辅助,但「单人」作为限定词,与原始问题中的「猫咪表情包」和「人类双标行为」的主题不符,稀释了原始问题的核心内容,降低了聚焦度。\n【最终得分 0.03】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  3601. "strategy": "推荐词",
  3602. "iteration": 2,
  3603. "is_selected": true,
  3604. "scoreColor": "#ef4444",
  3605. "parentQScore": 0.21000000000000002
  3606. },
  3607. "sug_梗图素材原图_r2_q3_4": {
  3608. "type": "sug",
  3609. "query": "[SUG] 梗图素材原图",
  3610. "level": 23,
  3611. "relevance_score": 0.034,
  3612. "evaluationReason": "【评估对象】词条\"梗图素材原图\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作/反映\n【动机维度 0.00】原始问题的核心动机是“制作”和“反映”梗图,而sug词条“梗图素材原图”没有明确的动作意图,仅为名词短语,因此sug词条没有动机。\n【品类维度 0.08】原始问题的核心对象为「猫咪表情包梗图」,限定词为「反映人类双标行为」。sug词条「梗图素材原图」是通用对象「梗图」的泛化概念。sug词只体现了对象层面的泛化,未包含任何重要限定词,覆盖度低。\n【延伸词维度 -0.15】原始问题聚焦于「制作」反映「人类双标行为」的「猫咪表情包梗图」这一具体创意过程。「梗图素材原图」中的「素材原图」是延伸词,它将原始问题从创意制作过程稀释为单纯的素材获取,降低了对核心创意和主题的关注度,属于作用域稀释型。\n【最终得分 0.03】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  3613. "strategy": "推荐词",
  3614. "iteration": 2,
  3615. "is_selected": true,
  3616. "scoreColor": "#ef4444",
  3617. "parentQScore": 0.21000000000000002
  3618. },
  3619. "sug_梗图素材多人_r2_q3_5": {
  3620. "type": "sug",
  3621. "query": "[SUG] 梗图素材多人",
  3622. "level": 23,
  3623. "relevance_score": -0.19000000000000003,
  3624. "evaluationReason": "【评估对象】词条\"梗图素材多人\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作表情包/梗图\n【动机维度 0.00】原始问题的核心动机是「制作」梗图,而sug词条「梗图素材多人」缺少明确的动作意图。sug词条提供了制作梗图的其中一个要素「素材」,但未体现「制作」这一核心动作,因此动机维度评分为0。\n【品类维度 -0.20】原始问题核心对象为「猫咪表情包梗图」,限定词为「人类双标行为」。sug词条核心对象为「梗图素材」,限定词「多人」。对象层部分匹配,但「多人」与「猫咪」限定词差异大且不相关,且缺乏「表情包」限定词,存在误导性。\n【延伸词维度 -0.15】原始问题聚焦于「猫咪表情包梗图」的制作,而延伸词「素材」虽然与制作相关,但「多人」限定词与原始问题中的「猫咪」对象不符,稀释了原始问题的核心对象,导致聚焦度下降。\n【最终得分 -0.19】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  3625. "strategy": "推荐词",
  3626. "iteration": 2,
  3627. "is_selected": true,
  3628. "scoreColor": "#ef4444",
  3629. "parentQScore": 0.21000000000000002
  3630. },
  3631. "sug_梗图素材画画_r2_q3_6": {
  3632. "type": "sug",
  3633. "query": "[SUG] 梗图素材画画",
  3634. "level": 23,
  3635. "relevance_score": -0.23,
  3636. "evaluationReason": "【评估对象】词条\"梗图素材画画\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作表情包梗图\n【动机维度 0.00】原始问题的核心动机是「制作」反映人类双标行为的猫咪表情包梗图。sug词条「梗图素材画画」虽然包含「梗图」和「画画」可能指代制作过程,但没有明确表达制作的动作意图。\n【品类维度 -0.25】原始问题对象层为「猫咪表情包梗图」,场景层为「反映人类双标行为」。Sug词条对象层为「梗图素材」「画画」,限定词缺失。两者主体类别差异大,且sug词过于泛化,关联性较低。\n【延伸词维度 -0.15】原始问题聚焦于「制作」特定主题的「猫咪表情包梗图」,而sug词条「素材画画」引入了与「制作」方式不符的「画画」这一延伸词,稀释了原始问题中「表情包梗图」的制作方式,降低了内容的针对性。\n【最终得分 -0.23】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  3637. "strategy": "推荐词",
  3638. "iteration": 2,
  3639. "is_selected": true,
  3640. "scoreColor": "#ef4444",
  3641. "parentQScore": 0.21000000000000002
  3642. },
  3643. "sug_梗图素材描改_r2_q3_7": {
  3644. "type": "sug",
  3645. "query": "[SUG] 梗图素材描改",
  3646. "level": 23,
  3647. "relevance_score": 0.07999999999999997,
  3648. "evaluationReason": "【评估对象】词条\"梗图素材描改\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作表情包/梗图\n【动机维度 0.35】原始问题的核心动机是「制作」反映人类双标行为的猫咪表情包梗图。sug词条「梗图素材描改」包含了「梗图」和「描改」动作,描改是制作的子集动作,动机方向相关。\n【品类维度 -0.20】原始问题核心对象为「猫咪表情包梗图」,限定词为「人类双标行为」;sug词是「梗图素材描改」,对象层面缺少「猫咪表情包」,且限定词均未覆盖。sug词仅能体现梗图的制作方式,而非内容主题。\n【延伸词维度 -0.15】原始问题聚焦于「制作」特定主题的表情包梗图,强调「人类双标行为」和「猫咪」元素。「素材描改」作为延伸词,虽然与梗图制作相关,但它将原始问题从「制作」具体内容的层面,稀释到了「素材」和「描改」这种更基础、更宽泛的制作方法上,偏离了原始问题对内容和主题的聚焦,降低了针对性。\n【最终得分 0.08】",
  3649. "strategy": "推荐词",
  3650. "iteration": 2,
  3651. "is_selected": true,
  3652. "scoreColor": "#ef4444",
  3653. "parentQScore": 0.21000000000000002
  3654. },
  3655. "sug_梗图素材表情包_r2_q3_8": {
  3656. "type": "sug",
  3657. "query": "[SUG] 梗图素材表情包",
  3658. "level": 23,
  3659. "relevance_score": 0.4,
  3660. "evaluationReason": "【评估对象】词条\"梗图素材表情包\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作\n【动机维度 0.00】原始问题意图是“制作”表情包梗图,而sug词条「梗图素材表情包」没有明确的动作意图。\n【品类维度 0.50】原始问题的核心对象是“猫咪表情包梗图”,限定词为“反映人类双标行为”。sug词条“梗图素材表情包”包含了核心对象“梗图”和“表情包”,但缺失了“猫咪”这一关键限定词,且完全缺失了“反映人类双标行为”这一具体限定,故匹配度一般。\n【延伸词维度 0.00】sug词条未引入延伸词,所有词汇均属于原始问题作用域范围。原始问题中的“表情包梗图”与sug词条中的“梗图素材表情包”在概念上是高度重合的,sug词条仅是对原始问题中对象层的重组和细化,不构成延伸。\n【最终得分 0.40】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  3661. "strategy": "推荐词",
  3662. "iteration": 2,
  3663. "is_selected": true,
  3664. "scoreColor": "#22c55e",
  3665. "parentQScore": 0.21000000000000002
  3666. },
  3667. "sug_梗图素材聊天记录_r2_q3_9": {
  3668. "type": "sug",
  3669. "query": "[SUG] 梗图素材聊天记录",
  3670. "level": 23,
  3671. "relevance_score": 0.010000000000000009,
  3672. "evaluationReason": "【评估对象】词条\"梗图素材聊天记录\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作表情包梗图\n【动机维度 0.00】原始问题的核心动机是“制作表情包梗图”。sug词条「梗图素材聊天记录」缺失了动作意图,只提供了制作梗图的其中一种材料“聊天记录”,无法识别动作,故动机维度得分为0。\n【品类维度 0.05】原始问题对象层为「猫咪表情包梗图」,场景层为「反映人类双标行为」。Sug词条对象层为「梗图素材」、「聊天记录」。Sug词条内容主体过度泛化,与原始问题的特定主体不匹配。\n【延伸词维度 -0.15】原始问题聚焦于「制作」特定主题的「猫咪表情包梗图」,强调创作过程和内容。sug词条「素材聊天记录」引入了「聊天记录」这一新的素材类型,与原始问题中「猫咪表情包」的核心对象不符,稀释了主题的聚焦度,降低了内容针对性。\n【最终得分 0.01】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  3673. "strategy": "推荐词",
  3674. "iteration": 2,
  3675. "is_selected": true,
  3676. "scoreColor": "#ef4444",
  3677. "parentQScore": 0.21000000000000002
  3678. },
  3679. "q_梗图模版_r2_4": {
  3680. "type": "q",
  3681. "query": "[Q] 梗图模版",
  3682. "level": 22,
  3683. "relevance_score": 0.19400000000000003,
  3684. "evaluationReason": "",
  3685. "strategy": "Query",
  3686. "iteration": 2,
  3687. "is_selected": true,
  3688. "type_label": "",
  3689. "domain_index": -1,
  3690. "domain_type": ""
  3691. },
  3692. "sug_梗图模版抽象_r2_q4_0": {
  3693. "type": "sug",
  3694. "query": "[SUG] 梗图模版抽象",
  3695. "level": 23,
  3696. "relevance_score": 0.034,
  3697. "evaluationReason": "【评估对象】词条\"梗图模版抽象\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作(表情包梗图)\n【动机维度 0.00】原始问题意图是“制作”梗图,而sug词条“梗图模版抽象”中没有明确的动作意图。\n【品类维度 0.08】原始问题是关于“猫咪表情包梗图”这一特定概念,sug词条“梗图模板抽象”是泛化的通用概念,仅包含核心对象“梗图”的抽象分类,缺失限定词和具体主体。因此匹配度低。\n【延伸词维度 -0.15】原始问题聚焦于「制作反映人类双标行为的猫咪表情包梗图」这一具体内容创作,而sug词条「梗图模版抽象」引入了「模版」和「抽象」两个延伸词。这两个词与原始问题中的具体创作目标关联度较低,稀释了原始问题的聚焦度,降低了内容针对性。\n【最终得分 0.03】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  3698. "strategy": "推荐词",
  3699. "iteration": 2,
  3700. "is_selected": true,
  3701. "scoreColor": "#ef4444",
  3702. "parentQScore": 0.19400000000000003
  3703. },
  3704. "sug_梗图模版双人_r2_q4_1": {
  3705. "type": "sug",
  3706. "query": "[SUG] 梗图模版双人",
  3707. "level": 23,
  3708. "relevance_score": 0.010000000000000009,
  3709. "evaluationReason": "【评估对象】词条\"梗图模版双人\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作\n【动机维度 0.00】原始问题核心动机是「制作」反映人类双标行为的猫咪表情包梗图,sug词条「梗图模版双人」无明确的动作意图。\n【品类维度 0.05】原始问题涉及“猫咪表情包梗图”,sug词为“梗图模版双人”。sug词保留了不限定主体的“梗图”这一通用对象层,但丢失了核心对象《猫咪》和限定词《表情包》《双标行为》等,未明确体现《猫咪》主题,且增加了《双人》泛化限定词,造成语义错位。\n【延伸词维度 -0.15】原始问题聚焦于「猫咪表情包梗图」的「制作」和「反映人类双标行为」这一主题。sug词条「梗图模版双人」中的「双人」是延伸词,它限定了梗图模版的人物数量,与原始问题中「猫咪表情包」和「人类双标行为」的主题不符,稀释了原始问题的聚焦度,降低了内容的针对性。\n【最终得分 0.01】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  3710. "strategy": "推荐词",
  3711. "iteration": 2,
  3712. "is_selected": true,
  3713. "scoreColor": "#ef4444",
  3714. "parentQScore": 0.19400000000000003
  3715. },
  3716. "sug_梗图模版单人_r2_q4_2": {
  3717. "type": "sug",
  3718. "query": "[SUG] 梗图模版单人",
  3719. "level": 23,
  3720. "relevance_score": -0.23,
  3721. "evaluationReason": "【评估对象】词条\"梗图模版单人\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作\n【动机维度 0.00】原始问题的核心动机是「制作」反映特定主题的猫咪表情包梗图,sug词条「梗图模版单人」仅提及「梗图模版」,无法识别任何动作意图,因此动机维度得分设为0。\n【品类维度 -0.25】原始问题对象层为「猫咪表情包梗图」,场景层为「人类双标行为」。sug词条对象层为「梗图模版」,场景层为「单人」。sug词仅有部分对象层匹配,无场景层匹配,且模版与特定主题梗图品类差距较大,有偏离性,故评为中低分。\n【延伸词维度 -0.15】原始问题聚焦于「猫咪表情包梗图」的「制作」和「反映双标行为」这一特定主题。sug词条「梗图模版单人」中的「单人」是延伸词,它限制了梗图模版的使用场景,与原始问题中未限定的「猫咪表情包梗图」存在冲突,稀释了原始问题的聚焦度,降低了内容的针对性。\n【最终得分 -0.23】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  3722. "strategy": "推荐词",
  3723. "iteration": 2,
  3724. "is_selected": true,
  3725. "scoreColor": "#ef4444",
  3726. "parentQScore": 0.19400000000000003
  3727. },
  3728. "sug_梗图模板_r2_q4_3": {
  3729. "type": "sug",
  3730. "query": "[SUG] 梗图模板",
  3731. "level": 23,
  3732. "relevance_score": 0.034,
  3733. "evaluationReason": "【评估对象】词条\"梗图模板\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】原始问题核心动机是“制作”表情包梗图。\n【动机维度 0.00】原始问题的核心动机是“制作”,sug词条“梗图模板”没有明确的动作意图,不涉及制作行为,因此动机维度评分为0。\n【品类维度 0.08】原始问题是关于《人类双标行为的猫咪表情包梗图》的具体制作,sug词条《梗图模板》过于泛化,只涵盖了梗图的通用概念,未提及猫咪、双标行为等核心要素,覆盖度低。\n【延伸词维度 -0.15】原始问题聚焦于「制作反映人类双标行为的猫咪表情包梗图」这一具体创意内容,而延伸词「模板」则将范围扩大到所有梗图,稀释了原始问题的核心创意和特定主题,降低了内容的针对性。\n【最终得分 0.03】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  3734. "strategy": "推荐词",
  3735. "iteration": 2,
  3736. "is_selected": true,
  3737. "scoreColor": "#ef4444",
  3738. "parentQScore": 0.19400000000000003
  3739. },
  3740. "sug_梗图模版三人_r2_q4_4": {
  3741. "type": "sug",
  3742. "query": "[SUG] 梗图模版三人",
  3743. "level": 23,
  3744. "relevance_score": -0.19000000000000003,
  3745. "evaluationReason": "【评估对象】词条\"梗图模版三人\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作/生成(梗图)\n【动机维度 0.00】原始问题的核心动机是「制作」反映人类双标行为的猫咪表情包梗图。sug词条「梗图模版三人」没有明确的动作意图。因此,动机维度不匹配。\n【品类维度 -0.20】原始问题核心对象是“猫咪表情包梗图”,限定词是“反映人类双标行为”;sug词条是“梗图模板三人”。sug词条只涵盖了“梗图”这一通用对象,且其限定词“三人”与原始问题的核心对象和限定词完全不符,存在品类错位。\n【延伸词维度 -0.15】原始问题聚焦于「制作反映人类双标行为的猫咪表情包梗图」这一特定主题和内容,而sug词条「梗图模版三人」中的「三人」是延伸词,它引入了与原始问题核心内容无关的限定条件,稀释了原始问题的聚焦度,降低了内容针对性。\n【最终得分 -0.19】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  3746. "strategy": "推荐词",
  3747. "iteration": 2,
  3748. "is_selected": true,
  3749. "scoreColor": "#ef4444",
  3750. "parentQScore": 0.19400000000000003
  3751. },
  3752. "sug_梗图模版表情包_r2_q4_5": {
  3753. "type": "sug",
  3754. "query": "[SUG] 梗图模版表情包",
  3755. "level": 23,
  3756. "relevance_score": 0.33000000000000007,
  3757. "evaluationReason": "【评估对象】词条\"梗图模版表情包\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作(表情包梗图),通过描绘猫咪来反映人类双标行为,其核心意图是「制作」并传达「人类双标行为」\n【动机维度 0.00】原始问题核心动机是「制作」反映特定主题的梗图。sug词条「梗图模版表情包」本身是一个名词短语,不包含任何动作意图,因此无法与原始问题的动作意图匹配。\n【品类维度 0.45】原始问题对象层为“猫咪表情包梗图”,限定词为“反映人类双标行为”;sug词条对象层为“梗图模版表情包”,与原始问题主体部分匹配,但限定词全部缺失。\n【延伸词维度 -0.15】原始问题聚焦于「制作」特定主题(人类双标行为的猫咪表情包梗图),强调创意和内容。sug词条「梗图模版表情包」引入了「模版」这一延伸词,稀释了原始问题中「制作」的创意性和个性化需求,可能导致用户偏离原创制作,转而寻找现成模版,降低了内容的针对性。\n【最终得分 0.33】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  3758. "strategy": "推荐词",
  3759. "iteration": 2,
  3760. "is_selected": true,
  3761. "scoreColor": "#22c55e",
  3762. "parentQScore": 0.19400000000000003
  3763. },
  3764. "sug_梗图模版多人_r2_q4_6": {
  3765. "type": "sug",
  3766. "query": "[SUG] 梗图模版多人",
  3767. "level": 23,
  3768. "relevance_score": -0.19000000000000003,
  3769. "evaluationReason": "【评估对象】词条\"梗图模版多人\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作(表情包梗图)\n【动机维度 0.00】原始问题的核心动机是“制作”梗图,而sug词条“梗图模版多人”没有明确的动作,无法评估动机匹配度。\n【品类维度 -0.20】原始问题核心对象是“猫咪表情包梗图”,限定词为“反映人类双标行为”。Sug词条核心对象为“梗图模版”,限定词为“多人”。核心对象存在部分匹配(梗图),但限定词完全不匹配,且“模版”与“表情包”有差异,模版更具工具性。\n【延伸词维度 -0.15】原始问题聚焦于「猫咪表情包梗图」的制作方法和主题「人类双标行为」,而sug词条「梗图模版多人」引入了「模版」和「多人」这两个延伸词。这两个延伸词与原始问题的主题和制作对象(猫咪表情包)关联度低,且「多人」与「猫咪」主题相悖,稀释了原始问题的聚焦度,降低了内容针对性。\n【最终得分 -0.19】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  3770. "strategy": "推荐词",
  3771. "iteration": 2,
  3772. "is_selected": true,
  3773. "scoreColor": "#ef4444",
  3774. "parentQScore": 0.19400000000000003
  3775. },
  3776. "sug_梗图模版四人_r2_q4_7": {
  3777. "type": "sug",
  3778. "query": "[SUG] 梗图模版四人",
  3779. "level": 23,
  3780. "relevance_score": -0.19000000000000003,
  3781. "evaluationReason": "【评估对象】词条\"梗图模版四人\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作(猫咪表情包梗图,反映人类双标行为)\n【动机维度 0.00】原始问题的核心动机是\"制作\",sug词条\"梗图模版四人\"未包含任何显性或隐性的动作意图,无法评估动作匹配度。\n【品类维度 -0.20】原始问题是关于《猫咪表情包梗图》的制作,并限定了《人类双标行为》。sug词仅有《梗图》的主体,但限定词为《四人》,与原始问题《猫咪》、《人类双标行为》的内容主体完全不匹配,存在误导性。\n【延伸词维度 -0.15】sug词条「模版」和「四人」是延伸词。「模版」与原始问题中的「制作」有一定关联,但未明确指出是表情包模版,且「四人」与猫咪表情包的主题不符,稀释了原始问题的聚焦度。\n【最终得分 -0.19】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  3782. "strategy": "推荐词",
  3783. "iteration": 2,
  3784. "is_selected": true,
  3785. "scoreColor": "#ef4444",
  3786. "parentQScore": 0.19400000000000003
  3787. },
  3788. "sug_双眼皮模版图_r2_q4_8": {
  3789. "type": "sug",
  3790. "query": "[SUG] 双眼皮模版图",
  3791. "level": 23,
  3792. "relevance_score": -0.6760000000000002,
  3793. "evaluationReason": "【评估对象】词条\"双眼皮模版图\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作(表情包梗图)\n【动机维度 0.00】原始问题的动机是“制作”表情包梗图,而sug词条「双眼皮模版图」无明确动机,侧重于“图”这一客体。\n【品类维度 -0.80】原始问题核心对象为「猫咪表情包梗图」及「双标行为」,sug词条「双眼皮模版图」与原始问题对象层和场景层均无任何关联,两者完全不属于同一品类,为严重的负向偏离。\n【延伸词维度 -0.18】sug词条「双眼皮模版图」与原始问题「制作反映人类双标行为的猫咪表情包梗图」的核心目的和作用域完全不符,引入了无关信息,严重稀释了原始问题的聚焦度,属于作用域稀释型。\n【最终得分 -0.68】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20% + 规则3:核心维度严重负向,上限=0",
  3794. "strategy": "推荐词",
  3795. "iteration": 2,
  3796. "is_selected": true,
  3797. "scoreColor": "#ef4444",
  3798. "parentQScore": 0.19400000000000003
  3799. },
  3800. "sug_梗图模版表格_r2_q4_9": {
  3801. "type": "sug",
  3802. "query": "[SUG] 梗图模版表格",
  3803. "level": 23,
  3804. "relevance_score": 0.07999999999999997,
  3805. "evaluationReason": "【评估对象】词条\"梗图模版表格\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作表情包梗图\n【动机维度 0.35】原始问题意图是「制作表情包梗图」,sug词条「梗图模版表格」提供了制作梗图的辅助工具或资源,属于实现原始意图的间接相关动作。虽然sug词条本身无明确动作,但作为制作梗图的辅助途径,有弱相关性。\n【品类维度 -0.20】原始问题核心对象是“猫咪表情包梗图”,sug词条是“梗图模板表格”。sug词条的“梗图”与核心对象部分匹配,但“模板”与“表格”限定词不符,且缺失核心实体“猫咪”,无法匹配原始问题主体形成有效匹配。\n【延伸词维度 -0.15】原始问题聚焦于「制作反映人类双标行为的猫咪表情包梗图」这一特定主题和内容,而sug词条「梗图模版表格」引入了与原始问题核心内容无关的「模版」和「表格」概念,稀释了原始问题的聚焦度,降低了内容针对性。\n【最终得分 0.08】",
  3806. "strategy": "推荐词",
  3807. "iteration": 2,
  3808. "is_selected": true,
  3809. "scoreColor": "#ef4444",
  3810. "parentQScore": 0.19400000000000003
  3811. },
  3812. "q_梗图描改_r2_5": {
  3813. "type": "q",
  3814. "query": "[Q] 梗图描改",
  3815. "level": 22,
  3816. "relevance_score": 0.192,
  3817. "evaluationReason": "",
  3818. "strategy": "Query",
  3819. "iteration": 2,
  3820. "is_selected": true,
  3821. "type_label": "",
  3822. "domain_index": -1,
  3823. "domain_type": ""
  3824. },
  3825. "sug_梗图描改接稿_r2_q5_0": {
  3826. "type": "sug",
  3827. "query": "[SUG] 梗图描改接稿",
  3828. "level": 23,
  3829. "relevance_score": -0.16500000000000004,
  3830. "evaluationReason": "【评估对象】词条\"梗图描改接稿\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作表情包/梗图\n【动机维度 -0.10】原始问题意图是「制作」梗图,sug词条「描改接稿」的「接稿」意在寻求制作服务,与用户「制作」意图方向略有偏差。\n【品类维度 -0.25】原始问题的核心对象是《人类双标行为的猫咪表情包梗图》,sug词的核心对象是《梗图描改接稿》,二者对象完全不匹配,品类冲突。\n【延伸词维度 -0.15】原始问题是关于「制作」特定主题的表情包梗图,而sug词条「描改接稿」引入了「描改」和「接稿」两个延伸词。这两个词与原始问题的「制作」行为不完全匹配,且「接稿」偏离了用户自主制作的意图,稀释了原始问题的聚焦度。\n【最终得分 -0.17】",
  3831. "strategy": "推荐词",
  3832. "iteration": 2,
  3833. "is_selected": true,
  3834. "scoreColor": "#ef4444",
  3835. "parentQScore": 0.192
  3836. },
  3837. "sug_梗图描改素材_r2_q5_1": {
  3838. "type": "sug",
  3839. "query": "[SUG] 梗图描改素材",
  3840. "level": 23,
  3841. "relevance_score": 0.034,
  3842. "evaluationReason": "【评估对象】词条\"梗图描改素材\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作(表情包梗图)\n【动机维度 0.00】原始问题意图是「制作」表情包梗图。sug词条「梗图描改素材」主要指示获取素材,没有体现出「制作」的动作意图。\n【品类维度 0.08】原始问题是关于『猫咪表情包梗图』,sug词『梗图描改素材』,原始问题具有很强的特定性,sug词泛化,只存在概念上的父子关系,因此得分很低\n【延伸词维度 -0.15】原始问题聚焦于「制作反映人类双标行为的猫咪表情包梗图」这一具体创意和内容,而sug词条「描改素材」则将重点转移到素材的获取和修改上。这稀释了原始问题中关于「双标行为」、「猫咪表情包」等核心创意和主题的关注度,降低了内容的针对性。\n【最终得分 0.03】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  3843. "strategy": "推荐词",
  3844. "iteration": 2,
  3845. "is_selected": true,
  3846. "scoreColor": "#ef4444",
  3847. "parentQScore": 0.192
  3848. },
  3849. "sug_梗图描改教程_r2_q5_2": {
  3850. "type": "sug",
  3851. "query": "[SUG] 梗图描改教程",
  3852. "level": 23,
  3853. "relevance_score": 0.705,
  3854. "evaluationReason": "【评估对象】词条\"梗图描改教程\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作(梗图)\n【动机维度 0.90】原始问题的核心动机是「制作」梗图。sug词条中的「描改」是制作梗图的一种具体方法或技巧,属于制作行为的一部分,动机高度相关。\n【品类维度 0.25】原始问题对象层为「猫咪表情包梗图」,场景层为「反映人类双标行为」。Sug词条仅提及「梗图」,对象层匹配度低,场景层缺失,覆盖度低。\n【延伸词维度 0.00】sug词条未引入延伸词,所有词汇均属于原始问题作用域范围。原始问题是关于制作梗图,sug词条的“梗图”和“教程”均属于原始问题的作用域。\n【最终得分 0.70】\n【规则说明】情况4:无延伸词,权重调整为 动机70% + 品类30%",
  3855. "strategy": "推荐词",
  3856. "iteration": 2,
  3857. "is_selected": true,
  3858. "scoreColor": "#22c55e",
  3859. "parentQScore": 0.192
  3860. },
  3861. "sug_梗图描改怎么画_r2_q5_3": {
  3862. "type": "sug",
  3863. "query": "[SUG] 梗图描改怎么画",
  3864. "level": 23,
  3865. "relevance_score": 0.105,
  3866. "evaluationReason": "【评估对象】词条\"梗图描改怎么画\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作(表情包梗图)\n【动机维度 0.40】原始问题意图是“制作”猫咪表情包梗图,sug词条意图是“画(梗图)”,两者都指代制作梗图,是相关的行为。但sug词条中包含“描改”这一具体方法,只是制作的一种,因此是相关但在方法层面有差异。\n【品类维度 -0.20】原始问题的核心内容主体是「猫咪表情包梗图」,限定词是「人类双标行为」。Sug词条是「梗图描改」,对象层面通用,未提及核心内容主体的限定词,更侧重制作方法,品类差异较大。\n【延伸词维度 -0.15】原始问题聚焦于「制作猫咪表情包梗图」这一特定主题,并强调「反映人类双标行为」。sug词条「描改怎么画」引入了「描改」这一新的制作方式,且未提及猫咪或双标行为,稀释了原始问题的核心主题和目的,属于作用域稀释型。\n【最终得分 0.10】",
  3867. "strategy": "推荐词",
  3868. "iteration": 2,
  3869. "is_selected": true,
  3870. "scoreColor": "#ef4444",
  3871. "parentQScore": 0.192
  3872. },
  3873. "sug_梗图描改模板_r2_q5_4": {
  3874. "type": "sug",
  3875. "query": "[SUG] 梗图描改模板",
  3876. "level": 23,
  3877. "relevance_score": 0.28500000000000003,
  3878. "evaluationReason": "【评估对象】词条\"梗图描改模板\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作表情包梗图\n【动机维度 0.40】原始问题意图是「制作」表情包梗图,而sug词条「梗图描改模板」虽然与「梗图」主题相关,但其核心动作是「描改模板」,与「制作」存在一定差异,描改是制作的辅助操作,所以相关联,但并非直接匹配。\n【品类维度 0.25】原始问题核心对象是《猫咪表情包梗图》,限定词是《人类双标行为》。sug词条《梗图描改模板》只包含了核心对象《梗图》,但完整度一般,没有包含任何限定词。\n【延伸词维度 -0.15】原始问题聚焦于「制作反映人类双标行为的猫咪表情包梗图」这一特定主题和内容。sug词条「描改模板」虽然与「制作」行为相关,但它将原始问题限定在「描改」这一具体方法上,且未提及「猫咪表情包」或「双标行为」等核心内容,稀释了原始问题的聚焦度,降低了内容针对性。\n【最终得分 0.29】",
  3879. "strategy": "推荐词",
  3880. "iteration": 2,
  3881. "is_selected": true,
  3882. "scoreColor": "#22c55e",
  3883. "parentQScore": 0.192
  3884. },
  3885. "sug_梗图描改约稿_r2_q5_5": {
  3886. "type": "sug",
  3887. "query": "[SUG] 梗图描改约稿",
  3888. "level": 23,
  3889. "relevance_score": 0.0050000000000000044,
  3890. "evaluationReason": "【评估对象】词条\"梗图描改约稿\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作(表情包梗图)\n【动机维度 0.00】原始问题的核心动机是\"制作\"表情包梗图。sug词条「梗图描改约稿」中的「描改」和「约稿」是两种不同行为,描改可以理解为二次创作或制作的一种方式,但「约稿」是委托他人制作。sug词条未聚焦于\"制作\",且引入了新动作「约稿」,并非核心动作。\n【品类维度 0.05】sug词条只涵盖了与原始问题相关的“梗图”这一通用对象层元素,情感色彩和主要意图与原始问题不符。原始问题更具体,要求猫咪表情包和双标行为,而sug词条未提及,造成巨大的限定词义偏差。\n【延伸词维度 -0.15】原始问题是关于“制作”特定主题的表情包梗图,强调的是创作过程和内容。sug词条中的“描改”和“约稿”是与“制作”相关的行为,但“约稿”引入了商业或委托的维度,稀释了原始问题中可能包含的个人创作或学习制作的意图。同时,“描改”是制作梗图的一种方式,但并非唯一方式,且原始问题未限定制作方式。因此,这些延伸词对原始问题的作用域有轻微稀释作用。\n【最终得分 0.01】",
  3891. "strategy": "推荐词",
  3892. "iteration": 2,
  3893. "is_selected": true,
  3894. "scoreColor": "#ef4444",
  3895. "parentQScore": 0.192
  3896. },
  3897. "sug_梗图描改原图_r2_q5_6": {
  3898. "type": "sug",
  3899. "query": "[SUG] 梗图描改原图",
  3900. "level": 23,
  3901. "relevance_score": 0.15499999999999997,
  3902. "evaluationReason": "【评估对象】词条\"梗图描改原图\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作表情包梗图\n【动机维度 0.50】原始问题意图是「制作」反映人类双标行为的猫咪表情包梗图,sug词条是「梗图描改原图」,「描改」是「制作」梗图的一种具体方法,所以动作意图相关。\n【品类维度 -0.20】原始问题核心对象是《猫咪表情包梗图》,限定词包括《人类双标行为》。sug词条核心对象为《梗图》,但限定词《描改原图》与原始问题对象的核心属性和限定词均不匹配,存在偏离。\n【延伸词维度 -0.15】原始问题聚焦于「制作反映人类双标行为的猫咪表情包梗图」这一特定主题和创意,而sug词条「描改原图」则是一个通用的制作方法,与原始问题的核心创意和主题无关,稀释了原始问题的聚焦度。\n【最终得分 0.15】",
  3903. "strategy": "推荐词",
  3904. "iteration": 2,
  3905. "is_selected": true,
  3906. "scoreColor": "#ef4444",
  3907. "parentQScore": 0.192
  3908. },
  3909. "sug_梗图描改鸡蛋_r2_q5_7": {
  3910. "type": "sug",
  3911. "query": "[SUG] 梗图描改鸡蛋",
  3912. "level": 23,
  3913. "relevance_score": -0.04000000000000002,
  3914. "evaluationReason": "【评估对象】词条\"梗图描改鸡蛋\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作表情包梗图\n【动机维度 0.35】原始问题意图是「制作」反映人类双标行为的猫咪表情包梗图。Sug词条是「梗图描改鸡蛋」,其中「梗图」与原始问题「梗图」有表面关联,但「描改」并非原始问题的「制作」。两者均涉及动作「制作」/「描改」。sug词条中的「描改」是制作的一种方式,但对象「鸡蛋」与原始问题「猫咪表情包」完全不相关。因此,动机相关但偏离。\n【品类维度 -0.50】原始问题核心对象为「猫咪表情包梗图」与「人类双标行为」,sug词条为「梗图」和「鸡蛋」。两者核心对象「猫咪表情包」和「鸡蛋」完全不匹配,差异悬殊。\n【延伸词维度 -0.15】原始问题聚焦于「猫咪表情包梗图」的「制作」和「反映双标行为」这一主题。sug词条「描改鸡蛋」引入了与原始问题主题无关的「鸡蛋」元素,稀释了原始问题的聚焦度,降低了内容的针对性。\n【最终得分 -0.04】\n【规则说明】规则3:核心维度严重负向,上限=0",
  3915. "strategy": "推荐词",
  3916. "iteration": 2,
  3917. "is_selected": true,
  3918. "scoreColor": "#ef4444",
  3919. "parentQScore": 0.192
  3920. },
  3921. "sug_抽象梗图描改_r2_q5_8": {
  3922. "type": "sug",
  3923. "query": "[SUG] 抽象梗图描改",
  3924. "level": 23,
  3925. "relevance_score": 0.192,
  3926. "evaluationReason": "【评估对象】词条\"抽象梗图描改\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作表情包梗图\n【动机维度 0.35】原始问题核心动机是制作梗图,sug词条「抽象梗图描改」包含『梗图』,且『描改』是一种制作梗图的动作。描改和制作有相关性,但不是完全一致或强相关,属于弱相关。\n【品类维度 0.08】原始问题需求“猫咪表情包梗图”这一特定对象,且“反映人类双标行为”是其场景限定。sug词条“抽象梗图描改”是抽象泛化的概念,虽有“梗图”,但核心词“描改”与原始问题的“制作”有区别,且未提及“猫咪”和“双标行为”的限定,覆盖度极低。\n【延伸词维度 -0.15】原始问题聚焦于「猫咪表情包梗图」和「人类双标行为」的结合,而sug词条「抽象梗图描改」中的「抽象」和「描改」与原始问题中的核心对象和动机关联度较低,稀释了原始问题的聚焦度。\n【最终得分 0.19】",
  3927. "strategy": "推荐词",
  3928. "iteration": 2,
  3929. "is_selected": true,
  3930. "scoreColor": "#ef4444",
  3931. "parentQScore": 0.192
  3932. },
  3933. "sug_梗图描改过程_r2_q5_9": {
  3934. "type": "sug",
  3935. "query": "[SUG] 梗图描改过程",
  3936. "level": 23,
  3937. "relevance_score": 0.46,
  3938. "evaluationReason": "【评估对象】词条\"梗图描改过程\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作梗图\n【动机维度 0.55】原始问题是「制作」梗图,sug词条是「梗图描改过程」。「描改过程」是制作梗图的一种具体方法或步骤,属于制作子集,动机相关。\n【品类维度 0.50】原始问题核心对象为「猫咪表情包梗图」,sug词条核心对象为「梗图描改过程」。「梗图」部分匹配,但sug词条未提及「猫咪表情包」及内容限定「人类双标行为」。\n【延伸词维度 -0.15】原始问题聚焦于「制作反映人类双标行为的猫咪表情包梗图」这一特定主题和内容,而sug词条「描改过程」虽然是制作梗图的一种方法,但它稀释了原始问题中「人类双标行为」和「猫咪表情包」这两个核心内容限定,使其偏离了原始问题的核心目的和聚焦度,属于作用域稀释型。\n【最终得分 0.46】",
  3939. "strategy": "推荐词",
  3940. "iteration": 2,
  3941. "is_selected": true,
  3942. "scoreColor": "#22c55e",
  3943. "parentQScore": 0.192
  3944. },
  3945. "q_表情包简笔画_r2_6": {
  3946. "type": "q",
  3947. "query": "[Q] 表情包简笔画",
  3948. "level": 22,
  3949. "relevance_score": 0.18,
  3950. "evaluationReason": "",
  3951. "strategy": "Query",
  3952. "iteration": 2,
  3953. "is_selected": true,
  3954. "type_label": "",
  3955. "domain_index": -1,
  3956. "domain_type": ""
  3957. },
  3958. "sug_表情包简笔画可爱_r2_q6_0": {
  3959. "type": "sug",
  3960. "query": "[SUG] 表情包简笔画可爱",
  3961. "level": 23,
  3962. "relevance_score": -0.19000000000000003,
  3963. "evaluationReason": "【评估对象】词条\"表情包简笔画可爱\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作(表情包梗图)\n【动机维度 0.00】原始问题的核心动机是“制作”特定主题的表情包梗图。平台sug词条“表情包简笔画可爱”未包含任何动作意图,因此动机匹配度为0。\n【品类维度 -0.20】原始问题核心对象层为「猫咪表情包梗图」,限定词为「人类双标行为」。sug词条「表情包简笔画可爱」包含对象「表情包」,但此表情包带有「简笔画」「可爱」的限定词,与原始问题中的「猫咪」「梗图」「双标行为」完全不匹配,且存在明显的风格偏差,属于品类错位。\n【延伸词维度 -0.15】原始问题聚焦于「人类双标行为」和「猫咪表情包梗图」的制作,强调内容和主题。sug词条「简笔画可爱」引入了绘画风格和情感倾向,与原始问题的内容和主题关联度较低,稀释了原始问题的核心目的,属于作用域稀释型。\n【最终得分 -0.19】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  3964. "strategy": "推荐词",
  3965. "iteration": 2,
  3966. "is_selected": true,
  3967. "scoreColor": "#ef4444",
  3968. "parentQScore": 0.18
  3969. },
  3970. "sug_表情包简笔画抽象_r2_q6_1": {
  3971. "type": "sug",
  3972. "query": "[SUG] 表情包简笔画抽象",
  3973. "level": 23,
  3974. "relevance_score": -0.19000000000000003,
  3975. "evaluationReason": "【评估对象】词条\"表情包简笔画抽象\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作(表情包梗图)\n【动机维度 0.00】原始问题的核心动机是「制作」表情包梗图,而sug词条「表情包简笔画抽象」中没有明确的动作意图。sug词条无法识别动作,因此无法评估动作匹配度。\n【品类维度 -0.20】原始问题核心对象为「猫咪表情包梗图」,限定词为「人类双标行为」。Sug词条为「表情包简笔画抽象」,核心对象是「表情包简笔画」,限定词是「抽象」。sug词条未提及猫咪、梗图及双标行为限定,且简笔画与原始需求的「梗图」差异较大,内容主体错位。\n【延伸词维度 -0.15】原始问题聚焦于「猫咪表情包梗图」的制作,强调「人类双标行为」这一主题。sug词条「简笔画」和「抽象」引入了与原始问题制作主题和风格不符的元素,稀释了原始问题的聚焦度,降低了内容的针对性。\n【最终得分 -0.19】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  3976. "strategy": "推荐词",
  3977. "iteration": 2,
  3978. "is_selected": true,
  3979. "scoreColor": "#ef4444",
  3980. "parentQScore": 0.18
  3981. },
  3982. "sug_表情包简笔画大全_r2_q6_2": {
  3983. "type": "sug",
  3984. "query": "[SUG] 表情包简笔画大全",
  3985. "level": 23,
  3986. "relevance_score": -0.19000000000000003,
  3987. "evaluationReason": "【评估对象】词条\"表情包简笔画大全\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作(表情包梗图)\n【动机维度 0.00】原始问题的核心动机是「制作」表情包梗图。sug词条「表情包简笔画大全」无明确的动作意图,因此无法评估动作匹配度。\n【品类维度 -0.20】原始问题核心对象为「猫咪表情包梗图」,限定词为「人类双标行为」。Sug词条为「表情包简笔画大全」,虽包含「表情包」,但限定词「简笔画大全」与原始问题完全不符且无「猫咪」主体词,品类有较大偏差。\n【延伸词维度 -0.15】原始问题聚焦于「人类双标行为」和「猫咪表情包梗图」的特定主题制作。sug词条「简笔画大全」引入了与原始问题主题和目的无关的绘画风格和内容,稀释了原始问题的聚焦度,降低了内容针对性。\n【最终得分 -0.19】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  3988. "strategy": "推荐词",
  3989. "iteration": 2,
  3990. "is_selected": true,
  3991. "scoreColor": "#ef4444",
  3992. "parentQScore": 0.18
  3993. },
  3994. "sug_表情包简笔画哭_r2_q6_3": {
  3995. "type": "sug",
  3996. "query": "[SUG] 表情包简笔画哭",
  3997. "level": 23,
  3998. "relevance_score": -0.3500000000000001,
  3999. "evaluationReason": "【评估对象】词条\"表情包简笔画哭\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作梗图\n【动机维度 0.00】原始问题的核心动机是「制作」梗图,sug词条「表情包简笔画哭」没有明确的动作意图。\n【品类维度 -0.40】原始问题核心对象为「猫咪表情包梗图」,限定词为「反映人类双标行为」。sug词条核心对象为「表情包」,限定词为「简笔画哭」。sug词条与原始问题仅对象「表情包」有部分重叠,限定词和更具体的对象描述完全不同且品类错位,关联度低。\n【延伸词维度 -0.15】原始问题聚焦于「人类双标行为」和「猫咪表情包梗图」的制作,强调主题和内容。sug词条「简笔画哭」引入了绘画风格和情绪,与原始问题的核心主题和制作目的关联度较低,稀释了原始问题的聚焦度。\n【最终得分 -0.35】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  4000. "strategy": "推荐词",
  4001. "iteration": 2,
  4002. "is_selected": true,
  4003. "scoreColor": "#ef4444",
  4004. "parentQScore": 0.18
  4005. },
  4006. "sug_表情包简笔画图片_r2_q6_4": {
  4007. "type": "sug",
  4008. "query": "[SUG] 表情包简笔画图片",
  4009. "level": 23,
  4010. "relevance_score": 0.010000000000000009,
  4011. "evaluationReason": "【评估对象】词条\"表情包简笔画图片\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作\n【动机维度 0.00】原始问题意图是「制作」反映人类双标行为的猫咪表情包梗图,sug词条「表情包简笔画图片」没有明确的动作意图。虽然对象都和「表情包」相关,但sug词条中无动机层,无法评估动机维度匹配度。\n【品类维度 0.05】原始问题需求「猫咪表情包梗图」,侧重主题和内容。sug词条「表情包简笔画图片」仅部分覆盖了核心对象词「表情包」,但错失了核心限定词。简笔画与原始需求关联度较低。\n【延伸词维度 -0.15】原始问题聚焦于「人类双标行为」和「猫咪表情包梗图」的特定主题制作。sug词条「简笔画图片」引入了与原始问题主题无关的绘画风格和图片类型,稀释了原始问题的核心内容和目的,属于作用域稀释型延伸词。\n【最终得分 0.01】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  4012. "strategy": "推荐词",
  4013. "iteration": 2,
  4014. "is_selected": true,
  4015. "scoreColor": "#ef4444",
  4016. "parentQScore": 0.18
  4017. },
  4018. "sug_表情包简笔画人物_r2_q6_5": {
  4019. "type": "sug",
  4020. "query": "[SUG] 表情包简笔画人物",
  4021. "level": 23,
  4022. "relevance_score": -0.19000000000000003,
  4023. "evaluationReason": "【评估对象】词条\"表情包简笔画人物\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作\n【动机维度 0.00】原始问题的核心动机是「制作」表情包梗图,而sug词条「表情包简笔画人物」没有明确的动作意图。\n【品类维度 -0.20】原始问题核心对象为「猫咪表情包梗图」,限定词为「人类双标行为」。sug词核心对象为「简笔画人物」和「表情包」,对象虽有重叠但「人物」和「猫咪」冲突,且缺失所有限定词,语义偏离。\n【延伸词维度 -0.15】原始问题聚焦于「猫咪表情包梗图」和「人类双标行为」的结合,而sug词条「简笔画人物」引入了与原始问题核心对象「猫咪」和主题「双标行为」无关的绘画风格和对象,稀释了原始问题的聚焦度,降低了内容针对性。\n【最终得分 -0.19】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  4024. "strategy": "推荐词",
  4025. "iteration": 2,
  4026. "is_selected": true,
  4027. "scoreColor": "#ef4444",
  4028. "parentQScore": 0.18
  4029. },
  4030. "sug_表情包简笔画教程_r2_q6_6": {
  4031. "type": "sug",
  4032. "query": "[SUG] 表情包简笔画教程",
  4033. "level": 23,
  4034. "relevance_score": 0.18,
  4035. "evaluationReason": "【评估对象】词条\"表情包简笔画教程\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作(表情包梗图)\n【动机维度 0.35】原始问题的核心动机是「制作」表情包梗图。sug词条的动机亦为「制作/教程」,两者在制作层面是相关的,但sug词条「简笔画」并未完全涵盖原始问题的表情包梗图,因此是弱相关。\n【品类维度 0.05】原始问题涉及“猫咪表情包梗图”和“人类双标行为”两个主要内容主体;sug词只提及“表情包”,缺失核心对象“猫咪”及所有限定词,且存在对象错位(猫咪vs简笔画)\n【延伸词维度 -0.15】原始问题聚焦于「人类双标行为」和「猫咪表情包梗图」的特定主题创作,而sug词条「简笔画教程」引入了与原始问题主题和目的关联度较低的绘画技巧,稀释了创作主题的聚焦性,属于作用域稀释型。\n【最终得分 0.18】",
  4036. "strategy": "推荐词",
  4037. "iteration": 2,
  4038. "is_selected": true,
  4039. "scoreColor": "#ef4444",
  4040. "parentQScore": 0.18
  4041. },
  4042. "sug_表情简笔画_r2_q6_7": {
  4043. "type": "sug",
  4044. "query": "[SUG] 表情简笔画",
  4045. "level": 23,
  4046. "relevance_score": 0.010000000000000009,
  4047. "evaluationReason": "【评估对象】词条\"表情简笔画\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作(表情包梗图)\n【动机维度 0.00】原始问题的核心动机是「制作」表情包梗图,而sug词条「表情简笔画」中没有明确的动作意图。sug词条提供了制作表情包的一种「素材」或「风格」,但未展现制作的动作,因此动机维度评分为0。\n【品类维度 0.05】原始问题涉及「猫咪表情包梗图」,而sug词条是「表情简笔画」。两者主题在「表情」上有轻微关联,但猫咪、梗图、双标行为等核心限定都没有体现,匹配度低。\n【延伸词维度 -0.15】原始问题聚焦于「猫咪表情包梗图」的「制作」和「反映双标行为」这一特定主题。sug词条「简笔画」作为一种绘画风格,与原始问题中的「猫咪表情包梗图」制作方法相关,但其过于宽泛,且未提及「猫咪」和「双标行为」的核心要素,稀释了原始问题的核心目的和聚焦度,属于作用域稀释型。\n【最终得分 0.01】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  4048. "strategy": "推荐词",
  4049. "iteration": 2,
  4050. "is_selected": true,
  4051. "scoreColor": "#ef4444",
  4052. "parentQScore": 0.18
  4053. },
  4054. "sug_表情包简笔画加油_r2_q6_8": {
  4055. "type": "sug",
  4056. "query": "[SUG] 表情包简笔画加油",
  4057. "level": 23,
  4058. "relevance_score": -0.09500000000000001,
  4059. "evaluationReason": "【评估对象】词条\"表情包简笔画加油\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作表情包梗图\n【动机维度 0.00】sug词条「表情包简笔画加油」的动机是“简笔画(表情包)”或“给表情包加油”,与原始问题“制作表情包梗图”的动机“制作”无关,方向不一致。\n【品类维度 -0.20】原始问题涉及「猫咪表情包梗图」这一核心主体。Sug词条仅有「表情包」与核心主体部分匹配,但增加了「简笔画」「加油」等限定词,与原始问题完全不匹配,甚至存在语义错位。\n【延伸词维度 -0.15】原始问题聚焦于「人类双标行为」和「猫咪表情包梗图」的制作,强调主题和内容。sug词条「简笔画」和「加油」与原始问题的核心主题和制作目的无关,稀释了原始问题的聚焦度,降低了内容的针对性。\n【最终得分 -0.10】",
  4060. "strategy": "推荐词",
  4061. "iteration": 2,
  4062. "is_selected": true,
  4063. "scoreColor": "#ef4444",
  4064. "parentQScore": 0.18
  4065. },
  4066. "sug_表情包简笔画开心_r2_q6_9": {
  4067. "type": "sug",
  4068. "query": "[SUG] 表情包简笔画开心",
  4069. "level": 23,
  4070. "relevance_score": -0.09500000000000001,
  4071. "evaluationReason": "【评估对象】词条\"表情包简笔画开心\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作梗图,表达含义\n【动机维度 0.00】原始问题意图是“制作”具有特定内涵的表情包梗图,sug词条「表情包简笔画开心」侧重“绘画”这一动作,并且没有明确的情绪表达目的,无法匹配,故得分为0。\n【品类维度 -0.20】原始问题核心对象为「人类双标行为的猫咪表情包梗图」。sug词条「表情包简笔画开心」对象为「表情包」,但限定词与原始问题无关且对象带有「简笔画」属性,与要求不符。\n【延伸词维度 -0.15】sug词条「简笔画」和「开心」与原始问题「反映人类双标行为的猫咪表情包梗图」的核心目的和主题不符,稀释了原始问题的聚焦度,降低了内容的针对性。\n【最终得分 -0.10】",
  4072. "strategy": "推荐词",
  4073. "iteration": 2,
  4074. "is_selected": true,
  4075. "scoreColor": "#ef4444",
  4076. "parentQScore": 0.18
  4077. },
  4078. "q_双标图片_r2_7": {
  4079. "type": "q",
  4080. "query": "[Q] 双标图片",
  4081. "level": 22,
  4082. "relevance_score": 0.17,
  4083. "evaluationReason": "",
  4084. "strategy": "Query",
  4085. "iteration": 2,
  4086. "is_selected": true,
  4087. "type_label": "",
  4088. "domain_index": -1,
  4089. "domain_type": ""
  4090. },
  4091. "sug_讽刺双标的图片_r2_q7_0": {
  4092. "type": "sug",
  4093. "query": "[SUG] 讽刺双标的图片",
  4094. "level": 23,
  4095. "relevance_score": 0.49,
  4096. "evaluationReason": "【评估对象】词条\"讽刺双标的图片\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作(猫咪表情包梗图),这个表情包梗图需用于反映/讽刺人类双标行为,因此‘制作’是核心动机,‘反映/讽刺’是目的。\n【动机维度 0.00】原始问题意图是“制作”表情包梗图,而sug词条「讽刺双标的图片」是名词描述,无明确动作意图。sug词条未包含原始问题的核心动机。\n【品类维度 0.65】原始问题核心对象为「猫咪表情包梗图」,限定词为「反映人类双标行为」。sug词核心对象为「图片」,限定词为「讽刺双标」。其中「图片」是「梗图」的泛化,且「讽刺双标」与「反映人类双标行为」高度匹配,但缺失核心对象「猫咪」的限定。覆盖度较高,但有一定泛化和缺失,故给0.65分。\n【延伸词维度 -0.15】原始问题聚焦于「猫咪表情包梗图」这一特定形式,而sug词条「图片」泛化了对象,稀释了原始问题的具体性和趣味性,属于作用域稀释型。\n【最终得分 0.49】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  4097. "strategy": "推荐词",
  4098. "iteration": 2,
  4099. "is_selected": true,
  4100. "scoreColor": "#22c55e",
  4101. "parentQScore": 0.17
  4102. },
  4103. "sug_暗示双标的图片_r2_q7_1": {
  4104. "type": "sug",
  4105. "query": "[SUG] 暗示双标的图片",
  4106. "level": 23,
  4107. "relevance_score": 0.24999999999999997,
  4108. "evaluationReason": "【评估对象】词条\"暗示双标的图片\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作(表情包梗图)\n【动机维度 0.00】原始问题的核心动机是「制作」表情包梗图,而sug词条「暗示双标的图片」中不包含明确的动作意图,因此无法评估动作匹配度。\n【品类维度 0.35】sug词条只包含了原始问题中的【双标】和【图】两个核心概念,缺失了特指的【猫咪表情包】。sug词条范围过于宽泛,导致内容主体性匹配度不高。\n【延伸词维度 -0.15】原始问题聚焦于「猫咪表情包梗图」这一特定形式,而sug词条「暗示双标的图片」将范围扩大到所有图片,稀释了原始问题的核心对象「猫咪表情包梗图」,降低了内容的针对性。\n【最终得分 0.25】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  4109. "strategy": "推荐词",
  4110. "iteration": 2,
  4111. "is_selected": true,
  4112. "scoreColor": "#22c55e",
  4113. "parentQScore": 0.17
  4114. },
  4115. "sug_双标搞笑图片_r2_q7_2": {
  4116. "type": "sug",
  4117. "query": "[SUG] 双标搞笑图片",
  4118. "level": 23,
  4119. "relevance_score": 0.29000000000000004,
  4120. "evaluationReason": "【评估对象】词条\"双标搞笑图片\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作(表情包梗图)\n【动机维度 0.00】sug词条《双标搞笑图片》无明确动作意图,只包含对象和场景信息,无法评估其动作匹配度。\n【品类维度 0.40】原始问题对象层为「猫咪表情包梗图」和「人类双标行为」,场景层无。Sug词条包含「双标」和「图片」,与原始问题中的核心要素有部分重合,但缺失「猫咪」和「梗图」的特定性。\n【延伸词维度 -0.15】原始问题聚焦于「猫咪表情包梗图」的制作,强调「人类双标行为」这一主题。sug词条「搞笑图片」虽然与「梗图」有一定关联,但缺少了「猫咪」和「表情包」这两个核心对象,且「制作」的动机也未体现,稀释了原始问题的具体性和目的性。\n【最终得分 0.29】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  4121. "strategy": "推荐词",
  4122. "iteration": 2,
  4123. "is_selected": true,
  4124. "scoreColor": "#22c55e",
  4125. "parentQScore": 0.17
  4126. },
  4127. "sug_讽刺双标的人的文案_r2_q7_3": {
  4128. "type": "sug",
  4129. "query": "[SUG] 讽刺双标的人的文案",
  4130. "level": 23,
  4131. "relevance_score": -0.14,
  4132. "evaluationReason": "【评估对象】词条\"讽刺双标的人的文案\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作(表情包梗图)\n【动机维度 -0.05】原始问题的核心动机是「制作」表情包梗图。sug词条的动机是「讽刺双标的人的文案」,这是一种「创作」行为或「寻找」行为,与原始问题的「制作」方向有轻微偏离。原始问题侧重行为主体,sug词条侧重内容主题。\n【品类维度 -0.25】原始问题核心对象是「猫咪表情包梗图」,场景限定为「人类双标行为」。sug词条核心对象为「文案」,场景限定为「讽刺双标的人」。对象错位,且场景限定差异较大。\n【延伸词维度 -0.15】原始问题聚焦于「制作猫咪表情包梗图」这一具体行为和对象,延伸词「文案」和「讽刺双标的人」偏离了制作表情包的动作和猫咪这一核心对象,稀释了原始问题的聚焦度。\n【最终得分 -0.14】",
  4133. "strategy": "推荐词",
  4134. "iteration": 2,
  4135. "is_selected": true,
  4136. "scoreColor": "#ef4444",
  4137. "parentQScore": 0.17
  4138. },
  4139. "sug_双标梗_r2_q7_4": {
  4140. "type": "sug",
  4141. "query": "[SUG] 双标梗",
  4142. "level": 23,
  4143. "relevance_score": 0.27999999999999997,
  4144. "evaluationReason": "【评估对象】词条\"双标梗\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作\n【动机维度 0.00】sug词条「双标梗」是名词短语,无法识别出明确的动作意图,因此无法与原始问题的动作「制作」进行动机匹配,得分为0。\n【品类维度 0.35】原始问题涉及“双标行为”和“梗图”,Sug词条包含“双标梗”,对象层有部分匹配,但缺失了核心的“猫咪表情包”限定,覆盖度较低。\n【延伸词维度 0.00】sug词条未引入延伸词,所有词汇均属于原始问题作用域范围。\n【最终得分 0.28】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  4145. "strategy": "推荐词",
  4146. "iteration": 2,
  4147. "is_selected": true,
  4148. "scoreColor": "#22c55e",
  4149. "parentQScore": 0.17
  4150. },
  4151. "sug_双标是什么意思_r2_q7_5": {
  4152. "type": "sug",
  4153. "query": "[SUG] 双标是什么意思",
  4154. "level": 23,
  4155. "relevance_score": 0.0050000000000000044,
  4156. "evaluationReason": "【评估对象】词条\"双标是什么意思\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】「制作」猫咪表情包梗图,用于「反映」人类双标行为。核心动作是「制作」和「反映」\n【动机维度 0.00】原始问题的核心动机是「制作」和「反映」。sug词条「双标是什么意思」的核心动机是「了解/理解」。sug词条仅包含原始问题的主题「双标」,但没有围绕原始问题的核心动作「制作」或「反映」提供任何动机支持,因此动机不匹配。\n【品类维度 0.05】原始问题核心是《猫咪表情包梗图制作》,限定词是《人类双标行为》。sug词条仅包含《双标》,与原始问题的核心对象层《猫咪表情包梗图》几乎无关,覆盖度极低。\n【延伸词维度 -0.15】sug词条「双标是什么意思」中的「是什么意思」是延伸词,它将原始问题从「制作」行为转移到「解释」概念,稀释了原始问题制作梗图的聚焦度,降低了内容针对性。\n【最终得分 0.01】",
  4157. "strategy": "推荐词",
  4158. "iteration": 2,
  4159. "is_selected": true,
  4160. "scoreColor": "#ef4444",
  4161. "parentQScore": 0.17
  4162. },
  4163. "sug_形容双标人的文案_r2_q7_6": {
  4164. "type": "sug",
  4165. "query": "[SUG] 形容双标人的文案",
  4166. "level": 23,
  4167. "relevance_score": -0.09500000000000001,
  4168. "evaluationReason": "【评估对象】词条\"形容双标人的文案\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作梗图,表达双标行为\n【动机维度 0.00】原始问题的动机是「制作」反映双标行为的表情包梗图,sug词条的动机是「形容」双标人的文案。原始问题与sug词条的动作意图完全不同,动机不匹配。\n【品类维度 -0.20】原始问题核心是《猫咪表情包梗图》,sug词条是《文案》,品类完全不匹配。原始问题包含《双标行为/人》的限定,sug词条包含《双标人》的限定,限定词部分重合,但主体偏差大,且sug词条无法涵盖原始问题核心对象。\n【延伸词维度 -0.15】原始问题聚焦于「制作」猫咪表情包梗图,而sug词条「形容双标人的文案」将主题从制作行为和猫咪表情包转移到文案本身,且与「梗图」的视觉表达形式不符,稀释了原始问题的核心目的和对象。\n【最终得分 -0.10】",
  4169. "strategy": "推荐词",
  4170. "iteration": 2,
  4171. "is_selected": true,
  4172. "scoreColor": "#ef4444",
  4173. "parentQScore": 0.17
  4174. },
  4175. "sug_内涵双标的文案_r2_q7_7": {
  4176. "type": "sug",
  4177. "query": "[SUG] 内涵双标的文案",
  4178. "level": 23,
  4179. "relevance_score": 0.010000000000000009,
  4180. "evaluationReason": "【评估对象】词条\"内涵双标的文案\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作/创造反映人类双标行为的猫咪表情包梗图\n【动机维度 0.00】原始问题的核心动机是\"制作\"带有特定主题(双标行为)的图片内容,而sug词条是\"内涵\"(理解/包含)某种文案。sug词条无明确动作意图\n【品类维度 0.05】原始问题核心对象是《猫咪表情包梗图》,次要对象是《人类双标行为》,sug词条仅包含《双标》这一核心名词,未包含完整的对象层核心词和所有限定词,且存在语义错位。\n【延伸词维度 -0.15】原始问题聚焦于制作「猫咪表情包梗图」以反映「人类双标行为」,而sug词条「内涵双标的文案」将重点从「猫咪表情包梗图」转移到「文案」,且未提及「猫咪」或「表情包」,稀释了原始问题的核心对象和目的,属于作用域稀释型。\n【最终得分 0.01】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  4181. "strategy": "推荐词",
  4182. "iteration": 2,
  4183. "is_selected": true,
  4184. "scoreColor": "#ef4444",
  4185. "parentQScore": 0.17
  4186. },
  4187. "sug_卡皮巴拉100种可爱图片_r2_q7_8": {
  4188. "type": "sug",
  4189. "query": "[SUG] 卡皮巴拉100种可爱图片",
  4190. "level": 23,
  4191. "relevance_score": -0.56,
  4192. "evaluationReason": "【评估对象】词条\"卡皮巴拉100种可爱图片\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作(表情包梗图)\n【动机维度 0.00】原始问题的核心动机是“制作”表情包梗图,而sug词条“卡皮巴拉100种可爱图片”没有任何动作或动机。sug词条不包含动作意图,因此动机匹配度为0。\n【品类维度 -0.55】原始问题对象层为「猫咪表情包梗图」,场景层为「人类双标行为」;sug词条对象层为「卡皮巴拉图片」,场景层为「可爱」。二者核心对象和限定词完全不匹配,品类冲突。\n【延伸词维度 -0.60】原始问题聚焦于「制作反映人类双标行为的猫咪表情包梗图」,核心是「猫咪表情包」和「双标行为」的结合,以及「制作」这一动作。sug词条「卡皮巴拉100种可爱图片」引入了「卡皮巴拉」这一全新的对象,且「可爱图片」与「表情包梗图」及「双标行为」的内涵完全不符。这不仅是无关,更是对原始问题核心内容的严重稀释和偏离,导致用户目的完全无法达成,属于强负向延伸。\n【最终得分 -0.56】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20% + 规则3:核心维度严重负向,上限=0",
  4193. "strategy": "推荐词",
  4194. "iteration": 2,
  4195. "is_selected": true,
  4196. "scoreColor": "#ef4444",
  4197. "parentQScore": 0.17
  4198. },
  4199. "sug_双标_r2_q7_9": {
  4200. "type": "sug",
  4201. "query": "[SUG] 双标",
  4202. "level": 23,
  4203. "relevance_score": 0.2,
  4204. "evaluationReason": "【评估对象】词条\"双标\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作表情包梗图\n【动机维度 0.00】sug词条「双标」是原始问题的部分对象,无明确动作意图,无法评估动作匹配度。\n【品类维度 0.25】sug词条《双标》是原始问题中核心限定词之一,体现了部分场景层信息。但缺失原始问题中的核心对象《表情包》《梗图》以及限定词《人类行为》《猫咪》等,覆盖度较低。\n【延伸词维度 0.00】sug词条未引入延伸词,所有词汇均属于原始问题作用域范围。原始问题中的“双标”是核心概念,sug词条“双标”是其同义词,不构成延伸。\n【最终得分 0.20】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  4205. "strategy": "推荐词",
  4206. "iteration": 2,
  4207. "is_selected": true,
  4208. "scoreColor": "#22c55e",
  4209. "parentQScore": 0.17
  4210. },
  4211. "q_表情包图片大全_r2_8": {
  4212. "type": "q",
  4213. "query": "[Q] 表情包图片大全",
  4214. "level": 22,
  4215. "relevance_score": 0.17,
  4216. "evaluationReason": "",
  4217. "strategy": "Query",
  4218. "iteration": 2,
  4219. "is_selected": true,
  4220. "type_label": "",
  4221. "domain_index": -1,
  4222. "domain_type": ""
  4223. },
  4224. "sug_表情包图片大全简笔画_r2_q8_0": {
  4225. "type": "sug",
  4226. "query": "[SUG] 表情包图片大全简笔画",
  4227. "level": 23,
  4228. "relevance_score": -0.19000000000000003,
  4229. "evaluationReason": "【评估对象】词条\"表情包图片大全简笔画\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作\n【动机维度 0.00】原始问题的核心动机是「制作」表情包梗图,而sug词条并没有包含明确的动作意图。因此,sug词条与原始问题在动机上不匹配。\n【品类维度 -0.20】原始问题核心对象是“猫咪表情包梗图”,限定词是“反映人类双标行为”。Sug词为“表情包图片大全简笔画”,“表情包”部分匹配,但“简笔画”与原始问题的主体“猫咪”和限定词“双标行为梗图”完全不符。\n【延伸词维度 -0.15】原始问题聚焦于「制作」反映「人类双标行为」的「猫咪表情包梗图」,强调内容和创意。sug词条「图片大全」和「简笔画」与原始问题的核心目的「制作」和「内容创意」关联度低,反而引入了无关的素材形式和风格,稀释了原始问题的聚焦度,降低了内容的针对性。\n【最终得分 -0.19】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  4230. "strategy": "推荐词",
  4231. "iteration": 2,
  4232. "is_selected": true,
  4233. "scoreColor": "#ef4444",
  4234. "parentQScore": 0.17
  4235. },
  4236. "sug_表情包图片大全微信_r2_q8_1": {
  4237. "type": "sug",
  4238. "query": "[SUG] 表情包图片大全微信",
  4239. "level": 23,
  4240. "relevance_score": -0.12000000000000001,
  4241. "evaluationReason": "【评估对象】词条\"表情包图片大全微信\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作\n【动机维度 -0.05】原始问题意图是「制作」特定内容的表情包,而Sug词条是「获取/寻找」表情包图片大全。两种意图虽都与表情包相关,但动作方向不同,一个为制作,一个为寻找。\n【品类维度 -0.20】原始问题核心对象为「人类双标行为的猫咪表情包梗图」,场景限定为「反映人类双标行为」。sug词条「表情包图片大全微信」核心对象为「表情包图片」,限定词为「大全」、「微信」。sug词仅泛化匹配到「表情包图片」,但原始问题有更具体的限定,且sug词的限定「微信」与原始问题无关。这种泛化且包含无关限定导致偏离。\n【延伸词维度 -0.15】sug词条「图片大全」和「微信」与原始问题「制作反映人类双标行为的猫咪表情包梗图」的核心目的和作用域完全不符,引入了无关信息,稀释了原始问题的聚焦度,降低了内容针对性。\n【最终得分 -0.12】",
  4242. "strategy": "推荐词",
  4243. "iteration": 2,
  4244. "is_selected": true,
  4245. "scoreColor": "#ef4444",
  4246. "parentQScore": 0.17
  4247. },
  4248. "sug_表情包图片大全抽象_r2_q8_2": {
  4249. "type": "sug",
  4250. "query": "[SUG] 表情包图片大全抽象",
  4251. "level": 23,
  4252. "relevance_score": -0.19000000000000003,
  4253. "evaluationReason": "【评估对象】词条\"表情包图片大全抽象\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作\n【动机维度 0.00】原始问题的核心动机是「制作」表情包,而sug词条「表情包图片大全抽象」没有明确的动机,无法与原始问题进行动机匹配。\n【品类维度 -0.20】原始问题求《猫咪表情包梗图》,含对象「猫咪表情包」和限定「梗图」。sug词条为《表情包图片大全抽象》,对象为「表情包图片」,限定为「大全」和「抽象」。sug词仅泛化匹配对象「表情包」,但限定词与原始问题不相关、甚至有轻微偏差,缺失核心「猫咪」和「梗图」。\n【延伸词维度 -0.15】原始问题聚焦于「制作」特定主题的「猫咪表情包梗图」,而sug词条「图片大全抽象」引入了与制作无关的「大全」和与猫咪表情包主题不符的「抽象」概念,稀释了原始问题的聚焦度。\n【最终得分 -0.19】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  4254. "strategy": "推荐词",
  4255. "iteration": 2,
  4256. "is_selected": true,
  4257. "scoreColor": "#ef4444",
  4258. "parentQScore": 0.17
  4259. },
  4260. "sug_表情包图片大全可爱_r2_q8_3": {
  4261. "type": "sug",
  4262. "query": "[SUG] 表情包图片大全可爱",
  4263. "level": 23,
  4264. "relevance_score": 0.010000000000000009,
  4265. "evaluationReason": "【评估对象】词条\"表情包图片大全可爱\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作(表情包梗图)\n【动机维度 0.00】原始问题的核心动机是「制作」表情包梗图。平台sug词条「表情包图片大全可爱」不包含明确的动作意图。因此,动机维度不匹配,得分为0。\n【品类维度 0.05】sug词条仅包含核心对象“表情包”,但缺失了原始问题中的所有限定词,如“人类双标行为”、“猫咪”、“梗图”。对象匹配度低,且缺失所有场景和具体修饰,导致覆盖度低。\n【延伸词维度 -0.15】原始问题聚焦于「制作」特定主题的「猫咪表情包梗图」,强调「人类双标行为」这一核心概念。sug词条「表情包图片大全可爱」中的「图片大全」和「可爱」是延伸词,它们稀释了原始问题中「制作」和「人类双标行为」的特定性与目的性,将需求泛化为普通的表情包浏览,降低了内容的针对性。\n【最终得分 0.01】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  4266. "strategy": "推荐词",
  4267. "iteration": 2,
  4268. "is_selected": true,
  4269. "scoreColor": "#ef4444",
  4270. "parentQScore": 0.17
  4271. },
  4272. "sug_表情包图片大全动态_r2_q8_4": {
  4273. "type": "sug",
  4274. "query": "[SUG] 表情包图片大全动态",
  4275. "level": 23,
  4276. "relevance_score": -0.19000000000000003,
  4277. "evaluationReason": "【评估对象】词条\"表情包图片大全动态\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作\n【动机维度 0.00】原始问题的核心动机是“制作”,而sug词条无明确动作意图,只提供了“图片大全”的搜索方向。因此,sug词条与原始问题的制作动机不匹配。\n【品类维度 -0.20】原始问题主体为《人类双标行为的猫咪表情包梗图》,sug词条主体为《表情包图片》。sug词条过度泛化,丢失了核心对象《猫咪》和限定词《人类双标行为》、《梗图》,且仅提及“图片”而忽略了“动态”,存在错位。\n【延伸词维度 -0.15】原始问题聚焦于「制作」特定主题的「猫咪表情包梗图」,而sug词条「图片大全动态」引入了「图片大全」和「动态」这两个延伸词。这两个延伸词与原始问题的「制作」和「梗图」目的关联度低,稀释了原始问题的聚焦度,降低了内容针对性。\n【最终得分 -0.19】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  4278. "strategy": "推荐词",
  4279. "iteration": 2,
  4280. "is_selected": true,
  4281. "scoreColor": "#ef4444",
  4282. "parentQScore": 0.17
  4283. },
  4284. "sug_表情包图片大全素材_r2_q8_5": {
  4285. "type": "sug",
  4286. "query": "[SUG] 表情包图片大全素材",
  4287. "level": 23,
  4288. "relevance_score": 0.19400000000000003,
  4289. "evaluationReason": "【评估对象】词条\"表情包图片大全素材\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作\n【动机维度 0.00】原始问题意图是「制作」表情包,sug词条「表情包图片大全素材」无明确动作意图,仅提供素材,与制作动作不匹配。\n【品类维度 0.28】sug词条「表情包图片大全素材」包含了原始问题中的核心对象词「表情包」和「素材」。但缺失了所有的限定词,包括「人类双标行为」、「猫咪」、「梗图」等」等,覆盖度较低,故中低分。\n【延伸词维度 -0.15】原始问题聚焦于「制作」特定主题的「猫咪表情包梗图」,强调「人类双标行为」这一创意核心。sug词条「表情包图片大全素材」中的「图片大全素材」是延伸词,它将原始问题从「制作」行为和「双标行为」主题,稀释为泛泛的「素材」获取,降低了内容的针对性和创意性,属于作用域稀释型。\n【最终得分 0.19】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  4290. "strategy": "推荐词",
  4291. "iteration": 2,
  4292. "is_selected": true,
  4293. "scoreColor": "#22c55e",
  4294. "parentQScore": 0.17
  4295. },
  4296. "sug_表情包图片大全搞笑_r2_q8_6": {
  4297. "type": "sug",
  4298. "query": "[SUG] 表情包图片大全搞笑",
  4299. "level": 23,
  4300. "relevance_score": 0.034,
  4301. "evaluationReason": "【评估对象】词条\"表情包图片大全搞笑\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作表情包\n【动机维度 0.00】原始问题意图是「制作」反映特定主题的表情包。sug词条「图片大全」没有明确的动作,无法评估动作匹配度。\n【品类维度 0.08】原始问题涉及“猫咪表情包梗图”的特定制作目的,sug词条“表情包图片大全搞笑”是通用概念,仅包含“表情包图片”,缺失核心主体“猫咪”和“梗图”等限定,且无明确限定词,覆盖度低。\n【延伸词维度 -0.15】原始问题聚焦于「制作」特定主题的「猫咪表情包梗图」,强调「人类双标行为」这一核心概念。「图片大全搞笑」作为延伸词,与原始问题中的「制作」和「人类双标行为」主题无关,稀释了原始问题的目的性和聚焦度,属于作用域稀释型。\n【最终得分 0.03】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  4302. "strategy": "推荐词",
  4303. "iteration": 2,
  4304. "is_selected": true,
  4305. "scoreColor": "#ef4444",
  4306. "parentQScore": 0.17
  4307. },
  4308. "sug_ch表情包图片大全_r2_q8_7": {
  4309. "type": "sug",
  4310. "query": "[SUG] ch表情包图片大全",
  4311. "level": 23,
  4312. "relevance_score": -0.039999999999999994,
  4313. "evaluationReason": "【评估对象】词条\"ch表情包图片大全\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作(表情包梗图)\n【动机维度 0.00】原始问题的核心动机是“制作”表情包梗图,而sug词条「ch表情包图片大全」仅涉及“图片大全”的“获取”或“查看”或“寻找”,无明确制作类动作意图,因此不匹配。\n【品类维度 0.05】原始问题对象层为「猫咪表情包梗图」,场景层为「反映人类双标行为」。Sug词条为「ch表情包图片大全」,对象层为「表情包图片」。sug词条仅在对象层有部分重合,无猫咪、无双标行为等限定,主体过于泛化。\n【延伸词维度 -0.60】原始问题聚焦于「制作反映人类双标行为的猫咪表情包梗图」这一特定主题和创作行为。sug词条「ch表情包图片大全」中的「ch」和「图片大全」均为延伸词。「ch」与原始问题无任何关联,属于无关信息。「图片大全」虽然与「表情包」相关,但原始问题是「制作」,而非「获取大全」,且未限定「ch」类型,因此「图片大全」稀释了原始问题的创作目的,并引入了不相关的限定。\n【最终得分 -0.04】",
  4314. "strategy": "推荐词",
  4315. "iteration": 2,
  4316. "is_selected": true,
  4317. "scoreColor": "#ef4444",
  4318. "parentQScore": 0.17
  4319. },
  4320. "sug_开心表情包图片大全_r2_q8_8": {
  4321. "type": "sug",
  4322. "query": "[SUG] 开心表情包图片大全",
  4323. "level": 23,
  4324. "relevance_score": 0.010000000000000009,
  4325. "evaluationReason": "【评估对象】词条\"开心表情包图片大全\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作表情包梗图\n【动机维度 0.00】原始问题是“制作”表情包梗图,而sug词条是“开心表情包图片大全”,sug词条仅提供了表情包本身作为对象,无任何意图动作,无法匹配原始问题的制作意图。\n【品类维度 0.05】原始问题需求是制作『反映人类双标行为的猫咪表情包梗图』,sug词条仅有『开心表情包图片大全』,只覆盖了对象层中的“表情包”,但丢失了“猫咪”、“梗图”、“双标行为”等所有核心限定词,为过度泛化词,故得分较低分值,得分低。\n【延伸词维度 -0.15】原始问题聚焦于「制作」特定主题的「猫咪表情包梗图」,而sug词条「开心表情包图片大全」引入了「开心」这一情绪限定,且将「制作」目的替换为「图片大全」的浏览需求,稀释了原始问题的核心目的和主题。\n【最终得分 0.01】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  4326. "strategy": "推荐词",
  4327. "iteration": 2,
  4328. "is_selected": true,
  4329. "scoreColor": "#ef4444",
  4330. "parentQScore": 0.17
  4331. },
  4332. "sug_表情包图片大全打印素材_r2_q8_9": {
  4333. "type": "sug",
  4334. "query": "[SUG] 表情包图片大全打印素材",
  4335. "level": 23,
  4336. "relevance_score": -0.23,
  4337. "evaluationReason": "【评估对象】词条\"表情包图片大全打印素材\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作\n【动机维度 0.00】原始问题核心动机是「制作」反映双标行为的猫咪表情包梗图,sug词条「表情包图片大全打印素材」无明确的动作意图。\n【品类维度 -0.25】原始问题涉及“猫咪表情包梗图”和“双标行为”语义,sug词为“表情包图片大全打印素材”,主体词“表情包”匹配,但限定词“猫咪”、“双标行为”完全不匹配,反而增加了“图片大全”、“打印”、“素材”等不相关限定,造成核心语义偏离。\n【延伸词维度 -0.15】原始问题聚焦于「制作」特定主题的「猫咪表情包梗图」,而sug词条「图片大全」和「打印素材」与原始问题的「制作」和「反映人类双标行为的猫咪表情包梗图」的核心目的关联度低,且「打印素材」引入了与制作无关的新维度,稀释了原始问题的聚焦度。\n【最终得分 -0.23】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  4338. "strategy": "推荐词",
  4339. "iteration": 2,
  4340. "is_selected": true,
  4341. "scoreColor": "#ef4444",
  4342. "parentQScore": 0.17
  4343. },
  4344. "q_梗图meme_r2_9": {
  4345. "type": "q",
  4346. "query": "[Q] 梗图meme",
  4347. "level": 22,
  4348. "relevance_score": 0.17,
  4349. "evaluationReason": "",
  4350. "strategy": "Query",
  4351. "iteration": 2,
  4352. "is_selected": true,
  4353. "type_label": "",
  4354. "domain_index": -1,
  4355. "domain_type": ""
  4356. },
  4357. "sug_梗图meme双人_r2_q9_0": {
  4358. "type": "sug",
  4359. "query": "[SUG] 梗图meme双人",
  4360. "level": 23,
  4361. "relevance_score": 0.17,
  4362. "evaluationReason": "【评估对象】词条\"梗图meme双人\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作(表情包梗图)\n【动机维度 0.00】原始问题的核心动机是“制作”梗图,而sug词条「梗图meme双人」是纯名词短语,无法识别出任何明确的动作意图。因此,sug词条在该维度不具有评估价值。\n【品类维度 0.25】原始问题涉及“猫咪表情包梗图”,sug词条仅包含“梗图”,对象层匹配度低,且缺失所有限定词(人类双标行为、猫咪)。\n【延伸词维度 -0.15】延伸词“meme”是“梗图”的同义词,不构成延伸。延伸词“双人”与原始问题中的“猫咪表情包”和“人类双标行为”无关,稀释了原始问题的聚焦度,降低了内容针对性。\n【最终得分 0.17】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  4363. "strategy": "推荐词",
  4364. "iteration": 2,
  4365. "is_selected": true,
  4366. "scoreColor": "#ef4444",
  4367. "parentQScore": 0.17
  4368. },
  4369. "sug_梗图meme模板_r2_q9_1": {
  4370. "type": "sug",
  4371. "query": "[SUG] 梗图meme模板",
  4372. "level": 23,
  4373. "relevance_score": 0.010000000000000009,
  4374. "evaluationReason": "【评估对象】词条\"梗图meme模板\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作\n【动机维度 0.00】原始问题意图是「制作」反映特定主题的梗图,sug词条「梗图meme模板」只提及了制作的对象,没有包含任何动作意图,动机完全不匹配。\n【品类维度 0.05】原始问题是关于《人类双标行为的猫咪表情包梗图》制作,包含对象层【梗图】和多个限定词。sug词条仅包含对象层【梗图】的泛化词【梗图meme模板】,缺失所有限定词,且匹配度弱。\n【延伸词维度 -0.15】原始问题聚焦于「制作反映人类双标行为的猫咪表情包梗图」这一具体内容和主题,而sug词条「梗图meme模板」则过于宽泛,仅提供了制作梗图的通用工具,稀释了原始问题中关于「猫咪表情包」和「人类双标行为」的核心内容,降低了内容的针对性。\n【最终得分 0.01】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  4375. "strategy": "推荐词",
  4376. "iteration": 2,
  4377. "is_selected": true,
  4378. "scoreColor": "#ef4444",
  4379. "parentQScore": 0.17
  4380. },
  4381. "sug_心理疾病meme梗图_r2_q9_2": {
  4382. "type": "sug",
  4383. "query": "[SUG] 心理疾病meme梗图",
  4384. "level": 23,
  4385. "relevance_score": 0.010000000000000009,
  4386. "evaluationReason": "【评估对象】词条\"心理疾病meme梗图\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】原始问题的核心动机是「制作」或「生产」一种特定的表情包/梗图,目的是「反映」人类双标行为。\n【动机维度 0.00】原始问题的动机是「制作」或「反映」,而sug词条「心理疾病meme梗图」没有明确的动作意图,仅是名词短语,因此动机维度得分设为0。\n【品类维度 0.05】原始问题核心对象是“人类双标行为”结合“猫咪表情包梗图”,sug词条核心对象是“心理疾病meme梗图”。两者都是梗图,但核心内容主体风马牛不相及,仅“梗图”是共通对象,无法有效匹配。因此给低分。\n【延伸词维度 -0.15】原始问题聚焦于「猫咪表情包梗图」和「人类双标行为」,而sug词条引入了「心理疾病」这一完全不相关的概念,稀释了原始问题的核心主题,属于作用域稀释型。\n【最终得分 0.01】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  4387. "strategy": "推荐词",
  4388. "iteration": 2,
  4389. "is_selected": true,
  4390. "scoreColor": "#ef4444",
  4391. "parentQScore": 0.17
  4392. },
  4393. "sug_梗图meme素材_r2_q9_3": {
  4394. "type": "sug",
  4395. "query": "[SUG] 梗图meme素材",
  4396. "level": 23,
  4397. "relevance_score": 0.37,
  4398. "evaluationReason": "【评估对象】词条\"梗图meme素材\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作(表情包梗图)\n【动机维度 0.00】原始问题的核心动机是「制作」表情包梗图,而sug词条「梗图meme素材」中不包含明确的动作意图,因此无法进行动作匹配度的评估,动机维度得分为0。\n【品类维度 0.50】原始问题对象层为「人类双标行为的猫咪表情包梗图」,sug词条对象层为「梗图meme素材」。sug词仅覆盖「梗图」且泛化为「素材」,缺失全部限定词,但核心对象匹配度匹配。\n【延伸词维度 -0.15】原始问题聚焦于「制作」特定主题的「猫咪表情包梗图」,强调创作过程和内容。sug词条「梗图meme素材」将重点从「制作」转移到「素材」,且「meme」与「梗图」重复,稀释了原始问题中「制作」这一核心动机,并引入了原始问题未明确提及的「素材」这一新维度,降低了内容的针对性。\n【最终得分 0.37】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  4399. "strategy": "推荐词",
  4400. "iteration": 2,
  4401. "is_selected": true,
  4402. "scoreColor": "#22c55e",
  4403. "parentQScore": 0.17
  4404. },
  4405. "sug_梗图meme悲伤自嘲_r2_q9_4": {
  4406. "type": "sug",
  4407. "query": "[SUG] 梗图meme悲伤自嘲",
  4408. "level": 23,
  4409. "relevance_score": 0.17,
  4410. "evaluationReason": "【评估对象】词条\"梗图meme悲伤自嘲\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作/反映\n【动机维度 0.00】原始问题意图是「制作」反映人类双标行为的猫咪表情包梗图。sug词条「梗图meme悲伤自嘲」不包含明确的动作意图。\n【品类维度 0.25】原始问题对象层为「表情包梗图」,场景层为「猫咪」和「反映人类双标行为」。sug词条包含「梗图」,但其限定词「悲伤自嘲」与原始问题的限定词相去甚远,且缺失「猫咪」这一核心场景元素。\n【延伸词维度 -0.15】原始问题聚焦于制作「反映人类双标行为的猫咪表情包梗图」,强调了制作方法和具体内容。sug词条「悲伤自嘲」引入了新的情感维度,与原始问题中「双标行为」和「猫咪表情包」的核心内容关联度较低,稀释了原始问题的聚焦度,属于作用域稀释型。\n【最终得分 0.17】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  4411. "strategy": "推荐词",
  4412. "iteration": 2,
  4413. "is_selected": true,
  4414. "scoreColor": "#ef4444",
  4415. "parentQScore": 0.17
  4416. },
  4417. "sug_梗图meme代餐_r2_q9_5": {
  4418. "type": "sug",
  4419. "query": "[SUG] 梗图meme代餐",
  4420. "level": 23,
  4421. "relevance_score": 0.17,
  4422. "evaluationReason": "【评估对象】词条\"梗图meme代餐\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作\n【动机维度 0.00】原始问题的核心动机是\"制作\"但sug词条\"梗图meme代餐\"中未包含任何动作意图,因此无法进行动作匹配。\n【品类维度 0.25】原始问题对象层为“猫咪表情包梗图”,场景层为“反映人类双标行为”。Sug词条只有“梗图”,对象层匹配度低,限定词完全缺失,过于宽泛泛匹配。\n【延伸词维度 -0.15】sug词条「meme代餐」与原始问题「猫咪表情包梗图」在概念上存在重叠,但「代餐」一词引入了新的、与原始问题制作梗图目的不符的维度,稀释了原始问题的聚焦度,降低了内容的针对性。\n【最终得分 0.17】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  4423. "strategy": "推荐词",
  4424. "iteration": 2,
  4425. "is_selected": true,
  4426. "scoreColor": "#ef4444",
  4427. "parentQScore": 0.17
  4428. },
  4429. "sug_梗图meme学习_r2_q9_6": {
  4430. "type": "sug",
  4431. "query": "[SUG] 梗图meme学习",
  4432. "level": 23,
  4433. "relevance_score": 0.18,
  4434. "evaluationReason": "【评估对象】词条\"梗图meme学习\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作(表情包梗图)\n【动机维度 0.35】原始问题的核心动机是学习「制作」梗图,sug词条的动机是「学习」梗图。制作和学习梗图在动机上是弱相关的,学习可以为制作提供理论基础,但并非直接同义或强相关。\n【品类维度 0.05】原始问题核心对象是「反映人类双标行为的猫咪表情包梗图」,sug词条仅包含通用词「梗图」,缺失核心对象「猫咪表情包」及限定词。匹配度很低。\n【延伸词维度 -0.15】原始问题聚焦于「制作」特定主题的「猫咪表情包梗图」,而sug词条的「meme学习」虽然与「梗图」相关,但「学习」这一动机与原始问题的「制作」存在偏差,且「meme」是「梗图」的同义词,未引入新的有益信息,反而稀释了原始问题中「猫咪表情包」和「双标行为」的特定主题,导致聚焦度下降。\n【最终得分 0.18】",
  4435. "strategy": "推荐词",
  4436. "iteration": 2,
  4437. "is_selected": true,
  4438. "scoreColor": "#ef4444",
  4439. "parentQScore": 0.17
  4440. },
  4441. "sug_焦虑症meme梗图_r2_q9_7": {
  4442. "type": "sug",
  4443. "query": "[SUG] 焦虑症meme梗图",
  4444. "level": 23,
  4445. "relevance_score": -0.19000000000000003,
  4446. "evaluationReason": "【评估对象】词条\"焦虑症meme梗图\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作表情包梗图\n【动机维度 0.00】原始问题意图是「制作」反映人类双标行为的猫咪表情包梗图。Sug词条「焦虑症meme梗图」无明确动作意图,因此动机匹配度为0。\n【品类维度 -0.20】原始问题核心对象是《猫咪表情包梗图》和《人类双标行为》,sug词是《焦虑症meme梗图》。sug词的主体《焦虑症》与原始问题主体《猫咪》和《人类双标行为》基本无关联,品类冲突。\n【延伸词维度 -0.15】sug词条「焦虑症」和「meme」与原始问题中的「人类双标行为」和「猫咪表情包梗图」无直接关联,引入了不相关的概念,稀释了原始问题的聚焦度。\n【最终得分 -0.19】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  4447. "strategy": "推荐词",
  4448. "iteration": 2,
  4449. "is_selected": true,
  4450. "scoreColor": "#ef4444",
  4451. "parentQScore": 0.17
  4452. },
  4453. "sug_精神疾病meme梗图_r2_q9_8": {
  4454. "type": "sug",
  4455. "query": "[SUG] 精神疾病meme梗图",
  4456. "level": 23,
  4457. "relevance_score": -0.19000000000000003,
  4458. "evaluationReason": "【评估对象】词条\"精神疾病meme梗图\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作(表情包梗图)\n【动机维度 0.00】原始问题的核心动机是【制作】表情包梗图,sug词条无法识别明确的动作意图。虽然都与meme梗图有关,但动机维度上sug词条未覆盖原始问题的动作需求,因此动机维度评分为0。\n【品类维度 -0.20】原始问题核心对象为「猫咪表情包梗图」,限定词为「反映人类双标行为」。sug词条核心对象为「梗图」,限定词为「精神疾病meme」。二者对象虽然都包含「梗图」,但其核心限定词「猫咪表情包」和「精神疾病meme」完全不同,且有误导性。\n【延伸词维度 -0.15】原始问题聚焦于「人类双标行为」和「猫咪表情包梗图」的制作,而sug词条「精神疾病meme梗图」引入了与原始问题主题无关的「精神疾病」概念,稀释了原始问题的聚焦度,降低了内容针对性。\n【最终得分 -0.19】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  4459. "strategy": "推荐词",
  4460. "iteration": 2,
  4461. "is_selected": true,
  4462. "scoreColor": "#ef4444",
  4463. "parentQScore": 0.17
  4464. },
  4465. "sug_梗图meme原创_r2_q9_9": {
  4466. "type": "sug",
  4467. "query": "[SUG] 梗图meme原创",
  4468. "level": 23,
  4469. "relevance_score": 0.654,
  4470. "evaluationReason": "【评估对象】词条\"梗图meme原创\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作\n【动机维度 0.90】原始问题核心动机是“制作”一份特殊的“表情包/梗图”,sug词条「梗图meme原创」也包含“原创/制作”和“梗图”,因此动机高度匹配。\n【品类维度 0.08】原始问题涉及“猫咪表情包梗图”的制作,主体是“猫咪表情包梗图”及“人类双标行为”这一限定。sug词条“梗图meme原创”仅包含宽泛的主体“梗图”,缺失了“猫咪表情包”及“人类双标行为”等所有限定词,匹配度低。\n【延伸词维度 0.00】sug词条未引入延伸词,所有词汇均属于原始问题作用域范围。原始问题中的“梗图”与sug词条中的“梗图meme”是同义词,不构成延伸。\n【最终得分 0.65】\n【规则说明】情况4:无延伸词,权重调整为 动机70% + 品类30%",
  4471. "strategy": "推荐词",
  4472. "iteration": 2,
  4473. "is_selected": true,
  4474. "scoreColor": "#22c55e",
  4475. "parentQScore": 0.17
  4476. },
  4477. "q_梗图分享_r2_10": {
  4478. "type": "q",
  4479. "query": "[Q] 梗图分享",
  4480. "level": 22,
  4481. "relevance_score": 0.085,
  4482. "evaluationReason": "",
  4483. "strategy": "Query",
  4484. "iteration": 2,
  4485. "is_selected": true,
  4486. "type_label": "",
  4487. "domain_index": -1,
  4488. "domain_type": ""
  4489. },
  4490. "sug_恋与深空同人图资源分享_r2_q10_0": {
  4491. "type": "sug",
  4492. "query": "[SUG] 恋与深空同人图资源分享",
  4493. "level": 23,
  4494. "relevance_score": -0.36000000000000004,
  4495. "evaluationReason": "【评估对象】词条\"恋与深空同人图资源分享\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作\n【动机维度 -0.20】原始问题的核心动机是\"制作\"表情包梗图,而sug词条的动机是\"分享\"资源,两者动作方向不同,但都涉及创作或内容流转,因此得分-0.2。\n【品类维度 -0.50】原始问题是关于《猫咪表情包》制作,sug词是《恋与深空同人图》。两者核心对象和限定词完全不匹配,品类完全冲突,主题完全不同,负相关。\n【延伸词维度 -0.60】原始问题是关于「制作反映人类双标行为的猫咪表情包梗图」,核心是「制作」、「猫咪表情包」、「双标行为」。sug词条「恋与深空同人图资源分享」中的「恋与深空」、「同人图」、「资源分享」均与原始问题的作用域完全不符,引入了全新的、不相关的概念,严重稀释了原始问题的聚焦度,且无任何辅助作用,属于强负向延伸。\n【最终得分 -0.36】\n【规则说明】规则3:核心维度严重负向,上限=0",
  4496. "strategy": "推荐词",
  4497. "iteration": 2,
  4498. "is_selected": true,
  4499. "scoreColor": "#ef4444",
  4500. "parentQScore": 0.085
  4501. },
  4502. "sug_早安分享图片_r2_q10_1": {
  4503. "type": "sug",
  4504. "query": "[SUG] 早安分享图片",
  4505. "level": 23,
  4506. "relevance_score": -0.21500000000000002,
  4507. "evaluationReason": "【评估对象】词条\"早安分享图片\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作(表情包梗图)\n【动机维度 0.00】原始问题的核心动机是「制作」,而sug词条「早安分享图片」的核心动机是「分享」。两者动作意图完全不匹配,且sug词条未包含原始问题制作表情包的任何意图。\n【品类维度 -0.50】原始问题主要对象是“猫咪表情包梗图”和“人类双标行为”,场景限定是“制作”。sug词条是“早安分享图片”,两者对象和场景均不匹配,品类显著错位。\n【延伸词维度 -0.15】原始问题聚焦于「制作反映人类双标行为的猫咪表情包梗图」这一特定创意内容,而sug词条「早安分享图片」则是一个宽泛且与原始问题核心内容无关的日常分享行为。该延伸词引入了与原始问题完全不相关的概念,稀释了原始问题的聚焦度,降低了内容针对性,使其偏离了核心目的。\n【最终得分 -0.22】\n【规则说明】规则3:核心维度严重负向,上限=0",
  4508. "strategy": "推荐词",
  4509. "iteration": 2,
  4510. "is_selected": true,
  4511. "scoreColor": "#ef4444",
  4512. "parentQScore": 0.085
  4513. },
  4514. "sug_定制分享图_r2_q10_2": {
  4515. "type": "sug",
  4516. "query": "[SUG] 定制分享图",
  4517. "level": 23,
  4518. "relevance_score": 0.07999999999999997,
  4519. "evaluationReason": "【评估对象】词条\"定制分享图\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作(表情包梗图)\n【动机维度 0.35】原始问题的核心动机是“制作”表情包梗图,而sug词条是“定制”分享图。“制作”与“定制”虽然都含“创作”之意,但“定制”更侧重个性化或特定需求,与“制作”属弱相关,方向上有一定程度的偏差。\n【品类维度 -0.20】原始问题核心对象为「猫咪表情包梗图」,限定词为「人类双标行为」。sug词条「定制分享图」与核心对象及限定词均不匹配,品类错位。\n【延伸词维度 -0.15】原始问题聚焦于「制作」反映人类双标行为的「猫咪表情包梗图」这一具体内容创作过程。「定制分享图」中的「定制」与「制作」有部分重叠,但「分享图」是结果而非制作过程,且未提及「猫咪表情包梗图」这一核心对象。延伸词「分享图」将重点从「制作」转移到「分享」,且未包含原始问题的核心对象,稀释了原始问题的聚焦度。\n【最终得分 0.08】",
  4520. "strategy": "推荐词",
  4521. "iteration": 2,
  4522. "is_selected": true,
  4523. "scoreColor": "#ef4444",
  4524. "parentQScore": 0.085
  4525. },
  4526. "sug_图纸分享_r2_q10_3": {
  4527. "type": "sug",
  4528. "query": "[SUG] 图纸分享",
  4529. "level": 23,
  4530. "relevance_score": -0.35500000000000004,
  4531. "evaluationReason": "【评估对象】词条\"图纸分享\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作\n【动机维度 0.00】原始问题的核心动机是「制作」反映人类双标行为的猫咪表情包梗图。sug词条「图纸分享」的核心动机是「分享」。两个动作不相关。\n【品类维度 -0.85】原始问题对象层为「猫咪表情包梗图」,场景层为「人类双标行为」;Sug词条对象层为「图纸」。两者核心主体完全不匹配,品类冲突严重,方向完全错误。\n【延伸词维度 -0.15】原始问题是关于「制作」表情包梗图,而sug词条「图纸分享」引入了与制作无关的「分享」行为,且「图纸」与「表情包梗图」概念不符,稀释了原始问题的聚焦度。\n【最终得分 -0.36】\n【规则说明】规则3:核心维度严重负向,上限=0",
  4532. "strategy": "推荐词",
  4533. "iteration": 2,
  4534. "is_selected": true,
  4535. "scoreColor": "#ef4444",
  4536. "parentQScore": 0.085
  4537. },
  4538. "sug_meme梗图分享_r2_q10_4": {
  4539. "type": "sug",
  4540. "query": "[SUG] meme梗图分享",
  4541. "level": 23,
  4542. "relevance_score": 0.21000000000000002,
  4543. "evaluationReason": "【评估对象】词条\"meme梗图分享\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作(表情包梗图)\n【动机维度 0.25】原始问题的核心动机是「制作」meme梗图。sug词条「meme梗图分享」的动机是「分享」。分享是制作后的相关步骤,但并非核心动机,属于弱相关。\n【品类维度 0.25】原始问题对象层为“猫咪表情包梗图”,场景层为“反映人类双标行为”;sug词只包含“meme梗图”,属于对象层的泛化,场景层完全缺失。sug词过度泛化。\n【延伸词维度 -0.15】原始问题聚焦于「制作」特定主题的表情包梗图,而sug词条「分享」则引入了新的行为维度,且未提及猫咪和双标行为,稀释了原始问题的核心目的和主题。\n【最终得分 0.21】",
  4544. "strategy": "推荐词",
  4545. "iteration": 2,
  4546. "is_selected": true,
  4547. "scoreColor": "#22c55e",
  4548. "parentQScore": 0.085
  4549. },
  4550. "sug_拼豆豆图纸分享_r2_q10_5": {
  4551. "type": "sug",
  4552. "query": "[SUG] 拼豆豆图纸分享",
  4553. "level": 23,
  4554. "relevance_score": -0.75,
  4555. "evaluationReason": "【评估对象】词条\"拼豆豆图纸分享\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作/生成\n【动机维度 -0.70】原始问题的核心动机是「制作反映人类双标行为的猫咪表情包梗图」,sug词条的动机是「分享」拼豆豆图纸,两者动作意图完全不相关,且制作与分享方向相反。\n【品类维度 -0.85】原始问题对象层为「猫咪表情包梗图」,场景层为「人类双标行为」。sug词条对象层为「拼豆豆图纸」,两者在对象层完全不匹配,品类冲突严重,无任何关联。\n【延伸词维度 -0.60】原始问题聚焦于「猫咪表情包梗图」的「制作」和「反映人类双标行为」这一主题。sug词条「拼豆豆图纸分享」引入了完全不相关的「拼豆豆」这一制作形式和「图纸分享」这一行为,与原始问题的核心对象、动机和主题均不符,属于典型的作用域稀释型延伸词,且稀释程度高。\n【最终得分 -0.75】\n【规则说明】规则3:核心维度严重负向,上限=0",
  4556. "strategy": "推荐词",
  4557. "iteration": 2,
  4558. "is_selected": true,
  4559. "scoreColor": "#ef4444",
  4560. "parentQScore": 0.085
  4561. },
  4562. "sug_买断图分享_r2_q10_6": {
  4563. "type": "sug",
  4564. "query": "[SUG] 买断图分享",
  4565. "level": 23,
  4566. "relevance_score": -0.5650000000000001,
  4567. "evaluationReason": "【评估对象】词条\"买断图分享\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作/形成\n【动机维度 -0.70】原始问题核心动机是「制作」或「形成」,而sug词条「买断图分享」的核心动机是「买断」(购买)与「分享」。两者动作意图完全相反。\n【品类维度 -0.50】原始问题是关于“猫咪表情包梗图”的制作,以及其主题“人类双标行为”,对象层为“猫咪表情包梗图”。Sug词为“买断图分享”,仅提及“图”且无任何限定词,与原始问题的核心对象和特定主题均不匹配,存在品类错位。\n【延伸词维度 -0.15】原始问题聚焦于「制作」猫咪表情包梗图,而sug词条「买断图分享」引入了与制作无关的「买断」和「分享」概念,稀释了原始问题的核心目的,属于作用域稀释型。\n【最终得分 -0.57】\n【规则说明】规则3:核心维度严重负向,上限=0",
  4568. "strategy": "推荐词",
  4569. "iteration": 2,
  4570. "is_selected": true,
  4571. "scoreColor": "#ef4444",
  4572. "parentQScore": 0.085
  4573. },
  4574. "sug_拼豆图纸分享_r2_q10_7": {
  4575. "type": "sug",
  4576. "query": "[SUG] 拼豆图纸分享",
  4577. "level": 23,
  4578. "relevance_score": -0.38000000000000006,
  4579. "evaluationReason": "【评估对象】词条\"拼豆图纸分享\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作(表情包梗图)\n【动机维度 0.00】原始问题的核心动机是「制作」表情包梗图。sug词条「拼豆图纸分享」的核心动机是「分享」图纸,两者动作意图完全不匹配。\n【品类维度 -0.80】原始问题是关于《猫咪表情包梗图》制作,涉及对象层《梗图》和场景层《猫咪》、《双标行为》。Sug词是《拼豆图纸分享》,对象层为《图纸》,与原始问题对象《梗图》品类完全不符,无任何关联性。\n【延伸词维度 -0.60】sug词条「拼豆图纸分享」与原始问题「制作反映人类双标行为的猫咪表情包梗图」在主题、内容和目的上完全不相关,引入了与原始问题无关的全新概念,严重稀释了原始问题的聚焦度,导致内容完全偏离,属于作用域稀释型。\n【最终得分 -0.38】\n【规则说明】规则3:核心维度严重负向,上限=0",
  4580. "strategy": "推荐词",
  4581. "iteration": 2,
  4582. "is_selected": true,
  4583. "scoreColor": "#ef4444",
  4584. "parentQScore": 0.085
  4585. },
  4586. "sug_日常分享图片_r2_q10_8": {
  4587. "type": "sug",
  4588. "query": "[SUG] 日常分享图片",
  4589. "level": 23,
  4590. "relevance_score": -0.12000000000000001,
  4591. "evaluationReason": "【评估对象】词条\"日常分享图片\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作表情包梗图\n【动机维度 -0.05】原始问题意图是「制作」特定内容的表情包梗图。sug词条「日常分享图片」的意图是「分享」图片,虽然都涉及图片,但原始问题是重在创作和产出,sug词条重在传播,两者方向存在偏移。因此,评分为-0.05。\n【品类维度 -0.20】原始问题需「猫咪表情包梗图」,涉及特定内容、主题和形式。sug词「日常分享图片」泛化度过高,无法体现特定创作对象或主题,存在明显错位,故得分较低。\n【延伸词维度 -0.15】sug词条「日常分享图片」中的「日常分享」和「图片」均与原始问题「制作反映人类双标行为的猫咪表情包梗图」的核心目的和具体对象不符,引入了无关信息,稀释了原始问题的聚焦度,属于作用域稀释型延伸词。\n【最终得分 -0.12】",
  4592. "strategy": "推荐词",
  4593. "iteration": 2,
  4594. "is_selected": true,
  4595. "scoreColor": "#ef4444",
  4596. "parentQScore": 0.085
  4597. },
  4598. "sug_自截分享图_r2_q10_9": {
  4599. "type": "sug",
  4600. "query": "[SUG] 自截分享图",
  4601. "level": 23,
  4602. "relevance_score": -0.015,
  4603. "evaluationReason": "【评估对象】词条\"自截分享图\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作表情包梗图\n【动机维度 0.00】原始问题主要动机是《制作》梗图,而sug词条《自截分享图》中《自截》与《制作》有部分关联,但《分享》部分和原始问题不匹配,且无法完全替代原始问题的动机。\n【品类维度 0.00】原始问题主要对象是“猫咪表情包梗图”,限定词是“人类双标行为”;sug词是“自截分享图”。二者内容主体差异极大,无关联性。\n【延伸词维度 -0.15】原始问题是关于「制作」特定主题的表情包梗图,而sug词条「自截分享图」与制作行为无关,且未提及猫咪或双标行为,稀释了原始问题的核心目的和主题。\n【最终得分 -0.01】",
  4604. "strategy": "推荐词",
  4605. "iteration": 2,
  4606. "is_selected": true,
  4607. "scoreColor": "#ef4444",
  4608. "parentQScore": 0.085
  4609. },
  4610. "q_猫咪表情包梗图_r2_11": {
  4611. "type": "q",
  4612. "query": "[Q] 猫咪表情包梗图",
  4613. "level": 22,
  4614. "relevance_score": 0.23399999999999999,
  4615. "evaluationReason": "",
  4616. "strategy": "Query",
  4617. "iteration": 2,
  4618. "is_selected": true,
  4619. "type_label": "",
  4620. "domain_index": -1,
  4621. "domain_type": "D3"
  4622. },
  4623. "sug_猫咪表情包_r2_q11_0": {
  4624. "type": "sug",
  4625. "query": "[SUG] 猫咪表情包",
  4626. "level": 23,
  4627. "relevance_score": 0.48,
  4628. "evaluationReason": "【评估对象】词条\"猫咪表情包\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作(表情包、梗图)\n【动机维度 0.00】原始问题的核心动机是「制作」表情包和梗图,而sug词条「猫咪表情包」是一个名词,没有明确的动作意图,因此无法评估动作匹配度。\n【品类维度 0.60】sug词条「猫咪表情包」与原始问题在对象层「猫咪表情包」完全匹配。虽然sug词条未涵盖原始问题中所有限定词(如「人类双标行为」、「梗图」),导致覆盖度非100%,但核心对象一致。\n【延伸词维度 0.00】sug词条未引入延伸词,所有词汇均属于原始问题作用域范围。\n【最终得分 0.48】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  4629. "strategy": "推荐词",
  4630. "iteration": 2,
  4631. "is_selected": true,
  4632. "scoreColor": "#22c55e",
  4633. "parentQScore": 0.23399999999999999
  4634. },
  4635. "sug_猫咪表情包图片_r2_q11_1": {
  4636. "type": "sug",
  4637. "query": "[SUG] 猫咪表情包图片",
  4638. "level": 23,
  4639. "relevance_score": 0.52,
  4640. "evaluationReason": "【评估对象】词条\"猫咪表情包图片\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作(表情包梗图)\n【动机维度 0.00】原始问题的核心动机是“制作”表情包梗图,而sug词条「猫咪表情包图片」仅为一个对象描述,没有体现任何动作意图。sug词条缺失动机层,故动机维度匹配度为0。\n【品类维度 0.65】原始问题对象层为“猫咪表情包梗图”,限定词有“人类双标行为”;Sug词仅包含“猫咪表情包图片”,对象匹配但在场景限定上缺失“人类双标行为”和“梗图”更具体的限定,覆盖度适中。\n【延伸词维度 0.00】sug词条未引入延伸词,所有词汇均属于原始问题作用域范围。原始问题核心是“猫咪表情包”,sug词条中的“猫咪表情包”是核心对象,而“图片”是其表现形式,属于细化,不构成延伸。\n【最终得分 0.52】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  4641. "strategy": "推荐词",
  4642. "iteration": 2,
  4643. "is_selected": true,
  4644. "scoreColor": "#22c55e",
  4645. "parentQScore": 0.23399999999999999
  4646. },
  4647. "sug_猫咪咪表情包图片_r2_q11_2": {
  4648. "type": "sug",
  4649. "query": "[SUG] 猫咪咪表情包图片",
  4650. "level": 23,
  4651. "relevance_score": 0.41000000000000003,
  4652. "evaluationReason": "【评估对象】词条\"猫咪咪表情包图片\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】「制作」猫咪表情包梗图,反映人类双标行为\n【动机维度 0.00】原始问题的核心动机是「制作」反映人类双标行为的猫咪表情包梗图。sug词条「猫咪咪表情包图片」没有明确的动作意图。\n【品类维度 0.55】原始问题对象层为“猫咪表情包梗图”,限定词为“反映人类双标行为”;sug词对象层为“猫咪咪表情包图片”,未包含任何限定词。对象层匹配,但sug词未包含限定词,覆盖度低。\n【延伸词维度 -0.15】原始问题聚焦于「制作」反映「人类双标行为」的「猫咪表情包梗图」,强调制作方法和特定主题。sug词条「猫咪咪表情包图片」将「制作」和「人类双标行为」这两个核心动机和限定条件稀释,仅保留了「猫咪表情包」这一对象,且将「梗图」替换为更宽泛的「图片」,降低了内容的针对性和深度,属于作用域稀释型。\n【最终得分 0.41】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  4653. "strategy": "推荐词",
  4654. "iteration": 2,
  4655. "is_selected": true,
  4656. "scoreColor": "#22c55e",
  4657. "parentQScore": 0.23399999999999999
  4658. },
  4659. "sug_猫咪搞笑表情包_r2_q11_3": {
  4660. "type": "sug",
  4661. "query": "[SUG] 猫咪搞笑表情包",
  4662. "level": 23,
  4663. "relevance_score": 0.44999999999999996,
  4664. "evaluationReason": "【评估对象】词条\"猫咪搞笑表情包\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作(表情包梗图)\n【动机维度 0.00】原始问题的核心动机是「制作」表情包梗图,而sug词条「猫咪搞笑表情包」并没有体现任何动作意图,因此动机匹配度为0。\n【品类维度 0.60】原始问题对象层为「人类双标行为的猫咪表情包梗图」,场景层无。sug词条对象层为「猫咪搞笑表情包」,场景层无。sug词条的主体词「猫咪表情包」与原始问题主体词「猫咪表情包」匹配,但sug词「搞笑」无法涵盖原始问题「人类双标行为」这一限定。覆盖度计算:1/2=50%。\n【延伸词维度 -0.15】原始问题聚焦于“反映人类双标行为”这一特定主题的猫咪表情包梗图制作。sug词条“搞笑”虽然是表情包的常见属性,但它稀释了原始问题中“双标行为”这一核心概念的聚焦度,使其偏离了原始问题的特定目的,属于作用域稀释型。\n【最终得分 0.45】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  4665. "strategy": "推荐词",
  4666. "iteration": 2,
  4667. "is_selected": true,
  4668. "scoreColor": "#22c55e",
  4669. "parentQScore": 0.23399999999999999
  4670. },
  4671. "sug_猫咪表情包梗图搞笑_r2_q11_4": {
  4672. "type": "sug",
  4673. "query": "[SUG] 猫咪表情包梗图搞笑",
  4674. "level": 23,
  4675. "relevance_score": 0.6000000000000001,
  4676. "evaluationReason": "【评估对象】词条\"猫咪表情包梗图搞笑\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作表情包梗图\n【动机维度 0.00】原始问题的核心动机是“制作”表情包梗图,而sug词条「猫咪表情包梗图搞笑」并未包含明确的动作意图,仅是对内容或主题的描述,因此无法评估动作匹配度。\n【品类维度 0.75】原始问题对象层为「猫咪表情包梗图」,限定词为「反映人类双标行为」。sug词条「猫咪表情包梗图搞笑」包含了原始问题的完整对象层「猫咪表情包梗图」,但在限定词上,sug词条的「搞笑」是新的限定词,原始问题则无此限定,覆盖度适中故给0.75分。\n【延伸词维度 0.00】sug词条未引入延伸词,所有词汇均属于原始问题作用域范围。\n【最终得分 0.60】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  4677. "strategy": "推荐词",
  4678. "iteration": 2,
  4679. "is_selected": true,
  4680. "scoreColor": "#22c55e",
  4681. "parentQScore": 0.23399999999999999
  4682. },
  4683. "q_猫咪表情包_r2_12": {
  4684. "type": "q",
  4685. "query": "[Q] 猫咪表情包",
  4686. "level": 22,
  4687. "relevance_score": 0.21059999999999998,
  4688. "evaluationReason": "",
  4689. "strategy": "Query",
  4690. "iteration": 2,
  4691. "is_selected": true,
  4692. "type_label": "",
  4693. "domain_index": -1,
  4694. "domain_type": "D3"
  4695. },
  4696. "sug_猫咪表情包抽象_r2_q12_0": {
  4697. "type": "sug",
  4698. "query": "[SUG] 猫咪表情包抽象",
  4699. "level": 23,
  4700. "relevance_score": 0.034,
  4701. "evaluationReason": "【评估对象】词条\"猫咪表情包抽象\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作表情包梗图\n【动机维度 0.00】sug词条「猫咪表情包抽象」未体现出明确的动作意图和目的,主要描述的是内容主题,因此在动机维度上无法匹配原始问题的「制作」意图。\n【品类维度 0.08】原始问题对象层为「猫咪表情包梗图」,场景层为「反映人类双标行为」。Sug词条包含「猫咪表情包」,但缺失「梗图」和所有场景层限定,覆盖度低且过度泛化。\n【延伸词维度 -0.15】原始问题聚焦于「双标行为」这一特定主题的表情包制作,而sug词条「抽象」引入了新的、更宽泛的风格维度,稀释了原始问题的核心主题,降低了内容的针对性。\n【最终得分 0.03】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  4702. "strategy": "推荐词",
  4703. "iteration": 2,
  4704. "is_selected": true,
  4705. "scoreColor": "#ef4444",
  4706. "parentQScore": 0.21059999999999998
  4707. },
  4708. "sug_猫meme表情包动图_r2_q12_1": {
  4709. "type": "sug",
  4710. "query": "[SUG] 猫meme表情包动图",
  4711. "level": 23,
  4712. "relevance_score": 0.36,
  4713. "evaluationReason": "【评估对象】词条\"猫meme表情包动图\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作表情包梗图\n【动机维度 0.35】原始问题意图是「制作」反映人类双标行为的猫咪表情包梗图。sug词条「猫meme表情包动图」核心动机是「查找」或「浏览」猫咪相关的表情包动图,与「制作」存在一定程度的间接关联。\n【品类维度 0.50】原始问题核心对象层为「猫咪表情包梗图」,限定词为「反映人类双标行为」。sug词条「猫meme表情包动图」涵盖了核心对象「猫咪表情包」及部分限定词(meme≈梗图),但缺失「双标行为」这一关键限定,且新增「动图」限定。整体匹配度中等。\n【延伸词维度 -0.15】原始问题聚焦于“人类双标行为”这一特定主题的猫咪表情包梗图制作,强调内容创意。sug词条“猫meme表情包动图”将“梗图”具体化为“动图”,并引入了“meme”这一更宽泛的概念,稀释了原始问题中“人类双标行为”这一核心主题的聚焦度,降低了内容的针对性。\n【最终得分 0.36】",
  4714. "strategy": "推荐词",
  4715. "iteration": 2,
  4716. "is_selected": true,
  4717. "scoreColor": "#22c55e",
  4718. "parentQScore": 0.21059999999999998
  4719. },
  4720. "sug_猫咪表情包配文_r2_q12_2": {
  4721. "type": "sug",
  4722. "query": "[SUG] 猫咪表情包配文",
  4723. "level": 23,
  4724. "relevance_score": 0.38,
  4725. "evaluationReason": "【评估对象】词条\"猫咪表情包配文\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作(表情包梗图)\n【动机维度 0.35】原始问题的核心动作为“制作”,sug词条“配文”是制作表情包过程中所需要的其中一个步骤,属于弱相关\n【品类维度 0.55】原始问题对象层为「猫咪表情包梗图」,限定词为「反映人类双标行为」。Sug词条对象层为「猫咪表情包配文」。对象主体「猫咪表情包」匹配,限定词缺失,但「配文」是「梗图」的重要组成部分。\n【延伸词维度 -0.15】原始问题聚焦于「人类双标行为」和「梗图」的制作,而sug词条「配文」虽然是表情包的一部分,但它将原始问题中「双标行为」和「梗图」的核心概念稀释,使其偏离了原始问题的核心目的,降低了内容的针对性。\n【最终得分 0.38】",
  4726. "strategy": "推荐词",
  4727. "iteration": 2,
  4728. "is_selected": true,
  4729. "scoreColor": "#22c55e",
  4730. "parentQScore": 0.21059999999999998
  4731. },
  4732. "sug_猫咪表情包动图_r2_q12_3": {
  4733. "type": "sug",
  4734. "query": "[SUG] 猫咪表情包动图",
  4735. "level": 23,
  4736. "relevance_score": 0.41000000000000003,
  4737. "evaluationReason": "【评估对象】词条\"猫咪表情包动图\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作\n【动机维度 0.00】原始问题核心动作用于《制作》表情包梗图,sug词条仅提及《表情包》这一对象而无任何动作意图,因此动机匹配度为0。\n【品类维度 0.55】原始问题对象层为“猫咪表情包梗图”,限定词为“反映人类双标行为”;sug词对象层为“猫咪表情包动图”。对象层“猫咪表情包”核心主体匹配,但限定词“梗图”与“动图”不完全一致,且缺失原始问题所有限定词,故中等偏上评分。\n【延伸词维度 -0.15】原始问题聚焦于「反映人类双标行为」的特定主题,而sug词条「动图」引入了无关的格式限定,稀释了主题的聚焦度,降低了内容针对性。\n【最终得分 0.41】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  4738. "strategy": "推荐词",
  4739. "iteration": 2,
  4740. "is_selected": true,
  4741. "scoreColor": "#22c55e",
  4742. "parentQScore": 0.21059999999999998
  4743. },
  4744. "sug_猫咪表情包制作_r2_q12_4": {
  4745. "type": "sug",
  4746. "query": "[SUG] 猫咪表情包制作",
  4747. "level": 23,
  4748. "relevance_score": 0.825,
  4749. "evaluationReason": "【评估对象】词条\"猫咪表情包制作\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作表情包梗图\n【动机维度 0.90】原始问题的核心动机是「制作」表情包梗图,sug词条「猫咪表情包制作」也包含了「制作」的动作,且对象是「表情包」,动作完全匹配。\n【品类维度 0.65】原始问题对象层为“猫咪表情包梗图”,场景层为“反映人类双标行为”;Sug词条对象层为“猫咪表情包”。Sug词条包含了核心对象“猫咪表情包”,但缺失了重要的场景限定“反映人类双标行为”,覆盖度约为50%,属于部分匹配。\n【延伸词维度 0.00】sug词条未引入延伸词,所有词汇均属于原始问题作用域范围。sug词条是原始问题的简化,未增加新的信息维度。\n【最终得分 0.82】\n【规则说明】情况4:无延伸词,权重调整为 动机70% + 品类30%",
  4750. "strategy": "推荐词",
  4751. "iteration": 2,
  4752. "is_selected": true,
  4753. "scoreColor": "#22c55e",
  4754. "parentQScore": 0.21059999999999998
  4755. },
  4756. "sug_猫咪表情包可爱_r2_q12_5": {
  4757. "type": "sug",
  4758. "query": "[SUG] 猫咪表情包可爱",
  4759. "level": 23,
  4760. "relevance_score": 0.37,
  4761. "evaluationReason": "【评估对象】词条\"猫咪表情包可爱\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作(表情包梗图)\n【动机维度 0.00】原始问题的核心动机是「制作」表情包梗图,而sug词条「猫咪表情包可爱」没有明确的动作意图,因此无法匹配,得分为0。\n【品类维度 0.50】核心对象层为“猫咪表情包”,sug词条完全命中。原始问题的特有对象层修饰词“反映人类双标行为的”以及场景层“梗图”未命中,覆盖度50%。\n【延伸词维度 -0.15】原始问题聚焦于「反映人类双标行为」的「梗图」制作,强调主题性和创作性。「可爱」作为延伸词,虽然是猫咪表情包的常见属性,但与原始问题中「双标行为」和「梗图」的核心目的关联度低,且可能稀释了原始问题对特定主题和创作手法的聚焦,属于作用域稀释型。\n【最终得分 0.37】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  4762. "strategy": "推荐词",
  4763. "iteration": 2,
  4764. "is_selected": true,
  4765. "scoreColor": "#22c55e",
  4766. "parentQScore": 0.21059999999999998
  4767. },
  4768. "sug_猫咪表情符号_r2_q12_6": {
  4769. "type": "sug",
  4770. "query": "[SUG] 猫咪表情符号",
  4771. "level": 23,
  4772. "relevance_score": 0.17,
  4773. "evaluationReason": "【评估对象】词条\"猫咪表情符号\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作(表情包梗图)\n【动机维度 0.00】原始问题意图是“制作”表情包梗图,而sug词条「猫咪表情符号」只提及了一个对象和主题,没有明确的动作意图,无法匹配原始问题的制作动机。\n【品类维度 0.25】原始问题涉及“猫咪+表情包+梗图”以及“人类双标行为”的特定场景,sug词条仅包含“猫咪+表情符号”,对象层部分匹配。场景和具体概念严重缺失,覆盖度很低。虽有“猫咪”和“表情”关联,但深度和广度不足。\n【延伸词维度 -0.15】原始问题聚焦于「制作反映人类双标行为的猫咪表情包梗图」,强调了制作行为、双标主题和梗图形式。「表情符号」作为延伸词,与「表情包梗图」存在差异,稀释了原始问题对「梗图」和「双标行为」的特定需求,降低了内容的针对性。\n【最终得分 0.17】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  4774. "strategy": "推荐词",
  4775. "iteration": 2,
  4776. "is_selected": true,
  4777. "scoreColor": "#ef4444",
  4778. "parentQScore": 0.21059999999999998
  4779. },
  4780. "sug_猫咪表情包叫什么_r2_q12_7": {
  4781. "type": "sug",
  4782. "query": "[SUG] 猫咪表情包叫什么",
  4783. "level": 23,
  4784. "relevance_score": 0.185,
  4785. "evaluationReason": "【评估对象】词条\"猫咪表情包叫什么\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作(表情包梗图)\n【动机维度 0.00】原始问题的核心动是「制作」表情包,而sug词条「猫咪表情包叫什么」是一个提问,意图是「获取名称信息」。sug词条无明确动机词,与原始问题的制作意图无关。\n【品类维度 0.50】原始问题对象层为「猫咪表情包梗图」,场景层为「反映人类双标行为」。sug词条对象层为「猫咪表情包」,与原始问题核心主体匹配,但缺失关键场景限定词及「梗图」限定。\n【延伸词维度 -0.15】sug词条「叫什么」引入了对猫咪表情包名称的询问,这与原始问题中「制作」表情包的动机和「反映人类双标行为」的对象完全不符,稀释了原始问题的核心目的和聚焦度。\n【最终得分 0.18】",
  4786. "strategy": "推荐词",
  4787. "iteration": 2,
  4788. "is_selected": true,
  4789. "scoreColor": "#ef4444",
  4790. "parentQScore": 0.21059999999999998
  4791. },
  4792. "sug_猫咪表情包图片_r2_q12_8": {
  4793. "type": "sug",
  4794. "query": "[SUG] 猫咪表情包图片",
  4795. "level": 23,
  4796. "relevance_score": 0.52,
  4797. "evaluationReason": "【评估对象】词条\"猫咪表情包图片\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作(表情包梗图)\n【动机维度 0.00】原始问题的核心动机是“制作”表情包梗图,而sug词条「猫咪表情包图片」仅为一个对象描述,没有体现任何动作意图。sug词条缺失动机层,故动机维度匹配度为0。\n【品类维度 0.65】原始问题对象层为“猫咪表情包梗图”,限定词有“人类双标行为”;Sug词仅包含“猫咪表情包图片”,对象匹配但在场景限定上缺失“人类双标行为”和“梗图”更具体的限定,覆盖度适中。\n【延伸词维度 0.00】sug词条未引入延伸词,所有词汇均属于原始问题作用域范围。原始问题核心是“猫咪表情包”,sug词条中的“猫咪表情包”是核心对象,而“图片”是其表现形式,属于细化,不构成延伸。\n【最终得分 0.52】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  4798. "strategy": "推荐词",
  4799. "iteration": 2,
  4800. "is_selected": true,
  4801. "scoreColor": "#22c55e",
  4802. "parentQScore": 0.21059999999999998
  4803. },
  4804. "sug_猫咪表情包视频_r2_q12_9": {
  4805. "type": "sug",
  4806. "query": "[SUG] 猫咪表情包视频",
  4807. "level": 23,
  4808. "relevance_score": 0.455,
  4809. "evaluationReason": "【评估对象】词条\"猫咪表情包视频\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作\n【动机维度 0.50】原始问题的核心动机是\"制作\"表情包梗图,而sug词条「猫咪表情包视频」的动作是制作「视频」。虽然都是「制作」大类,但对象由静态的「表情包梗图」变成了动态的「视频」,属于相关动作,但不完全匹配。\n【品类维度 0.55】原始问题对象层为「猫咪表情包梗图」,场景层为「双标行为」。sug词条对象层为「猫咪表情包视频」。对象层核心词“猫咪表情包”匹配,但限定词“梗图”与“视频”不完全匹配,且缺失「双标行为」限定。\n【延伸词维度 -0.15】原始问题是制作“表情包梗图”,强调静态图片和梗的创作。sug词条引入“视频”这一延伸词,改变了原始问题的媒介形式,稀释了对“梗图”制作的聚焦,属于作用域稀释型。\n【最终得分 0.46】",
  4810. "strategy": "推荐词",
  4811. "iteration": 2,
  4812. "is_selected": true,
  4813. "scoreColor": "#22c55e",
  4814. "parentQScore": 0.21059999999999998
  4815. },
  4816. "q_猫咪梗图_r2_13": {
  4817. "type": "q",
  4818. "query": "[Q] 猫咪梗图",
  4819. "level": 22,
  4820. "relevance_score": 0.21059999999999998,
  4821. "evaluationReason": "",
  4822. "strategy": "Query",
  4823. "iteration": 2,
  4824. "is_selected": true,
  4825. "type_label": "",
  4826. "domain_index": -1,
  4827. "domain_type": "D3"
  4828. },
  4829. "sug_猫咪梗图素材_r2_q13_0": {
  4830. "type": "sug",
  4831. "query": "[SUG] 猫咪梗图素材",
  4832. "level": 23,
  4833. "relevance_score": 0.4,
  4834. "evaluationReason": "【评估对象】词条\"猫咪梗图素材\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作\n【动机维度 0.00】原始问题意图是「制作」反映人类双标行为的猫咪梗图,sug词条是「猫咪梗图素材」,sug词条没有明确的动机意图,无法评估动作匹配度。\n【品类维度 0.50】原始问题对象层为“猫咪表情包梗图”,限定词为“人类双标行为”,sug词条仅包含核心对象“猫咪梗图(素材)”,限定词缺失。\n【延伸词维度 0.00】sug词条未引入延伸词,所有词汇均属于原始问题作用域范围。原始问题中的“表情包梗图”与sug词条中的“梗图”是同义词,而“素材”是制作梗图的必要组成部分,属于原始问题作用域内的词汇。\n【最终得分 0.40】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  4835. "strategy": "推荐词",
  4836. "iteration": 2,
  4837. "is_selected": true,
  4838. "scoreColor": "#22c55e",
  4839. "parentQScore": 0.21059999999999998
  4840. },
  4841. "sug_猫咪梗图模板_r2_q13_1": {
  4842. "type": "sug",
  4843. "query": "[SUG] 猫咪梗图模板",
  4844. "level": 23,
  4845. "relevance_score": 0.4,
  4846. "evaluationReason": "【评估对象】词条\"猫咪梗图模板\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作(动)+ 表情包梗图(对象)+ 反映人类双标行为的猫咪(场景/目的)\n【动机维度 0.00】原始问题的核心动机是“制作”,而sug词条“猫咪梗图模板”中缺失明确的动作意图。\n【品类维度 0.50】原始问题对象层为「人类双标行为的猫咪表情包梗图」,sug词条对象层为「猫咪梗图模板」,仅包含核心对象「猫咪梗图」,但场景层和具体限定词缺失。\n【延伸词维度 0.00】sug词条未引入延伸词,所有词汇均属于原始问题作用域范围。原始问题是制作“猫咪表情包梗图”,sug词条是“猫咪梗图模板”,模板是制作梗图的工具,属于原始问题对象层,因此不构成延伸词。\n【最终得分 0.40】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  4847. "strategy": "推荐词",
  4848. "iteration": 2,
  4849. "is_selected": true,
  4850. "scoreColor": "#22c55e",
  4851. "parentQScore": 0.21059999999999998
  4852. },
  4853. "sug_猫咪梗图骂人_r2_q13_2": {
  4854. "type": "sug",
  4855. "query": "[SUG] 猫咪梗图骂人",
  4856. "level": 23,
  4857. "relevance_score": 0.34500000000000003,
  4858. "evaluationReason": "【评估对象】词条\"猫咪梗图骂人\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作(表情包梗图)\n【动机维度 0.40】原始问题的核心动机是「制作」反映特定主题的表情包梗图。sug词条「猫咪梗图骂人」的动机是「制作」或「寻找」猫咪梗图,方向上与原始问题中的「制作」表情包梗图是弱相关的实现路径。\n【品类维度 0.40】sug词条与原始问题都包含核心对象“猫咪梗图”,但sug词条的限定词“骂人”与原始问题的“人类双标行为”语义不匹配,且缺失『表情包』限定,覆盖度较低。\n【延伸词维度 -0.15】原始问题聚焦于制作反映人类双标行为的猫咪表情包梗图,强调「双标行为」这一特定主题。sug词条「骂人」引入了新的、更宽泛且可能负面的情绪表达,稀释了原始问题中「双标行为」这一核心概念的聚焦度,降低了内容的针对性。\n【最终得分 0.35】",
  4859. "strategy": "推荐词",
  4860. "iteration": 2,
  4861. "is_selected": true,
  4862. "scoreColor": "#22c55e",
  4863. "parentQScore": 0.21059999999999998
  4864. },
  4865. "sug_猫咪梗图恋爱_r2_q13_3": {
  4866. "type": "sug",
  4867. "query": "[SUG] 猫咪梗图恋爱",
  4868. "level": 23,
  4869. "relevance_score": -0.19000000000000003,
  4870. "evaluationReason": "【评估对象】词条\"猫咪梗图恋爱\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作(表情包梗图)\n【动机维度 0.00】原始问题意图是「制作」反映特定主题的猫咪梗图。sug词条「猫咪梗图恋爱」缺失了明确的动机词,无法与「制作」动作匹配,因此动机维度评分为0。\n【品类维度 -0.20】原始问题是关于“人类双标行为”的“猫咪表情包梗图”。Sug词是“猫咪梗图恋爱”。两者核心主体都是“猫咪梗图”,匹配。但原始问题限定词是“人类双标行为”,sug词的限定词是“恋爱”,两者完全不相关且语义偏离,导向错误。\n【延伸词维度 -0.15】原始问题聚焦于「人类双标行为」这一主题的猫咪表情包梗图制作,而sug词条引入了「恋爱」这一新的主题,稀释了原始问题的核心聚焦,使其偏离了「双标行为」的特定内容,降低了内容的针对性。\n【最终得分 -0.19】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  4871. "strategy": "推荐词",
  4872. "iteration": 2,
  4873. "is_selected": true,
  4874. "scoreColor": "#ef4444",
  4875. "parentQScore": 0.21059999999999998
  4876. },
  4877. "sug_猫咪梗图伤感_r2_q13_4": {
  4878. "type": "sug",
  4879. "query": "[SUG] 猫咪梗图伤感",
  4880. "level": 23,
  4881. "relevance_score": 0.33000000000000007,
  4882. "evaluationReason": "【评估对象】词条\"猫咪梗图伤感\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作\n【动机维度 0.00】sug词条「猫咪梗图伤感」只有对象(猫咪梗图)和情绪(伤感),没有明确的动作意图,无法与原始问题中的“制作”动作进行匹配。\n【品类维度 0.45】原始问题对象层为「猫咪表情包梗图」,场景层为「反映人类双标行为」。Sug词条对象层为「猫咪梗图」,场景层为「伤感」。核心对象「猫咪梗图」匹配,但场景层差异较大,原始问题限定词「反映人类双标」未覆盖,Sug词引入新限定词「伤感」。\n【延伸词维度 -0.15】原始问题聚焦于「人类双标行为」这一特定主题的猫咪梗图制作,而sug词条「伤感」引入了新的情感维度,与原始问题的核心主题不符,稀释了原始问题的聚焦度。\n【最终得分 0.33】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  4883. "strategy": "推荐词",
  4884. "iteration": 2,
  4885. "is_selected": true,
  4886. "scoreColor": "#22c55e",
  4887. "parentQScore": 0.21059999999999998
  4888. },
  4889. "sug_猫咪梗图睡觉_r2_q13_5": {
  4890. "type": "sug",
  4891. "query": "[SUG] 猫咪梗图睡觉",
  4892. "level": 23,
  4893. "relevance_score": 0.17,
  4894. "evaluationReason": "【评估对象】词条\"猫咪梗图睡觉\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作(表情包梗图)\n【动机维度 0.00】原始问题是「制作」反映双标行为的猫咪表情包梗图,核心动作为制作。Sug词条「猫咪梗图睡觉」无明确动作意图,动机维度不匹配。\n【品类维度 0.25】原始问题对象层为“猫咪表情包梗图”,限定词是“反映人类双标行为”;sug词条对象层为“猫咪梗图”,限定词是“睡觉”。二者对象层部分匹配(猫咪梗图),但限定词完全不匹配,语义错位。\n【延伸词维度 -0.15】原始问题聚焦于「制作反映人类双标行为的猫咪表情包梗图」,强调「双标行为」和「表情包」的创作。sug词条「睡觉」引入了与原始问题核心目的无关的新主题,稀释了对「双标行为」和「表情包制作」的聚焦,属于作用域稀释型。\n【最终得分 0.17】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  4895. "strategy": "推荐词",
  4896. "iteration": 2,
  4897. "is_selected": true,
  4898. "scoreColor": "#ef4444",
  4899. "parentQScore": 0.21059999999999998
  4900. },
  4901. "sug_猫咪梗图英文_r2_q13_6": {
  4902. "type": "sug",
  4903. "query": "[SUG] 猫咪梗图英文",
  4904. "level": 23,
  4905. "relevance_score": 0.29000000000000004,
  4906. "evaluationReason": "【评估对象】词条\"猫咪梗图英文\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作(表情包梗图)\n【动机维度 0.00】原始问题的核心动机是「制作」表情包梗图。sug词条「猫咪梗图英文」只提到了主题和格式(英文),没有体现任何动作意图,因此动机匹配度为零。\n【品类维度 0.40】原始问题对象层为「猫咪表情包梗图」,场景层为「人类双标行为」。sug词条对象层为「猫咪梗图」,与原始问题核心主体匹配。但sug词条的限定词「英文」与原始问题限定词「人类双标行为」完全不匹配,且「表情包」这一重要限定词也缺失。\n【延伸词维度 -0.15】延伸词“英文”与原始问题“制作反映人类双标行为的猫咪表情包梗图”的核心目的和作用域无关,稀释了用户对制作方法和内容的关注度,属于作用域稀释型。\n【最终得分 0.29】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  4907. "strategy": "推荐词",
  4908. "iteration": 2,
  4909. "is_selected": true,
  4910. "scoreColor": "#22c55e",
  4911. "parentQScore": 0.21059999999999998
  4912. },
  4913. "sug_猫咪梗图塔牌_r2_q13_7": {
  4914. "type": "sug",
  4915. "query": "[SUG] 猫咪梗图塔牌",
  4916. "level": 23,
  4917. "relevance_score": 0.010000000000000009,
  4918. "evaluationReason": "【评估对象】词条\"猫咪梗图塔牌\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作(表情包梗图)\n【动机维度 0.00】原始问题的核心动机是「制作」反映人类双标行为的猫咪表情包梗图。sug词条「猫咪梗图塔牌」无法识别明确的动作意图。因此动机维度得分设为0。\n【品类维度 0.05】原始问题对象层为「猫咪表情包梗图」,场景层为「反映人类双标行为」。Sug词条包含「猫咪梗图」,匹配部分对象层,但缺失所有限定词。\n【延伸词维度 -0.15】sug词条中的“塔牌”与原始问题“如何制作反映人类双标行为的猫咪表情包梗图”的核心目的和作用域无关,引入了无关信息,稀释了原始问题的聚焦度,降低了内容的针对性。\n【最终得分 0.01】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  4919. "strategy": "推荐词",
  4920. "iteration": 2,
  4921. "is_selected": true,
  4922. "scoreColor": "#ef4444",
  4923. "parentQScore": 0.21059999999999998
  4924. },
  4925. "sug_猫咪梗图拍照_r2_q13_8": {
  4926. "type": "sug",
  4927. "query": "[SUG] 猫咪梗图拍照",
  4928. "level": 23,
  4929. "relevance_score": 0.29999999999999993,
  4930. "evaluationReason": "【评估对象】词条\"猫咪梗图拍照\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作表情包梗图\n【动机维度 0.35】原始问题意图是「制作」反映特定行为的「猫咪表情包梗图」。sug词条「猫咪梗图拍照」的动作是「拍照」,这是制作梗图的一个前置或相关动作,但并非核心「制作」意图,属于弱相关。\n【品类维度 0.35】原始问题对象层为《人类双标行为的猫咪表情包梗图》,作用域限定词为《人类双标行为》。sug词条对象层为《猫咪梗图》,限定词缺失且未提及《表情包》和《人类双标行为》。\n【延伸词维度 -0.15】原始问题聚焦于「制作」反映双标行为的「猫咪表情包梗图」,强调内容创作和主题。sug词条「拍照」引入了新的动作,且「拍照」与「制作」表情包梗图并非完全等同,稀释了原始问题中「制作」和「双标行为」的核心目的,降低了内容针对性。\n【最终得分 0.30】",
  4931. "strategy": "推荐词",
  4932. "iteration": 2,
  4933. "is_selected": true,
  4934. "scoreColor": "#22c55e",
  4935. "parentQScore": 0.21059999999999998
  4936. },
  4937. "sug_猫咪梗图上帝_r2_q13_9": {
  4938. "type": "sug",
  4939. "query": "[SUG] 猫咪梗图上帝",
  4940. "level": 23,
  4941. "relevance_score": 0.17,
  4942. "evaluationReason": "【评估对象】词条\"猫咪梗图上帝\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作表情包梗图\n【动机维度 0.00】原始问题明确意图是“制作”梗图,而sug词条「猫咪梗图上帝」是一个名词,没有明确的动作意图。因此,sug词条无法提供制作的相关动作,导致动机维度得分低。\n【品类维度 0.25】原始问题问的是“梗图”,sug词条只出现“梗图”,对象层匹配。但原始问题强调“人类双标行为”和“猫咪”这两个重要限定词,sug词条未提及,且“上帝”属于过度泛化和抽象词汇,覆盖度较低。\n【延伸词维度 -0.15】sug词条「上帝」与原始问题「制作反映人类双标行为的猫咪表情包梗图」的核心目的和作用域无关,引入了无关信息,稀释了原始问题的聚焦度,降低了内容的针对性。\n【最终得分 0.17】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  4943. "strategy": "推荐词",
  4944. "iteration": 2,
  4945. "is_selected": true,
  4946. "scoreColor": "#ef4444",
  4947. "parentQScore": 0.21059999999999998
  4948. },
  4949. "q_表情包梗图_r2_14": {
  4950. "type": "q",
  4951. "query": "[Q] 表情包梗图",
  4952. "level": 22,
  4953. "relevance_score": 0.1755,
  4954. "evaluationReason": "",
  4955. "strategy": "Query",
  4956. "iteration": 2,
  4957. "is_selected": true,
  4958. "type_label": "",
  4959. "domain_index": -1,
  4960. "domain_type": "D3"
  4961. },
  4962. "sug_表情包梗图模板_r2_q14_0": {
  4963. "type": "sug",
  4964. "query": "[SUG] 表情包梗图模板",
  4965. "level": 23,
  4966. "relevance_score": 0.19400000000000003,
  4967. "evaluationReason": "【评估对象】词条\"表情包梗图模板\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作(表情包梗图)\n【动机维度 0.00】原始问题的核心动机是“制作”表情包梗图,而sug词条「表情包梗图模板」中不包含明确的动作意图。因此,sug词条无法识别动作意图,动机维度得分0分。\n【品类维度 0.28】sug词条仅包含原始问题中最宽泛的“表情包梗图”这一核心对象,缺失『人类双标行为』、『猫咪』等重要的限定词,覆盖度低。\n【延伸词维度 -0.15】原始问题聚焦于「制作反映人类双标行为的猫咪表情包梗图」这一特定主题和内容,而sug词条「模板」则将范围泛化,稀释了原始问题的核心内容和目的,属于作用域稀释型。\n【最终得分 0.19】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  4968. "strategy": "推荐词",
  4969. "iteration": 2,
  4970. "is_selected": true,
  4971. "scoreColor": "#ef4444",
  4972. "parentQScore": 0.1755
  4973. },
  4974. "sug_表情包梗图抽象_r2_q14_1": {
  4975. "type": "sug",
  4976. "query": "[SUG] 表情包梗图抽象",
  4977. "level": 23,
  4978. "relevance_score": 0.37,
  4979. "evaluationReason": "【评估对象】词条\"表情包梗图抽象\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作\n【动机维度 0.00】原始问题的核心动机是「制作」,而sug词条「表情包梗图抽象」中没有明确的动作意图。\n【品类维度 0.50】原始问题对象层为「猫咪表情包梗图」,场景层为「反映人类双标行为」。Sug词条对象层为「表情包梗图」。对象层命中「表情包梗图」,但其是猫咪表情包梗图的泛化,且缺失所有场景限定词,属于部分匹配。\n【延伸词维度 -0.15】原始问题聚焦于「人类双标行为」和「猫咪表情包梗图」的结合,强调具体内容和形式。「抽象」作为延伸词,与原始问题中的具体内容和形式无关,稀释了原始问题的聚焦度,降低了内容的针对性。\n【最终得分 0.37】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  4980. "strategy": "推荐词",
  4981. "iteration": 2,
  4982. "is_selected": true,
  4983. "scoreColor": "#22c55e",
  4984. "parentQScore": 0.1755
  4985. },
  4986. "sug_jojo表情包梗图_r2_q14_2": {
  4987. "type": "sug",
  4988. "query": "[SUG] jojo表情包梗图",
  4989. "level": 23,
  4990. "relevance_score": -0.3500000000000001,
  4991. "evaluationReason": "【评估对象】词条\"jojo表情包梗图\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作(表情包梗图)\n【动机维度 0.00】原始问题的核心动机是「制作」表情包梗图。平台sug词条「jojo表情包梗图」没有明确的动作意图。因此,动机维度得分为0。\n【品类维度 -0.40】原始问题核心对象是「猫咪」「表情包」「梗图」,sug词条只匹配「表情包」和「梗图」,但核心主题「猫咪」被替换为「jojo」,存在主题错位,导致关联度降低。\n【延伸词维度 -0.15】sug词条中的“jojo”是延伸词,它引入了与原始问题“猫咪表情包”完全不相关的动漫主题,稀释了原始问题对“猫咪”和“双标行为”的聚焦,降低了内容的针对性。\n【最终得分 -0.35】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  4992. "strategy": "推荐词",
  4993. "iteration": 2,
  4994. "is_selected": true,
  4995. "scoreColor": "#ef4444",
  4996. "parentQScore": 0.1755
  4997. },
  4998. "sug_表情包梗图学习_r2_q14_3": {
  4999. "type": "sug",
  5000. "query": "[SUG] 表情包梗图学习",
  5001. "level": 23,
  5002. "relevance_score": 0.39499999999999996,
  5003. "evaluationReason": "【评估对象】词条\"表情包梗图学习\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作\n【动机维度 0.35】原始问题意图是「制作」,sug词条意图是「学习」。学习是制作的前置相关路径或准备,属于弱相关。\n【品类维度 0.50】原始问题对象层为“猫咪表情包梗图”,限定词有“反映人类双标行为”;sug词条对象层为“表情包梗图”,缺失限定词,核心主体匹配,但限定词缺失。\n【延伸词维度 0.00】sug词条未引入延伸词,所有词汇均属于原始问题作用域范围。\n【最终得分 0.39】\n【规则说明】情况4:无延伸词,权重调整为 动机70% + 品类30%",
  5004. "strategy": "推荐词",
  5005. "iteration": 2,
  5006. "is_selected": true,
  5007. "scoreColor": "#22c55e",
  5008. "parentQScore": 0.1755
  5009. },
  5010. "sug_表情包梗图动图_r2_q14_4": {
  5011. "type": "sug",
  5012. "query": "[SUG] 表情包梗图动图",
  5013. "level": 23,
  5014. "relevance_score": 0.41000000000000003,
  5015. "evaluationReason": "【评估对象】词条\"表情包梗图动图\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作(表情包梗图)\n【动机维度 0.00】原始问题核心动机是“制作表情包”,而sug词条「表情包梗图动图」是一个纯名词短语,无法识别出任何动作意图,因此无法评估动作的匹配度。\n【品类维度 0.50】原始问题核心对象是“猫咪表情包梗图”,sug词为“表情包梗图动图”。sug词包含核心对象,但缺失“猫咪”和“双标行为”的限定,且多了一个“动图”的无关限定。\n【延伸词维度 0.05】原始问题聚焦于制作静态表情包梗图,sug词条中的“动图”是表情包的一种形式,属于辅助型延伸词,对原始问题有辅助作用,但非必需。\n【最终得分 0.41】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  5016. "strategy": "推荐词",
  5017. "iteration": 2,
  5018. "is_selected": true,
  5019. "scoreColor": "#22c55e",
  5020. "parentQScore": 0.1755
  5021. },
  5022. "sug_表情包梗图cp_r2_q14_5": {
  5023. "type": "sug",
  5024. "query": "[SUG] 表情包梗图cp",
  5025. "level": 23,
  5026. "relevance_score": 0.17,
  5027. "evaluationReason": "【评估对象】词条\"表情包梗图cp\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作表情包、梗图\n【动机维度 0.00】原始问题是“制作”表情包梗图,sug词条「表情包梗图cp」缺失动作意图,无法判断其动机意图。故动机维度得分0分。\n【品类维度 0.25】原始问题对象层为「表情包梗图」,限定词为「人类双标行为」「猫咪」;sug词条对象层为「表情包梗图」,限定词为「cp」。对象层部分匹配,但sug词条限定词与原始问题完全不匹配,覆盖度低。\n【延伸词维度 -0.15】延伸词“cp”与原始问题中制作“反映人类双标行为的猫咪表情包梗图”的核心目的和作用域无关,引入了新的主题,稀释了原始问题的聚焦度,降低了内容的针对性。\n【最终得分 0.17】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  5028. "strategy": "推荐词",
  5029. "iteration": 2,
  5030. "is_selected": true,
  5031. "scoreColor": "#ef4444",
  5032. "parentQScore": 0.1755
  5033. },
  5034. "sug_重返未来表情包梗图_r2_q14_6": {
  5035. "type": "sug",
  5036. "query": "[SUG] 重返未来表情包梗图",
  5037. "level": 23,
  5038. "relevance_score": 0.010000000000000009,
  5039. "evaluationReason": "【评估对象】词条\"重返未来表情包梗图\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作\n【动机维度 0.00】原始问题的核心动机是“制作”,sug词条「重返未来表情包梗图」未体现任何明确的动作意图。因此,动机维度匹配度为0。\n【品类维度 0.05】sug词条仅包含原始问题中最宽泛的「表情包梗图」这一对象层,但原始问题的主体「猫咪」及场景层「反映人类双标行为」完全缺失。覆盖度极低,且核心主体完全不对应。\n【延伸词维度 -0.15】sug词条中的“重返未来”与原始问题中的“人类双标行为的猫咪表情包梗图”主题完全不符,引入了无关信息,稀释了原始问题的聚焦度,降低了内容针对性。\n【最终得分 0.01】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  5040. "strategy": "推荐词",
  5041. "iteration": 2,
  5042. "is_selected": true,
  5043. "scoreColor": "#ef4444",
  5044. "parentQScore": 0.1755
  5045. },
  5046. "sug_表情包梗图可爱_r2_q14_7": {
  5047. "type": "sug",
  5048. "query": "[SUG] 表情包梗图可爱",
  5049. "level": 23,
  5050. "relevance_score": 0.034,
  5051. "evaluationReason": "【评估对象】词条\"表情包梗图可爱\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作\n【动机维度 0.00】原始问题的核心动机是“制作”。sug词条“表情包梗图可爱”缺乏明确的动作意图。因此,sug词条无法与原始问题的核心动机匹配。\n【品类维度 0.08】sug词是通用概念“表情包梗图”,原始问题是特定主题“反映人类双标行为的猫咪表情包梗图”。sug词过度泛化,未包含核心对象“猫咪”和限定词。\n【延伸词维度 -0.15】原始问题聚焦于「人类双标行为」和「猫咪表情包梗图」的结合,强调内容创作。sug词条「可爱」引入了与原始问题核心目的无关的审美维度,稀释了对「双标行为」这一主题的关注,降低了内容的针对性。\n【最终得分 0.03】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  5052. "strategy": "推荐词",
  5053. "iteration": 2,
  5054. "is_selected": true,
  5055. "scoreColor": "#ef4444",
  5056. "parentQScore": 0.1755
  5057. },
  5058. "sug_表情包梗图恶俗_r2_q14_8": {
  5059. "type": "sug",
  5060. "query": "[SUG] 表情包梗图恶俗",
  5061. "level": 23,
  5062. "relevance_score": -0.23,
  5063. "evaluationReason": "【评估对象】词条\"表情包梗图恶俗\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作(表情包梗图)\n【动机维度 0.00】原始问题的动机是「制作」表情包梗图,而sug词条中没有明确的动作意图。sug词条仅提及了表情包梗图的属性/评价,与原始问题的制作动机不匹配。\n【品类维度 -0.25】原始问题是关于“制作反映人类双标行为的猫咪表情包梗图”,sug词条“表情包梗图恶俗”虽有主体词“表情包梗图”,但增加了负面评价限定词“恶俗”,与原始问题的中性或偏创作意图不符,存在负向偏离。\n【延伸词维度 -0.15】延伸词“恶俗”与原始问题“制作反映人类双标行为的猫咪表情包梗图”的核心目的和作用域无关,反而引入了负面评价,稀释了用户对制作方法的关注,属于作用域稀释型。\n【最终得分 -0.23】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  5064. "strategy": "推荐词",
  5065. "iteration": 2,
  5066. "is_selected": true,
  5067. "scoreColor": "#ef4444",
  5068. "parentQScore": 0.1755
  5069. },
  5070. "sug_表情包梗图开心_r2_q14_9": {
  5071. "type": "sug",
  5072. "query": "[SUG] 表情包梗图开心",
  5073. "level": 23,
  5074. "relevance_score": 0.034,
  5075. "evaluationReason": "【评估对象】词条\"表情包梗图开心\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作(表情包梗图)\n【动机维度 0.00】原始问题的核心动机是「制作」表情包梗图,而sug词条「表情包梗图开心」没有明确的动作意图。因此,sug词条未能体现原始问题的制作动机。\n【品类维度 0.08】原始问题需求是制作「反映人类双标行为的猫咪表情包梗图」,对象层是「猫咪表情包梗图」。sug词条只包含「表情包梗图」这个过度泛化的概念,缺失了「猫咪」这个核心限定词,且增加了无关的「开心」限定词,覆盖度低。\n【延伸词维度 -0.15】延伸词“开心”与原始问题“制作反映人类双标行为的猫咪表情包梗图”的核心目的和作用域无关,反而稀释了原始问题中“双标行为”这一特定主题的聚焦度,降低了内容的针对性。\n【最终得分 0.03】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  5076. "strategy": "推荐词",
  5077. "iteration": 2,
  5078. "is_selected": true,
  5079. "scoreColor": "#ef4444",
  5080. "parentQScore": 0.1755
  5081. },
  5082. "q_反映人类双标_r2_15": {
  5083. "type": "q",
  5084. "query": "[Q] 反映人类双标",
  5085. "level": 22,
  5086. "relevance_score": 0.0882,
  5087. "evaluationReason": "",
  5088. "strategy": "Query",
  5089. "iteration": 2,
  5090. "is_selected": true,
  5091. "type_label": "",
  5092. "domain_index": -1,
  5093. "domain_type": "D2"
  5094. },
  5095. "sug_反映人类双胞胎基因变异_r2_q15_0": {
  5096. "type": "sug",
  5097. "query": "[SUG] 反映人类双胞胎基因变异",
  5098. "level": 23,
  5099. "relevance_score": -0.8,
  5100. "evaluationReason": "【评估对象】词条\"反映人类双胞胎基因变异\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作表情包梗图\n【动机维度 0.00】原始问题的核心动机是“制作表情包”,而sug词条中无明确的动作意图,因此无法匹配。\n【品类维度 -0.85】原始问题对象层为「猫咪表情包梗图」,场景层为「人类双标行为」。sug词条「人类双胞胎基因变异」在对象和场景上均与原始问题完全不匹配,是完全错误的品类。\n【延伸词维度 -0.60】sug词条中的“双胞胎基因变异”与原始问题中的“双标行为”在语义上完全不符,且“双胞胎基因变异”与“猫咪表情包梗图”也无关联,严重偏离了原始问题的核心主题和目的,属于作用域稀释型延伸词,且程度较深。\n【最终得分 -0.80】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20% + 规则3:核心维度严重负向,上限=0",
  5101. "strategy": "推荐词",
  5102. "iteration": 2,
  5103. "is_selected": true,
  5104. "scoreColor": "#ef4444",
  5105. "parentQScore": 0.0882
  5106. },
  5107. "q_反映人类双标行为_r2_16": {
  5108. "type": "q",
  5109. "query": "[Q] 反映人类双标行为",
  5110. "level": 22,
  5111. "relevance_score": 0.0882,
  5112. "evaluationReason": "",
  5113. "strategy": "Query",
  5114. "iteration": 2,
  5115. "is_selected": true,
  5116. "type_label": "",
  5117. "domain_index": -1,
  5118. "domain_type": "D2"
  5119. },
  5120. "sug_反映人类双标行为的图片_r2_q16_0": {
  5121. "type": "sug",
  5122. "query": "[SUG] 反映人类双标行为的图片",
  5123. "level": 23,
  5124. "relevance_score": 0.44000000000000006,
  5125. "evaluationReason": "【评估对象】词条\"反映人类双标行为的图片\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作表情包梗图\n【动机维度 0.00】sug词条「反映人类双标行为的图片」无明确动作意图,只提到了一个对象,未能体现原始问题中的核心动作「制作」。\n【品类维度 0.55】原始问题需求是「猫咪表情包梗图」,sug词条是「图片」。虽然sug覆盖了「反映人类双标行为」的场景限定,但核心对象「猫咪表情包梗图」与「图片」相比过于泛化,导致匹配度下降。\n【延伸词维度 0.00】sug词条未引入延伸词,所有词汇均属于原始问题作用域范围。原始问题中的“猫咪表情包梗图”被sug词条简化为“图片”,这属于原始问题对象层的泛化,不构成延伸词。\n【最终得分 0.44】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  5126. "strategy": "推荐词",
  5127. "iteration": 2,
  5128. "is_selected": true,
  5129. "scoreColor": "#22c55e",
  5130. "parentQScore": 0.0882
  5131. },
  5132. "q_人类双标行为_r2_17": {
  5133. "type": "q",
  5134. "query": "[Q] 人类双标行为",
  5135. "level": 22,
  5136. "relevance_score": 0.081,
  5137. "evaluationReason": "",
  5138. "strategy": "Query",
  5139. "iteration": 2,
  5140. "is_selected": true,
  5141. "type_label": "",
  5142. "domain_index": -1,
  5143. "domain_type": "D2"
  5144. },
  5145. "sug_人类双标行为是什么意思_r2_q17_0": {
  5146. "type": "sug",
  5147. "query": "[SUG] 人类双标行为是什么意思",
  5148. "level": 23,
  5149. "relevance_score": -0.09500000000000001,
  5150. "evaluationReason": "【评估对象】词条\"人类双标行为是什么意思\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作表情包梗图\n【动机维度 0.00】原始问题的核心动机是「制作」表情包梗图,而sug词条「人类双标行为是什么意思」的动机是「了解/理解」一个概念。两者动机方向完全不一致。\n【品类维度 -0.20】原始问题主对象是“猫咪表情包梗图”,限定词是“反映人类双标行为”;sug词是“人类双标行为是什么意思”,主对象是“人类双标行为”,两者完全不匹配,sug词的限定词甚至在原始问题中是修饰成分。\n【延伸词维度 -0.15】延伸词“是什么意思”将原始问题从“制作”行为转变为“理解”概念,稀释了原始问题中“制作梗图”的核心目的,降低了内容针对性。\n【最终得分 -0.10】",
  5151. "strategy": "推荐词",
  5152. "iteration": 2,
  5153. "is_selected": true,
  5154. "scoreColor": "#ef4444",
  5155. "parentQScore": 0.081
  5156. },
  5157. "q_双标行为_r2_18": {
  5158. "type": "q",
  5159. "query": "[Q] 双标行为",
  5160. "level": 22,
  5161. "relevance_score": 0.0765,
  5162. "evaluationReason": "",
  5163. "strategy": "Query",
  5164. "iteration": 2,
  5165. "is_selected": true,
  5166. "type_label": "",
  5167. "domain_index": -1,
  5168. "domain_type": "D2"
  5169. },
  5170. "sug_双标行为举例_r2_q18_0": {
  5171. "type": "sug",
  5172. "query": "[SUG] 双标行为举例",
  5173. "level": 23,
  5174. "relevance_score": 0.21,
  5175. "evaluationReason": "【评估对象】词条\"双标行为举例\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作(表情包梗图)\n【动机维度 0.00】原始问题的核心动机是「制作」表情包梗图,而sug词条「双标行为举例」中没有明确的动作意图。\n【品类维度 0.30】原始问题核心是「猫咪表情包梗图」,限定词是「人类双标行为」。Sug词条仅包含「双标行为」,与原始问题的限定词部分重叠,但核心对象「猫咪表情包梗图」完全缺失,导致匹配度较低。\n【延伸词维度 -0.15】sug词条「双标行为举例」与原始问题「制作反映人类双标行为的猫咪表情包梗图」的核心目的不符。原始问题侧重于“制作”和“猫咪表情包梗图”,而sug词条仅提供了“双标行为举例”,这属于原始问题中“双标行为”的背景知识,而非其核心动作或对象。它稀释了原始问题中“制作”和“表情包”的聚焦度,降低了内容针对性,属于作用域稀释型。\n【最终得分 0.21】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  5176. "strategy": "推荐词",
  5177. "iteration": 2,
  5178. "is_selected": true,
  5179. "scoreColor": "#22c55e",
  5180. "parentQScore": 0.0765
  5181. },
  5182. "sug_双标行为内涵是什么_r2_q18_1": {
  5183. "type": "sug",
  5184. "query": "[SUG] 双标行为内涵是什么",
  5185. "level": 23,
  5186. "relevance_score": -0.23,
  5187. "evaluationReason": "【评估对象】词条\"双标行为内涵是什么\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作\n【动机维度 0.00】原始问题意图是「制作」反映人类双标行为的猫咪表情包梗图,sug词条「双标行为内涵是什么」意图是「了解」双标行为的内涵,两者动词不同,且sug词条无明确动机。\n【品类维度 -0.25】原始问题对象层包括“猫咪表情包梗图”和“人类双标行为”,场景层未明确。Sug词条对象层为“双标行为”,场景层不明确。原始问题询问制作方法而sug词条只涉及对“双标行为”的定义,品类不匹配且缺失核心对象“猫咪表情包梗图”。\n【延伸词维度 -0.15】原始问题聚焦于「制作」猫咪表情包梗图,而sug词条「双标行为内涵是什么」将主题从「制作」转移到「概念解释」,稀释了原始问题的创作目的,属于作用域稀释型。\n【最终得分 -0.23】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  5188. "strategy": "推荐词",
  5189. "iteration": 2,
  5190. "is_selected": true,
  5191. "scoreColor": "#ef4444",
  5192. "parentQScore": 0.0765
  5193. },
  5194. "sug_讽刺双标的文案_r2_q18_2": {
  5195. "type": "sug",
  5196. "query": "[SUG] 讽刺双标的文案",
  5197. "level": 23,
  5198. "relevance_score": 0.010000000000000009,
  5199. "evaluationReason": "【评估对象】词条\"讽刺双标的文案\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作/生成(梗图)\n【动机维度 -0.15】原始问题的核心动机是「制作(梗图)」,sug词条的动机是「撰写/找寻(文案)」。两者动机存在部分重合,但方向上制作(图像)与撰写(文字)存在明显偏差。\n【品类维度 0.25】原始问题对象层为「猫咪表情包梗图」,场景层为「反映人类双标行为」。Sug词条对象层为「文案」,场景层为「讽刺双标」。场景层有部分匹配,但核心对象层「猫咪表情包梗图」与「文案」完全不符。\n【延伸词维度 -0.15】原始问题聚焦于「制作」猫咪表情包梗图,延伸词「文案」虽然与「讽刺双标」相关,但偏离了「制作」和「猫咪表情包」的核心对象,引入了不相关的创作形式,稀释了原始问题的聚焦度。\n【最终得分 0.01】",
  5200. "strategy": "推荐词",
  5201. "iteration": 2,
  5202. "is_selected": true,
  5203. "scoreColor": "#ef4444",
  5204. "parentQScore": 0.0765
  5205. },
  5206. "sug_王楚钦双标行为_r2_q18_3": {
  5207. "type": "sug",
  5208. "query": "[SUG] 王楚钦双标行为",
  5209. "level": 23,
  5210. "relevance_score": -0.7600000000000001,
  5211. "evaluationReason": "【评估对象】词条\"王楚钦双标行为\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作(表情包梗图)\n【动机维度 0.00】原始问题的核心动机是「制作」表情包梗图。sug词条「王楚钦双标行为」仅是一个话题,不包含任何动作意图。因此,sug词条无法匹配原始问题的动机。\n【品类维度 -0.80】原始问题核心对象为「猫咪表情包梗图」与「人类双标行为」,强调「制作」。sug词条「王楚钦双标行为」对象为特定人物的「双标行为」。两者核心对象和限定词完全不匹配,品类冲突,属于负向偏离。\n【延伸词维度 -0.60】sug词条中的“王楚钦”和“双标行为”均是延伸词。“王楚钦”引入了与原始问题完全无关的人物,且“双标行为”脱离了原始问题中“猫咪表情包梗图”的创作语境,导致sug词条与原始问题核心目的完全偏离,严重稀释了原始问题的聚焦度。\n【最终得分 -0.76】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20% + 规则3:核心维度严重负向,上限=0",
  5212. "strategy": "推荐词",
  5213. "iteration": 2,
  5214. "is_selected": true,
  5215. "scoreColor": "#ef4444",
  5216. "parentQScore": 0.0765
  5217. },
  5218. "sug_猫咪为什么会出现双标行为_r2_q18_4": {
  5219. "type": "sug",
  5220. "query": "[SUG] 猫咪为什么会出现双标行为",
  5221. "level": 23,
  5222. "relevance_score": -0.019999999999999997,
  5223. "evaluationReason": "【评估对象】词条\"猫咪为什么会出现双标行为\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作表情包梗图\n【动机维度 -0.05】原始问题意图是「制作」表情包,sug词条是「探讨/理解」猫咪行为原因。两者意图方向不同,原始是创作行为,sug是知识探索行为,尽管主题相关,但动作意图相悖。\n【品类维度 0.05】原始问题核心对象是“表情包梗图”和“双标行为”,场景是“猫咪”。sug词条仅包含“猫咪”和“双标行为”这两个场景与主体,但它是一个现象的提问,而不是制作过程。内容,不匹配“表情包梗图”这个核心对象,因此匹配度低,但也不算有关联结到了一部分主体,是抽象相似。\n【延伸词维度 -0.15】原始问题是关于「制作」表情包梗图,核心是创作行为。sug词条「猫咪为什么会出现双标行为」将主题从创作转向了对猫咪行为的「解释」,引入了与原始问题核心目的无关的知识性探究,稀释了原始问题的聚焦度。\n【最终得分 -0.02】",
  5224. "strategy": "推荐词",
  5225. "iteration": 2,
  5226. "is_selected": true,
  5227. "scoreColor": "#ef4444",
  5228. "parentQScore": 0.0765
  5229. },
  5230. "sug_双标男友的典型表现_r2_q18_5": {
  5231. "type": "sug",
  5232. "query": "[SUG] 双标男友的典型表现",
  5233. "level": 23,
  5234. "relevance_score": -0.43000000000000005,
  5235. "evaluationReason": "【评估对象】词条\"双标男友的典型表现\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作(表情包梗图)\n【动机维度 0.00】原始问题意图是「制作」表情包梗图,而sug词条「双标男友的典型表现」并无明确动作意图,因此无法进行动作匹配,动机维度评分为0。\n【品类维度 -0.50】原始问题内容主体为《人类双标行为的猫咪表情包梗图》,sug词条内容主体为《双标男友的典型表现》。两者核心对象和限定词完全不匹配,品类完全冲突。\n【延伸词维度 -0.15】sug词条「双标男友」与原始问题中的「人类双标行为」在概念上有所关联,但将范围限定在「男友」这一特定人群,且未提及「猫咪表情包梗图」这一核心对象,导致原始问题的核心目的被稀释。\n【最终得分 -0.43】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20% + 规则3:核心维度严重负向,上限=0",
  5236. "strategy": "推荐词",
  5237. "iteration": 2,
  5238. "is_selected": true,
  5239. "scoreColor": "#ef4444",
  5240. "parentQScore": 0.0765
  5241. },
  5242. "sug_猫咪双标行为搞笑视频_r2_q18_6": {
  5243. "type": "sug",
  5244. "query": "[SUG] 猫咪双标行为搞笑视频",
  5245. "level": 23,
  5246. "relevance_score": 0.33,
  5247. "evaluationReason": "【评估对象】词条\"猫咪双标行为搞笑视频\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作表情包/梗图\n【动机维度 0.25】原始问题核心动机是“制作”梗图,而sug词条是“视频”,两者形式不同且sug词条未体现制作意图。虽然都是内容创作(制作/拍摄),但sug词条未明确动作意图,因此匹配度较低。\n【品类维度 0.55】原始问题对象层为「猫咪表情包梗图」,场景层包括「人类双标行为」。sug词条对象层为「猫咪视频」,场景层包括「猫咪双标行为」「搞笑」。场景层「猫咪双标行为」与原始问题「人类双标行为」核心概念相似,但对象层「视频」与「表情包梗图」不符,有部分重叠。故评分为0.55。\n【延伸词维度 -0.15】原始问题聚焦于「表情包梗图」的制作,而sug词条引入了「搞笑视频」这一新的内容形式。这稀释了原始问题的核心目的,从制作静态图片转向了动态视频,降低了内容的针对性。\n【最终得分 0.33】",
  5248. "strategy": "推荐词",
  5249. "iteration": 2,
  5250. "is_selected": true,
  5251. "scoreColor": "#22c55e",
  5252. "parentQScore": 0.0765
  5253. },
  5254. "sug_猫咪双标行为_r2_q18_7": {
  5255. "type": "sug",
  5256. "query": "[SUG] 猫咪双标行为",
  5257. "level": 23,
  5258. "relevance_score": 0.44000000000000006,
  5259. "evaluationReason": "【评估对象】词条\"猫咪双标行为\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作,意图是产出表情包梗图\n【动机维度 0.00】原始问题明确意图是“制作”表情包梗图,而sug词条「猫咪双标行为」仅提供了制作的对象和主题,没有体现任何动作意图,因此动机维度评分为0。\n【品类维度 0.55】sug词条「猫咪双标行为」与原始问题「人类双标行为的猫咪表情包梗图」在对象层都包含「猫咪」和「双标行为」。原始问题还包含「表情包梗图」的核心对象和「人类」限定词,sug词条未涵盖。存在部分主体匹配和限定词匹配,但核心信息欠缺。\n【延伸词维度 0.00】sug词条未引入延伸词,所有词汇均属于原始问题作用域范围。\n【最终得分 0.44】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  5260. "strategy": "推荐词",
  5261. "iteration": 2,
  5262. "is_selected": true,
  5263. "scoreColor": "#22c55e",
  5264. "parentQScore": 0.0765
  5265. },
  5266. "sug_双标是什么意思啊_r2_q18_8": {
  5267. "type": "sug",
  5268. "query": "[SUG] 双标是什么意思啊",
  5269. "level": 23,
  5270. "relevance_score": 0.0050000000000000044,
  5271. "evaluationReason": "【评估对象】词条\"双标是什么意思啊\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作梗图,表达双标行为\n【动机维度 0.00】原始问题的核心动机是「制作」梗图,而sug词条「双标是什么意思啊」是「理解」或「查询」概念。sug词条与原始问题的制作动机完全不匹配。\n【品类维度 0.05】原始问题需求是制作猫咪双标行为表情包梗图,对象层有「双标行为」和「猫咪表情包梗图」。sug词条只涉及了「双标」这一概念,对象层和场景层覆盖度极低。\n【延伸词维度 -0.15】sug词条「双标是什么意思啊」与原始问题「制作反映人类双标行为的猫咪表情包梗图」的核心目的和作用域完全不符。原始问题是关于创作和制作,而sug词条是关于概念解释,引入了无关信息,稀释了原始问题的聚焦度,降低了内容的针对性。\n【最终得分 0.01】",
  5272. "strategy": "推荐词",
  5273. "iteration": 2,
  5274. "is_selected": true,
  5275. "scoreColor": "#ef4444",
  5276. "parentQScore": 0.0765
  5277. },
  5278. "sug_双标的人怎么怼_r2_q18_9": {
  5279. "type": "sug",
  5280. "query": "[SUG] 双标的人怎么怼",
  5281. "level": 23,
  5282. "relevance_score": -0.17500000000000004,
  5283. "evaluationReason": "【评估对象】词条\"双标的人怎么怼\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作(表情包梗图)\n【动机维度 0.00】原始问题意图是「制作」表情包梗图,而sug词条「怎么怼」意图是「反击/对抗」。两者动作意图完全不匹配。\n【品类维度 -0.40】原始问题内容主体为「人类双标行为」和「猫咪表情包梗图」,sug词条内容主体为「双标的人」。sug只有「双标」相关概念,缺少「猫咪表情包梗图」这一核心对象,且sug词侧重于互动反驳,与原始问题制作内容的主体含义有较大差异,存在品类错位。\n【延伸词维度 -0.15】sug词条「双标的人怎么怼」中的“怼”是延伸词,它引入了与原始问题“制作表情包梗图”完全不相关的行为,稀释了原始问题的创作和表达目的,偏离了核心需求。\n【最终得分 -0.18】",
  5284. "strategy": "推荐词",
  5285. "iteration": 2,
  5286. "is_selected": true,
  5287. "scoreColor": "#ef4444",
  5288. "parentQScore": 0.0765
  5289. },
  5290. "q_反映人类_r2_19": {
  5291. "type": "q",
  5292. "query": "[Q] 反映人类",
  5293. "level": 22,
  5294. "relevance_score": 0.0702,
  5295. "evaluationReason": "",
  5296. "strategy": "Query",
  5297. "iteration": 2,
  5298. "is_selected": true,
  5299. "type_label": "",
  5300. "domain_index": -1,
  5301. "domain_type": "D2"
  5302. },
  5303. "sug_反映人类社会发展进步的价值理念_r2_q19_0": {
  5304. "type": "sug",
  5305. "query": "[SUG] 反映人类社会发展进步的价值理念",
  5306. "level": 23,
  5307. "relevance_score": -0.7600000000000001,
  5308. "evaluationReason": "【评估对象】词条\"反映人类社会发展进步的价值理念\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作(表情包梗图)\n【动机维度 0.00】原始问题的核心动机是“制作”,而sug词条「反映人类社会发展进步的价值理念」中没有明确的动作意图。sug词条无动机,因此动机维度评分为0。\n【品类维度 -0.80】原始问题核心对象是《猫咪表情包梗图》,限定词是《人类双标行为》。sug词条核心对象是《价值理念》,限定词是《人类社会发展进步》,两者在对象和限定词上均无任何匹配,品类完全冲突。\n【延伸词维度 -0.60】sug词条中的“社会发展进步的价值理念”与原始问题中的“人类双标行为的猫咪表情包梗图”完全不相关,引入了与原始问题核心目的和作用域完全无关的宏大主题,严重稀释了原始问题的聚焦度,导致内容偏离。\n【最终得分 -0.76】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20% + 规则3:核心维度严重负向,上限=0",
  5309. "strategy": "推荐词",
  5310. "iteration": 2,
  5311. "is_selected": true,
  5312. "scoreColor": "#ef4444",
  5313. "parentQScore": 0.0702
  5314. },
  5315. "sug_人类图反映者_r2_q19_1": {
  5316. "type": "sug",
  5317. "query": "[SUG] 人类图反映者",
  5318. "level": 23,
  5319. "relevance_score": -0.19000000000000003,
  5320. "evaluationReason": "【评估对象】词条\"人类图反映者\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作(表情包梗图)\n【动机维度 0.00】原始问题的核心动机是“制作”表情包梗图。sug词条「人类图反映者」不包含任何动作意图,因此无法与原始问题的动作意图进行匹配。\n【品类维度 -0.20】原始问题核心对象是“猫咪表情包梗图”和“双标行为”,场景限定“人类”。Sug词是“人类图反映者”,对象完全不匹配,不具备相关性,存在误导性。\n【延伸词维度 -0.15】sug词条「人类图反映者」与原始问题「制作反映人类双标行为的猫咪表情包梗图」的核心目的和对象完全不符,引入了无关概念,稀释了原始问题的聚焦度。\n【最终得分 -0.19】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  5321. "strategy": "推荐词",
  5322. "iteration": 2,
  5323. "is_selected": true,
  5324. "scoreColor": "#ef4444",
  5325. "parentQScore": 0.0702
  5326. },
  5327. "sug_怎么识别人类图中的反映者_r2_q19_2": {
  5328. "type": "sug",
  5329. "query": "[SUG] 怎么识别人类图中的反映者",
  5330. "level": 23,
  5331. "relevance_score": -0.09500000000000001,
  5332. "evaluationReason": "【评估对象】词条\"怎么识别人类图中的反映者\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作(表情包梗图),内容是反映双标行为\n【动机维度 0.00】原始问题的核心动机是《制作》表情包梗图,而sug词条的核心动机是《识别》人类图像中的反映者。两者动机完全不匹配,无任何关联。\n【品类维度 -0.20】原始问题核心是「猫咪表情包梗图」这一对象和「人类双标行为」这一场景限定。sug词条「识别人类图中的反映者」与原始问题对象层和场景层均不匹配,二者核心主体完全不同,存在品类错位。\n【延伸词维度 -0.15】sug词条中的“识别人类图中的反映者”与原始问题“制作反映人类双标行为的猫咪表情包梗图”的核心目的和作用域完全不符,引入了无关的识别概念,稀释了原始问题关于“制作”和“猫咪表情包”的聚焦度,属于作用域稀释型。\n【最终得分 -0.10】",
  5333. "strategy": "推荐词",
  5334. "iteration": 2,
  5335. "is_selected": true,
  5336. "scoreColor": "#ef4444",
  5337. "parentQScore": 0.0702
  5338. },
  5339. "sug_人类图显示者_r2_q19_3": {
  5340. "type": "sug",
  5341. "query": "[SUG] 人类图显示者",
  5342. "level": 23,
  5343. "relevance_score": -0.52,
  5344. "evaluationReason": "【评估对象】词条\"人类图显示者\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作(表情包梗图)\n【动机维度 0.00】原始问题意图是「制作」表情包梗图,而sug词条「人类图显示者」无法识别出任何动作意图,因此动机匹配度为0。\n【品类维度 -0.50】原始问题核心对象是「猫咪表情包梗图」及「人类双标行为」内容。Sug词「人类图显示者」是完全不相关的概念。核心对象和内容主体均完全不匹配,品类冲突。\n【延伸词维度 -0.60】sug词条「人类图显示者」与原始问题「制作反映人类双标行为的猫咪表情包梗图」完全不相关,属于作用域无关型,且严重偏离原始问题,稀释了原始问题的核心目的。\n【最终得分 -0.52】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20% + 规则3:核心维度严重负向,上限=0",
  5345. "strategy": "推荐词",
  5346. "iteration": 2,
  5347. "is_selected": true,
  5348. "scoreColor": "#ef4444",
  5349. "parentQScore": 0.0702
  5350. },
  5351. "sug_人类图解读_r2_q19_4": {
  5352. "type": "sug",
  5353. "query": "[SUG] 人类图解读",
  5354. "level": 23,
  5355. "relevance_score": -0.8,
  5356. "evaluationReason": "【评估对象】词条\"人类图解读\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作表情包\n【动机维度 0.00】原始问题核心动机是「制作」表情包,而Sug词条「人类图解读」不包含任何明确的动机,因此无法匹配。\n【品类维度 -0.85】原始问题意在生成「猫咪表情包梗图」,对象和场景为「猫咪」和「表情包梗图」。sug词为「人类图解读」,与原始问题中的核心主体「猫咪」和「表情包梗图」完全不匹配,是完全不同的概念类别,属于负向偏离。\n【延伸词维度 -0.60】原始问题聚焦于制作「猫咪表情包梗图」以反映「人类双标行为」,核心是内容创作和主题表达。「人类图解读」是一个完全不相关的概念,与原始问题的动机、对象、场景均无关联,属于严重的稀释型延伸词,将用户引导至完全不同的领域,对原始问题目的达成造成负面影响。\n【最终得分 -0.80】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20% + 规则3:核心维度严重负向,上限=0",
  5357. "strategy": "推荐词",
  5358. "iteration": 2,
  5359. "is_selected": true,
  5360. "scoreColor": "#ef4444",
  5361. "parentQScore": 0.0702
  5362. },
  5363. "sug_人类图是什么_r2_q19_5": {
  5364. "type": "sug",
  5365. "query": "[SUG] 人类图是什么",
  5366. "level": 23,
  5367. "relevance_score": -0.38000000000000006,
  5368. "evaluationReason": "【评估对象】词条\"人类图是什么\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作表情包梗图\n【动机维度 0.00】原始问题动机是“制作表情包”,sug词条“人类图是什么”的动机是“了解/学习”某个概念,两者动作意图完全不匹配。\n【品类维度 -0.80】原始问题核心对象是《人类双标行为的猫咪表情包梗图》,场景限定涉及《人类双标行为》。sug词条《人类图是什么》的核心对象是《人类图》,两者在品类上完全不符,主体词和限定词均无关联。\n【延伸词维度 -0.60】sug词条「人类图」与原始问题「制作反映人类双标行为的猫咪表情包梗图」在主题和目的上完全不相关,引入了与原始问题核心需求无关的全新概念,严重稀释了原始问题的聚焦度,导致内容偏离,属于作用域稀释型。\n【最终得分 -0.38】\n【规则说明】规则3:核心维度严重负向,上限=0",
  5369. "strategy": "推荐词",
  5370. "iteration": 2,
  5371. "is_selected": true,
  5372. "scoreColor": "#ef4444",
  5373. "parentQScore": 0.0702
  5374. },
  5375. "sug_反映者适合什么工作_r2_q19_6": {
  5376. "type": "sug",
  5377. "query": "[SUG] 反映者适合什么工作",
  5378. "level": 23,
  5379. "relevance_score": -0.38000000000000006,
  5380. "evaluationReason": "【评估对象】词条\"反映者适合什么工作\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作表情包梗图\n【动机维度 0.00】原始问题的核心动机是\"制作\"表情包梗图。sug词条「反映者适合什么工作」的动机是\"适合\"或\"寻找\"工作。两者动作完全不匹配且无关。\n【品类维度 -0.80】原始问题核心是「人类双标行为」「猫咪表情包梗图」,sug词条是「反映者适合什么工作」。两者对象层和场景层均完全不匹配,是完全不同的话题领域。\n【延伸词维度 -0.60】sug词条「反映者适合什么工作」与原始问题「如何制作反映人类双标行为的猫咪表情包梗图」完全不相关,引入了与原始问题制作表情包梗图完全无关的职业选择话题,严重稀释了原始问题的聚焦度。\n【最终得分 -0.38】\n【规则说明】规则3:核心维度严重负向,上限=0",
  5381. "strategy": "推荐词",
  5382. "iteration": 2,
  5383. "is_selected": true,
  5384. "scoreColor": "#ef4444",
  5385. "parentQScore": 0.0702
  5386. },
  5387. "sug_人类图投射者_r2_q19_7": {
  5388. "type": "sug",
  5389. "query": "[SUG] 人类图投射者",
  5390. "level": 23,
  5391. "relevance_score": -0.7100000000000001,
  5392. "evaluationReason": "【评估对象】词条\"人类图投射者\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作表情包\n【动机维度 0.00】原始问题意图是「制作」表情包,sug词条「人类图投射者」仅为名词短语,不包含任何动作意图,因此无法评估动作匹配度。\n【品类维度 -0.85】原始问题核心是制作「猫咪表情包梗图」,限定词为「反映人类双标行为」。sug词是「人类图投射者」,两者在核心对象和限定词上完全不匹配,品类差异巨大。\n【延伸词维度 -0.15】sug词条「人类图投射者」与原始问题「制作反映人类双标行为的猫咪表情包梗图」的核心目的和作用域完全不符,引入了无关概念,稀释了原始问题的聚焦度。\n【最终得分 -0.71】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20% + 规则3:核心维度严重负向,上限=0",
  5393. "strategy": "推荐词",
  5394. "iteration": 2,
  5395. "is_selected": true,
  5396. "scoreColor": "#ef4444",
  5397. "parentQScore": 0.0702
  5398. },
  5399. "sug_反映者的代表人物_r2_q19_8": {
  5400. "type": "sug",
  5401. "query": "[SUG] 反映者的代表人物",
  5402. "level": 23,
  5403. "relevance_score": -0.19000000000000003,
  5404. "evaluationReason": "【评估对象】词条\"反映者的代表人物\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作(表情包、梗图),表达/展现(反映人类双标行为)\n【动机维度 0.00】原始问题的核心动机是“制作”猫咪梗图以“反映”人类行为。sug词条「反映者的代表人物」中,动词“反映”与原始问题中的“反映”存在字面重叠,但sug词条没有明确的动机意图,因此无法评估动机匹配度。\n【品类维度 -0.20】原始问题核心对象是《猫咪表情包梗图》,限定词包括《人类双标行为》、《制作》。sug词《反映者的代表人物》与原始问题对象与限定词完全不符,品类错位。\n【延伸词维度 -0.15】原始问题聚焦于「制作」猫咪表情包梗图,而sug词条「反映者的代表人物」引入了与制作行为无关的人物概念,稀释了原始问题的核心目的,属于作用域稀释型。\n【最终得分 -0.19】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  5405. "strategy": "推荐词",
  5406. "iteration": 2,
  5407. "is_selected": true,
  5408. "scoreColor": "#ef4444",
  5409. "parentQScore": 0.0702
  5410. },
  5411. "sug_人类图测试_r2_q19_9": {
  5412. "type": "sug",
  5413. "query": "[SUG] 人类图测试",
  5414. "level": 23,
  5415. "relevance_score": -0.3350000000000001,
  5416. "evaluationReason": "【评估对象】词条\"人类图测试\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作/生成(表情包梗图)\n【动机维度 0.00】原始问题的核心动机是\"制作/生成\",而sug词条\"人类图测试\"的动机是\"测试\"。二者动机没有相关性。\n【品类维度 -0.80】原始问题集中在「猫咪表情包梗图」的制作,兼含「人类双标行为」限定。sug词条「人类图测试」与核心主体「表情包梗图」和限定词均无关联,品类严重不匹配。\n【延伸词维度 -0.15】原始问题是关于制作猫咪表情包梗图以反映人类双标行为,核心是「制作」和「猫咪表情包梗图」。sug词条「人类图测试」引入了与原始问题完全不相关的概念「人类图测试」,既不属于原始问题的任何作用域,也无助于原始目的的达成,反而稀释了原始问题的聚焦度。\n【最终得分 -0.34】\n【规则说明】规则3:核心维度严重负向,上限=0",
  5417. "strategy": "推荐词",
  5418. "iteration": 2,
  5419. "is_selected": true,
  5420. "scoreColor": "#ef4444",
  5421. "parentQScore": 0.0702
  5422. },
  5423. "q_反映人类行为_r2_20": {
  5424. "type": "q",
  5425. "query": "[Q] 反映人类行为",
  5426. "level": 22,
  5427. "relevance_score": 0.0702,
  5428. "evaluationReason": "",
  5429. "strategy": "Query",
  5430. "iteration": 2,
  5431. "is_selected": true,
  5432. "type_label": "",
  5433. "domain_index": -1,
  5434. "domain_type": "D2"
  5435. },
  5436. "sug_反映人类行为的环境问题_r2_q20_0": {
  5437. "type": "sug",
  5438. "query": "[SUG] 反映人类行为的环境问题",
  5439. "level": 23,
  5440. "relevance_score": -0.27599999999999997,
  5441. "evaluationReason": "【评估对象】词条\"反映人类行为的环境问题\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作\n【动机维度 0.00】sug词条缺乏明确的动作意图和目的性,无法评估动作匹配度。原始问题的核心动作是「制作」,而sug词条没有表现出任何动作意图。\n【品类维度 -0.30】原始问题核心对象为「猫咪表情包梗图」,限定词为「人类双标行为」。sug词条核心对象为「环境问题」,限定词为「人类行为」,两者对象不匹配且限定词差异大,存在品类冲突。\n【延伸词维度 -0.18】sug词条中的“环境问题”是延伸词,它与原始问题中的“人类双标行为”和“猫咪表情包梗图”完全不相关,严重稀释了原始问题的聚焦度,导致内容偏离核心。\n【最终得分 -0.28】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  5442. "strategy": "推荐词",
  5443. "iteration": 2,
  5444. "is_selected": true,
  5445. "scoreColor": "#ef4444",
  5446. "parentQScore": 0.0702
  5447. },
  5448. "q_人类行为_r2_21": {
  5449. "type": "q",
  5450. "query": "[Q] 人类行为",
  5451. "level": 22,
  5452. "relevance_score": 0.045,
  5453. "evaluationReason": "",
  5454. "strategy": "Query",
  5455. "iteration": 2,
  5456. "is_selected": true,
  5457. "type_label": "",
  5458. "domain_index": -1,
  5459. "domain_type": "D2"
  5460. },
  5461. "sug_人类行为与社会环境_r2_q21_0": {
  5462. "type": "sug",
  5463. "query": "[SUG] 人类行为与社会环境",
  5464. "level": 23,
  5465. "relevance_score": -0.19000000000000003,
  5466. "evaluationReason": "【评估对象】词条\"人类行为与社会环境\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作表情包梗图\n【动机维度 0.00】sug词条「人类行为与社会环境」是纯名词性短语,无法识别出任何明确的动作意图。因此,无法与原始问题「制作」的动作意图进行匹配。\n【品类维度 -0.20】原始问题核心对象是《猫咪表情包梗图》,限定词是《人类双标行为》。sug词《人类行为与社会环境》只在《人类行为》上与原始问题概念有弱关联,但sug词本身过于泛化且缺少核心对象和场景,无法匹配。\n【延伸词维度 -0.15】原始问题聚焦于「制作猫咪表情包梗图」这一具体行为,并限定了主题「反映人类双标行为」。sug词条「人类行为与社会环境」是高度概括的学术概念,与原始问题的具体制作需求和娱乐属性不符,稀释了原始问题的聚焦度,使其偏离了核心目的。\n【最终得分 -0.19】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  5467. "strategy": "推荐词",
  5468. "iteration": 2,
  5469. "is_selected": true,
  5470. "scoreColor": "#ef4444",
  5471. "parentQScore": 0.045
  5472. },
  5473. "sug_人类行为设计师-小周_r2_q21_1": {
  5474. "type": "sug",
  5475. "query": "[SUG] 人类行为设计师-小周",
  5476. "level": 23,
  5477. "relevance_score": -0.19000000000000003,
  5478. "evaluationReason": "【评估对象】词条\"人类行为设计师-小周\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作(表情包梗图)\n【动机维度 0.00】原始问题意图是「制作」表情包梗图,sug词条「人类行为设计师-小周」并未包含动作意图,因此无法匹配。\n【品类维度 -0.20】原始问题内容主题是“猫咪表情包梗图”,限定词是“反映人类双标行为”;sug词条是“人类行为设计师-小周”,内容主题和限定词均与原始问题无关且无关,仅有「人类行为」弱关联,但sug是人物而sug是职业主体词错位\n【延伸词维度 -0.15】sug词条「人类行为设计师-小周」与原始问题「如何制作反映人类双标行为的猫咪表情包梗图」的核心目的和作用域完全不符。它引入了一个与表情包制作、猫咪、双标行为等核心概念无关的职业和人名,严重稀释了原始问题的聚焦度,导致内容偏离。\n【最终得分 -0.19】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  5479. "strategy": "推荐词",
  5480. "iteration": 2,
  5481. "is_selected": true,
  5482. "scoreColor": "#ef4444",
  5483. "parentQScore": 0.045
  5484. },
  5485. "sug_人类行为与社会环境重点_r2_q21_2": {
  5486. "type": "sug",
  5487. "query": "[SUG] 人类行为与社会环境重点",
  5488. "level": 23,
  5489. "relevance_score": -0.19000000000000003,
  5490. "evaluationReason": "【评估对象】词条\"人类行为与社会环境重点\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作表情包梗图\n【动机维度 0.00】原始问题的核心动机是「制作」表情包梗图。sug词条「人类行为与社会环境重点」仅是名词短语,无任何动作意图,因此动机匹配度为0。\n【品类维度 -0.20】原始问题涉及「猫咪表情包梗图」这一对象,限定词是「人类双标行为」。sug词主对象是「人类行为与社会环境」,与原始问题的主要对象「表情包梗图」完全不符,但二者都含有「人类行为」这一概念,sug词的限定词「社会环境重点」完全不匹配,与原始问题不相关,有一定偏离\n【延伸词维度 -0.15】原始问题聚焦于「制作猫咪表情包梗图」以「反映人类双标行为」,而sug词条「人类行为与社会环境重点」则是一个宽泛的学术领域,与制作表情包这一具体操作和猫咪主题完全无关,属于作用域稀释型延伸词,严重偏离了原始问题的核心目的和对象。\n【最终得分 -0.19】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  5491. "strategy": "推荐词",
  5492. "iteration": 2,
  5493. "is_selected": true,
  5494. "scoreColor": "#ef4444",
  5495. "parentQScore": 0.045
  5496. },
  5497. "sug_人类行为与社会环境笔记_r2_q21_3": {
  5498. "type": "sug",
  5499. "query": "[SUG] 人类行为与社会环境笔记",
  5500. "level": 23,
  5501. "relevance_score": -0.7100000000000001,
  5502. "evaluationReason": "【评估对象】词条\"人类行为与社会环境笔记\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作(表情包梗图)\n【动机维度 0.00】原始问题的核心动机是【制作】表情包梗图,sug词条「人类行为与社会环境笔记」无明确的动作意图。\n【品类维度 -0.85】原始问题核心对象是《猫咪表情包梗图》,限定词有《人类双标行为》。sug词条核心对象是《人类行为与社会环境笔记》,与原始问题的核心对象完全不符,品类严重冲突。\n【延伸词维度 -0.15】sug词条「人类行为与社会环境笔记」中的“笔记”是延伸词,它与原始问题「如何制作反映人类双标行为的猫咪表情包梗图」中的“制作”和“梗图”无关,稀释了原始问题的聚焦度,降低了内容针对性。\n【最终得分 -0.71】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20% + 规则3:核心维度严重负向,上限=0",
  5503. "strategy": "推荐词",
  5504. "iteration": 2,
  5505. "is_selected": true,
  5506. "scoreColor": "#ef4444",
  5507. "parentQScore": 0.045
  5508. },
  5509. "sug_人类行为矫正教育漫画_r2_q21_4": {
  5510. "type": "sug",
  5511. "query": "[SUG] 人类行为矫正教育漫画",
  5512. "level": 23,
  5513. "relevance_score": -0.21500000000000002,
  5514. "evaluationReason": "【评估对象】词条\"人类行为矫正教育漫画\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作表情包梗图\n【动机维度 0.00】原始问题的核心动机是「制作」表情包梗图,而sug词条「人类行为矫正教育漫画」的动机是「矫正」和「教育」。两者动机意图完全不匹配。\n【品类维度 -0.50】原始问题核心对象是“猫咪表情包梗图”,限定词是“人类双标行为”。Sug词条是“人类行为矫正教育漫画”,其核心对象和限定词与原始问题完全不匹配,品类冲突严重。\n【延伸词维度 -0.15】原始问题聚焦于「制作猫咪表情包梗图」以反映「人类双标行为」,核心是内容创作和主题表达。「人类行为矫正教育漫画」中的「矫正教育」和「漫画」与原始问题的「制作表情包梗图」和「反映双标行为」存在较大偏差,稀释了原始问题的创作性和娱乐性,引入了教育和矫正的无关维度。\n【最终得分 -0.22】\n【规则说明】规则3:核心维度严重负向,上限=0",
  5515. "strategy": "推荐词",
  5516. "iteration": 2,
  5517. "is_selected": true,
  5518. "scoreColor": "#ef4444",
  5519. "parentQScore": 0.045
  5520. },
  5521. "sug_人类行为与社会环境第三版_r2_q21_5": {
  5522. "type": "sug",
  5523. "query": "[SUG] 人类行为与社会环境第三版",
  5524. "level": 23,
  5525. "relevance_score": -0.7600000000000001,
  5526. "evaluationReason": "【评估对象】词条\"人类行为与社会环境第三版\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】原始问题的核心动机是\"制作\"表情包梗图,表达一种创造和产出的意图。它涉及到创作过程中的技能运用和结果产出。\n【动机维度 0.00】原始问题的动机是创造和产出(制作),而sug词条无法识别出明确的动作意图(名词性词条),因此无法进行动作上的匹配。\n【品类维度 -0.80】原始问题核心对象是“猫咪表情包梗图”和“双标行为”,场景限定为“人类”。sug词条是“人类行为与社会环境第三版”,属于学术书籍,对象和场景都与原始问题完全不匹配,是明显错误的品类。\n【延伸词维度 -0.60】sug词条「人类行为与社会环境第三版」与原始问题「制作猫咪表情包梗图」完全不相关,属于作用域无关型延伸词,且严重偏离原始问题核心,稀释了用户意图。\n【最终得分 -0.76】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20% + 规则3:核心维度严重负向,上限=0",
  5527. "strategy": "推荐词",
  5528. "iteration": 2,
  5529. "is_selected": true,
  5530. "scoreColor": "#ef4444",
  5531. "parentQScore": 0.045
  5532. },
  5533. "sug_人类行为矫正教育_r2_q21_6": {
  5534. "type": "sug",
  5535. "query": "[SUG] 人类行为矫正教育",
  5536. "level": 23,
  5537. "relevance_score": -0.7350000000000001,
  5538. "evaluationReason": "【评估对象】词条\"人类行为矫正教育\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作表情包梗图\n【动机维度 -0.80】原始问题的核心动机是“制作”特定主题(反映人类双标行为的猫咪表情包梗图),而sug词条「人类行为矫正教育」的动机是“教育”或“矫正”。两者动作意图完全不匹配,甚至方向相反,因此得分较低。\n【品类维度 -0.80】原始问题核心对象为「猫咪表情包梗图」,限定词为「反映人类双标行为」。sug词为「人类行为矫正教育」。两者对象、限定词均无匹配,品类完全不同且偏离严重。\n【延伸词维度 -0.15】sug词条「人类行为矫正教育」与原始问题「制作猫咪表情包梗图」的核心目的完全不符,引入了与原始问题无关的全新主题,严重稀释了原始问题的聚焦度,导致内容偏离。\n【最终得分 -0.74】\n【规则说明】规则3:核心维度严重负向,上限=0",
  5539. "strategy": "推荐词",
  5540. "iteration": 2,
  5541. "is_selected": true,
  5542. "scoreColor": "#ef4444",
  5543. "parentQScore": 0.045
  5544. },
  5545. "sug_人类行为心理学_r2_q21_7": {
  5546. "type": "sug",
  5547. "query": "[SUG] 人类行为心理学",
  5548. "level": 23,
  5549. "relevance_score": 0.010000000000000009,
  5550. "evaluationReason": "【评估对象】词条\"人类行为心理学\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作表情包\n【动机维度 0.00】原始问题的核心动机是「制作」表情包,而Sug词条「人类行为心理学」无明确的动作意图。\n【品类维度 0.05】原始问题核心是制作《猫咪表情包梗图》,作用域侧重内容创作与娱乐。sug词条《人类行为心理学》是偏学术的理论知识,虽与行为有弱关联,但品类差异大,覆盖度低,相关性很弱。\n【延伸词维度 -0.15】原始问题聚焦于「制作表情包梗图」这一具体创作行为,并限定了主题「人类双标行为的猫咪表情包」。sug词条「人类行为心理学」是一个宽泛的学术领域,与制作表情包的实践性需求关联度低,且未能体现猫咪和表情包的创作元素,稀释了原始问题的聚焦度。\n【最终得分 0.01】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  5551. "strategy": "推荐词",
  5552. "iteration": 2,
  5553. "is_selected": true,
  5554. "scoreColor": "#ef4444",
  5555. "parentQScore": 0.045
  5556. },
  5557. "sug_人类行为观察员_r2_q21_8": {
  5558. "type": "sug",
  5559. "query": "[SUG] 人类行为观察员",
  5560. "level": 23,
  5561. "relevance_score": 0.034,
  5562. "evaluationReason": "【评估对象】词条\"人类行为观察员\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作表情包梗图\n【动机维度 0.00】原始问题的核心动机是「制作」表情包梗图,而sug词条「人类行为观察员」没有包含任何动作意图,因此动机匹配度为0。\n【品类维度 0.08】原始问题涉及“人类行为”和“猫咪表情包梗图”,sug词条仅包含“人类行为”这一部分,且表达过于概括、抽象,没有提及猫咪、表情包等核心限定,覆盖度低。\n【延伸词维度 -0.15】sug词条「人类行为观察员」与原始问题「制作反映人类双标行为的猫咪表情包梗图」的核心目的和对象均不符。它引入了一个与制作表情包无关的新主题,稀释了原始问题的聚焦度,属于作用域稀释型。\n【最终得分 0.03】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  5563. "strategy": "推荐词",
  5564. "iteration": 2,
  5565. "is_selected": true,
  5566. "scoreColor": "#ef4444",
  5567. "parentQScore": 0.045
  5568. },
  5569. "sug_人类行为艺术_r2_q21_9": {
  5570. "type": "sug",
  5571. "query": "[SUG] 人类行为艺术",
  5572. "level": 23,
  5573. "relevance_score": -0.19000000000000003,
  5574. "evaluationReason": "【评估对象】词条\"人类行为艺术\" vs 原始问题\"如何制作反映人类双标行为的猫咪表情包梗图\"\n【核心动机】「制作」反映人类双标行为的猫咪表情包梗图\n【动机维度 0.00】原始问题意图是「制作」特定表情包梗图,sug词条「人类行为艺术」没有明确的动作意图。因此,sug词条缺失动机层,无法评估动作匹配度。\n【品类维度 -0.20】原始问题核心是《猫咪表情包梗图》体现《人类双标行为》,sug词条《人类行为艺术》与原始问题主体《猫咪表情包梗图》品类不符,且限定词差异大。\n【延伸词维度 -0.15】sug词条「人类行为艺术」与原始问题「猫咪表情包梗图」的核心对象和目的完全不符,稀释了原始问题的聚焦度,使其偏离核心。\n【最终得分 -0.19】\n【规则说明】情况3:sug词条无动作意图,权重调整为 品类80% + 延伸词20%",
  5575. "strategy": "推荐词",
  5576. "iteration": 2,
  5577. "is_selected": true,
  5578. "scoreColor": "#ef4444",
  5579. "parentQScore": 0.045
  5580. },
  5581. "step_comb_r2": {
  5582. "type": "step",
  5583. "query": "步骤2: 跨2个域组合 (149个组合)",
  5584. "level": 21,
  5585. "relevance_score": 0,
  5586. "strategy": "域内组词",
  5587. "iteration": 2,
  5588. "is_selected": true
  5589. },
  5590. "comb_如何反映_r2_0": {
  5591. "type": "domain_combination",
  5592. "query": "如何反映",
  5593. "level": 22,
  5594. "relevance_score": 0.03408,
  5595. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"如何反映\"\n【评估对象】词条\"如何反映\" vs 作用域词条\"如何反映人类双标行为的\"\n【核心动机】反映\n【动机维度 0.98】词条的核心动作“反映”与原始问题的核心动作“反映”完全一致。\n【品类维度 0.08】词条“如何反映”是一个通用概念,而同一作用域词条“如何反映人类双标行为的”是一个特定概念。词条仅包含同一作用域词条中的动词部分,没有包含任何名词或限定词,因此品类匹配度极低,但由于动词部分相同,给予极低的正分。\n【最终得分 0.71】\n【规则说明】规则A:动机高分保护生效(动机0.98≥0.8),实际得分0.71已≥0.7\n【加权系数计算】\n0.048\n 来源词总得分: 0.05\n 系数: 0.05【计算公式】base_score × 系数 = 0.71 × 0.05\n【最终得分(截断后)】0.03",
  5596. "strategy": "域内组合",
  5597. "iteration": 2,
  5598. "is_selected": true,
  5599. "type_label": "[疑问引导+修饰短语]",
  5600. "source_words": [
  5601. [
  5602. "如何"
  5603. ],
  5604. [
  5605. "反映"
  5606. ]
  5607. ],
  5608. "from_segments": [
  5609. "如何",
  5610. "反映人类双标行为的"
  5611. ],
  5612. "domains": [
  5613. 0,
  5614. 2
  5615. ],
  5616. "domains_str": "D0,D2",
  5617. "source_word_details": [
  5618. {
  5619. "domain_index": 0,
  5620. "segment_type": "疑问引导",
  5621. "segment_text": "如何",
  5622. "words": [
  5623. {
  5624. "text": "如何",
  5625. "score": 0.024
  5626. }
  5627. ]
  5628. },
  5629. {
  5630. "domain_index": 2,
  5631. "segment_type": "修饰短语",
  5632. "segment_text": "反映人类双标行为的",
  5633. "words": [
  5634. {
  5635. "text": "反映",
  5636. "score": 0.024
  5637. }
  5638. ]
  5639. }
  5640. ],
  5641. "source_scores": [
  5642. 0.024,
  5643. 0.024
  5644. ],
  5645. "is_above_sources": true,
  5646. "max_source_score": 0.024,
  5647. "scoreColor": "#22c55e"
  5648. },
  5649. "comb_如何人类_r2_1": {
  5650. "type": "domain_combination",
  5651. "query": "如何人类",
  5652. "level": 22,
  5653. "relevance_score": 0.001152,
  5654. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"如何人类\"\n【评估对象】词条\"如何人类\" vs 作用域词条\"如何反映人类双标行为的\"\n【核心动机】反映\n【动机维度 0.00】词条“如何人类”无明确动作意图,无法评估动作匹配度。\n【品类维度 0.08】词条“如何人类”是通用概念,而同一作用域词条“如何反映人类双标行为的”是特定概念。词条仅包含同一作用域词条中的部分通用词汇“如何”和“人类”,但缺失了核心限定词“双标行为”,导致品类不匹配,因此得分较低。\n【最终得分 0.02】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.02已≤0.5\n【加权系数计算】\n0.048\n 来源词总得分: 0.05\n 系数: 0.05【计算公式】base_score × 系数 = 0.02 × 0.05\n【最终得分(截断后)】0.00",
  5655. "strategy": "域内组合",
  5656. "iteration": 2,
  5657. "is_selected": true,
  5658. "type_label": "[疑问引导+修饰短语]",
  5659. "source_words": [
  5660. [
  5661. "如何"
  5662. ],
  5663. [
  5664. "人类"
  5665. ]
  5666. ],
  5667. "from_segments": [
  5668. "如何",
  5669. "反映人类双标行为的"
  5670. ],
  5671. "domains": [
  5672. 0,
  5673. 2
  5674. ],
  5675. "domains_str": "D0,D2",
  5676. "source_word_details": [
  5677. {
  5678. "domain_index": 0,
  5679. "segment_type": "疑问引导",
  5680. "segment_text": "如何",
  5681. "words": [
  5682. {
  5683. "text": "如何",
  5684. "score": 0.024
  5685. }
  5686. ]
  5687. },
  5688. {
  5689. "domain_index": 2,
  5690. "segment_type": "修饰短语",
  5691. "segment_text": "反映人类双标行为的",
  5692. "words": [
  5693. {
  5694. "text": "人类",
  5695. "score": 0.024
  5696. }
  5697. ]
  5698. }
  5699. ],
  5700. "source_scores": [
  5701. 0.024,
  5702. 0.024
  5703. ],
  5704. "is_above_sources": false,
  5705. "max_source_score": 0.024,
  5706. "scoreColor": "#ef4444"
  5707. },
  5708. "comb_如何双标_r2_2": {
  5709. "type": "domain_combination",
  5710. "query": "如何双标",
  5711. "level": 22,
  5712. "relevance_score": 0,
  5713. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"如何双标\"\n【评估对象】词条\"如何双标\" vs 作用域词条\"如何反映人类双标行为的\"\n【核心动机】反映\n【动机维度 -0.70】原始问题的核心动机是“反映”,即表达、呈现某种现象。而词条的核心动机是“如何双标”,即学习或实践双标行为。两者在动作意图上存在明显的冲突,一个是要呈现,一个是要实施,方向完全相反。\n【品类维度 0.75】核心主体'双标'匹配,但限定词'人类行为'在词条中被简化为动词'如何',导致限定词匹配度降低。\n【最终得分 0.00】\n【规则说明】规则C:动机负向,最终得分=0\n【加权系数计算】\n0.048\n 来源词总得分: 0.05\n 系数: 0.05【计算公式】base_score × 系数 = 0.00 × 0.05\n【最终得分(截断后)】0.00",
  5714. "strategy": "域内组合",
  5715. "iteration": 2,
  5716. "is_selected": true,
  5717. "type_label": "[疑问引导+修饰短语]",
  5718. "source_words": [
  5719. [
  5720. "如何"
  5721. ],
  5722. [
  5723. "双标"
  5724. ]
  5725. ],
  5726. "from_segments": [
  5727. "如何",
  5728. "反映人类双标行为的"
  5729. ],
  5730. "domains": [
  5731. 0,
  5732. 2
  5733. ],
  5734. "domains_str": "D0,D2",
  5735. "source_word_details": [
  5736. {
  5737. "domain_index": 0,
  5738. "segment_type": "疑问引导",
  5739. "segment_text": "如何",
  5740. "words": [
  5741. {
  5742. "text": "如何",
  5743. "score": 0.024
  5744. }
  5745. ]
  5746. },
  5747. {
  5748. "domain_index": 2,
  5749. "segment_type": "修饰短语",
  5750. "segment_text": "反映人类双标行为的",
  5751. "words": [
  5752. {
  5753. "text": "双标",
  5754. "score": 0.024
  5755. }
  5756. ]
  5757. }
  5758. ],
  5759. "source_scores": [
  5760. 0.024,
  5761. 0.024
  5762. ],
  5763. "is_above_sources": false,
  5764. "max_source_score": 0.024,
  5765. "scoreColor": "#ef4444"
  5766. },
  5767. "comb_如何行为_r2_3": {
  5768. "type": "domain_combination",
  5769. "query": "如何行为",
  5770. "level": 22,
  5771. "relevance_score": 0.001152,
  5772. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"如何行为\"\n【评估对象】词条\"如何行为\" vs 作用域词条\"如何反映人类双标行为的\"\n【核心动机】反映\n【动机维度 0.00】原始问题核心动机是“反映”,词条核心动机是“行为”,两者动作意图不匹配。\n【品类维度 0.08】sug词'如何行为'是通用概念,原始问题'如何反映人类双标行为的'是特定概念。通用概念不等于特定概念,因此品类不匹配,评分较低。\n【最终得分 0.02】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.02已≤0.5\n【加权系数计算】\n0.048\n 来源词总得分: 0.05\n 系数: 0.05【计算公式】base_score × 系数 = 0.02 × 0.05\n【最终得分(截断后)】0.00",
  5773. "strategy": "域内组合",
  5774. "iteration": 2,
  5775. "is_selected": true,
  5776. "type_label": "[疑问引导+修饰短语]",
  5777. "source_words": [
  5778. [
  5779. "如何"
  5780. ],
  5781. [
  5782. "行为"
  5783. ]
  5784. ],
  5785. "from_segments": [
  5786. "如何",
  5787. "反映人类双标行为的"
  5788. ],
  5789. "domains": [
  5790. 0,
  5791. 2
  5792. ],
  5793. "domains_str": "D0,D2",
  5794. "source_word_details": [
  5795. {
  5796. "domain_index": 0,
  5797. "segment_type": "疑问引导",
  5798. "segment_text": "如何",
  5799. "words": [
  5800. {
  5801. "text": "如何",
  5802. "score": 0.024
  5803. }
  5804. ]
  5805. },
  5806. {
  5807. "domain_index": 2,
  5808. "segment_type": "修饰短语",
  5809. "segment_text": "反映人类双标行为的",
  5810. "words": [
  5811. {
  5812. "text": "行为",
  5813. "score": 0.024
  5814. }
  5815. ]
  5816. }
  5817. ],
  5818. "source_scores": [
  5819. 0.024,
  5820. 0.024
  5821. ],
  5822. "is_above_sources": false,
  5823. "max_source_score": 0.024,
  5824. "scoreColor": "#ef4444"
  5825. },
  5826. "comb_如何反映人类_r2_4": {
  5827. "type": "domain_combination",
  5828. "query": "如何反映人类",
  5829. "level": 22,
  5830. "relevance_score": 0.021195,
  5831. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"如何反映人类\"\n【评估对象】词条\"如何反映人类\" vs 作用域词条\"如何反映人类双标行为的\"\n【核心动机】反映\n【动机维度 0.00】词条“如何反映人类”的动作意图是“反映”,与原始问题“如何反映人类双标行为的”的动作意图“反映”一致。但词条缺少了原始问题中的核心对象“双标行为”,导致词条的动作意图不完整,无法准确反映原始问题的动机。\n【品类维度 0.75】核心主体'如何反映人类'完全匹配,但限定词'双标行为'缺失,属于核心主体匹配但限定词缺失的情况。\n【最终得分 0.22】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.22已≤0.5\n【加权系数计算】\n0.0942\n 来源词总得分: 0.09\n 系数: 0.09【计算公式】base_score × 系数 = 0.22 × 0.09\n【最终得分(截断后)】0.02",
  5832. "strategy": "域内组合",
  5833. "iteration": 2,
  5834. "is_selected": true,
  5835. "type_label": "[疑问引导+修饰短语]",
  5836. "source_words": [
  5837. [
  5838. "如何"
  5839. ],
  5840. [
  5841. "反映",
  5842. "人类"
  5843. ]
  5844. ],
  5845. "from_segments": [
  5846. "如何",
  5847. "反映人类双标行为的"
  5848. ],
  5849. "domains": [
  5850. 0,
  5851. 2
  5852. ],
  5853. "domains_str": "D0,D2",
  5854. "source_word_details": [
  5855. {
  5856. "domain_index": 0,
  5857. "segment_type": "疑问引导",
  5858. "segment_text": "如何",
  5859. "words": [
  5860. {
  5861. "text": "如何",
  5862. "score": 0.024
  5863. }
  5864. ]
  5865. },
  5866. {
  5867. "domain_index": 2,
  5868. "segment_type": "修饰短语",
  5869. "segment_text": "反映人类双标行为的",
  5870. "words": [
  5871. {
  5872. "text": "反映",
  5873. "score": 0.024
  5874. },
  5875. {
  5876. "text": "人类",
  5877. "score": 0.024
  5878. }
  5879. ]
  5880. }
  5881. ],
  5882. "source_scores": [
  5883. 0.024,
  5884. 0.024,
  5885. 0.024
  5886. ],
  5887. "is_above_sources": false,
  5888. "max_source_score": 0.024,
  5889. "scoreColor": "#ef4444"
  5890. },
  5891. "comb_如何反映双标_r2_5": {
  5892. "type": "domain_combination",
  5893. "query": "如何反映双标",
  5894. "level": 22,
  5895. "relevance_score": 0.10038000000000001,
  5896. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"如何反映双标\"\n【评估对象】词条\"如何反映双标\" vs 作用域词条\"如何反映人类双标行为的\"\n【核心动机】反映\n【动机维度 0.98】原始问题和词条的核心动作都是“反映”,语义完全一致。\n【品类维度 0.90】核心主体'双标'和限定词'反映'均匹配,词条省略了'人类行为',但语义上仍高度相关。\n【最终得分 0.96】\n【规则说明】规则A:动机高分保护生效(动机0.98≥0.8),实际得分0.96已≥0.7\n【加权系数计算】\n0.10500000000000001\n 来源词总得分: 0.11\n 系数: 0.11【计算公式】base_score × 系数 = 0.96 × 0.11\n【最终得分(截断后)】0.10",
  5897. "strategy": "域内组合",
  5898. "iteration": 2,
  5899. "is_selected": true,
  5900. "type_label": "[疑问引导+修饰短语]",
  5901. "source_words": [
  5902. [
  5903. "如何"
  5904. ],
  5905. [
  5906. "反映",
  5907. "双标"
  5908. ]
  5909. ],
  5910. "from_segments": [
  5911. "如何",
  5912. "反映人类双标行为的"
  5913. ],
  5914. "domains": [
  5915. 0,
  5916. 2
  5917. ],
  5918. "domains_str": "D0,D2",
  5919. "source_word_details": [
  5920. {
  5921. "domain_index": 0,
  5922. "segment_type": "疑问引导",
  5923. "segment_text": "如何",
  5924. "words": [
  5925. {
  5926. "text": "如何",
  5927. "score": 0.024
  5928. }
  5929. ]
  5930. },
  5931. {
  5932. "domain_index": 2,
  5933. "segment_type": "修饰短语",
  5934. "segment_text": "反映人类双标行为的",
  5935. "words": [
  5936. {
  5937. "text": "反映",
  5938. "score": 0.024
  5939. },
  5940. {
  5941. "text": "双标",
  5942. "score": 0.024
  5943. }
  5944. ]
  5945. }
  5946. ],
  5947. "source_scores": [
  5948. 0.024,
  5949. 0.024,
  5950. 0.024
  5951. ],
  5952. "is_above_sources": true,
  5953. "max_source_score": 0.024,
  5954. "scoreColor": "#22c55e"
  5955. },
  5956. "comb_如何反映行为_r2_6": {
  5957. "type": "domain_combination",
  5958. "query": "如何反映行为",
  5959. "level": 22,
  5960. "relevance_score": 0.028423199999999996,
  5961. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"如何反映行为\"\n【评估对象】词条\"如何反映行为\" vs 作用域词条\"如何反映人类双标行为的\"\n【核心动机】反映\n【动机维度 0.98】原始问题和词条的核心动作都是“反映”,动作意图完全一致。\n【品类维度 0.75】核心主体'行为'匹配,但限定词'人类双标'缺失,属于核心主体匹配但限定词不完全匹配的情况。\n【最终得分 0.91】\n【规则说明】规则A:动机高分保护生效(动机0.98≥0.8),实际得分0.91已≥0.7\n【加权系数计算】\n0.0312\n 来源词总得分: 0.03\n 系数: 0.03【计算公式】base_score × 系数 = 0.91 × 0.03\n【最终得分(截断后)】0.03",
  5962. "strategy": "域内组合",
  5963. "iteration": 2,
  5964. "is_selected": true,
  5965. "type_label": "[疑问引导+修饰短语]",
  5966. "source_words": [
  5967. [
  5968. "如何"
  5969. ],
  5970. [
  5971. "反映",
  5972. "行为"
  5973. ]
  5974. ],
  5975. "from_segments": [
  5976. "如何",
  5977. "反映人类双标行为的"
  5978. ],
  5979. "domains": [
  5980. 0,
  5981. 2
  5982. ],
  5983. "domains_str": "D0,D2",
  5984. "source_word_details": [
  5985. {
  5986. "domain_index": 0,
  5987. "segment_type": "疑问引导",
  5988. "segment_text": "如何",
  5989. "words": [
  5990. {
  5991. "text": "如何",
  5992. "score": 0.024
  5993. }
  5994. ]
  5995. },
  5996. {
  5997. "domain_index": 2,
  5998. "segment_type": "修饰短语",
  5999. "segment_text": "反映人类双标行为的",
  6000. "words": [
  6001. {
  6002. "text": "反映",
  6003. "score": 0.024
  6004. },
  6005. {
  6006. "text": "行为",
  6007. "score": 0.024
  6008. }
  6009. ]
  6010. }
  6011. ],
  6012. "source_scores": [
  6013. 0.024,
  6014. 0.024,
  6015. 0.024
  6016. ],
  6017. "is_above_sources": true,
  6018. "max_source_score": 0.024,
  6019. "scoreColor": "#22c55e"
  6020. },
  6021. "comb_如何人类双标_r2_7": {
  6022. "type": "domain_combination",
  6023. "query": "如何人类双标",
  6024. "level": 22,
  6025. "relevance_score": 0.028350000000000004,
  6026. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"如何人类双标\"\n【评估对象】词条\"如何人类双标\" vs 作用域词条\"如何反映人类双标行为的\"\n【核心动机】反映\n【动机维度 0.00】词条无明确动作意图,无法评估动作匹配度\n【品类维度 0.90】核心主体'人类双标'完全匹配,限定词'如何'也匹配,但词条中缺少了'行为的',导致匹配度略有下降。\n【最终得分 0.27】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.27已≤0.5\n【加权系数计算】\n0.10500000000000001\n 来源词总得分: 0.11\n 系数: 0.11【计算公式】base_score × 系数 = 0.27 × 0.11\n【最终得分(截断后)】0.03",
  6027. "strategy": "域内组合",
  6028. "iteration": 2,
  6029. "is_selected": true,
  6030. "type_label": "[疑问引导+修饰短语]",
  6031. "source_words": [
  6032. [
  6033. "如何"
  6034. ],
  6035. [
  6036. "人类",
  6037. "双标"
  6038. ]
  6039. ],
  6040. "from_segments": [
  6041. "如何",
  6042. "反映人类双标行为的"
  6043. ],
  6044. "domains": [
  6045. 0,
  6046. 2
  6047. ],
  6048. "domains_str": "D0,D2",
  6049. "source_word_details": [
  6050. {
  6051. "domain_index": 0,
  6052. "segment_type": "疑问引导",
  6053. "segment_text": "如何",
  6054. "words": [
  6055. {
  6056. "text": "如何",
  6057. "score": 0.024
  6058. }
  6059. ]
  6060. },
  6061. {
  6062. "domain_index": 2,
  6063. "segment_type": "修饰短语",
  6064. "segment_text": "反映人类双标行为的",
  6065. "words": [
  6066. {
  6067. "text": "人类",
  6068. "score": 0.024
  6069. },
  6070. {
  6071. "text": "双标",
  6072. "score": 0.024
  6073. }
  6074. ]
  6075. }
  6076. ],
  6077. "source_scores": [
  6078. 0.024,
  6079. 0.024,
  6080. 0.024
  6081. ],
  6082. "is_above_sources": true,
  6083. "max_source_score": 0.024,
  6084. "scoreColor": "#22c55e"
  6085. },
  6086. "comb_如何人类行为_r2_8": {
  6087. "type": "domain_combination",
  6088. "query": "如何人类行为",
  6089. "level": 22,
  6090. "relevance_score": 0.014490000000000001,
  6091. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"如何人类行为\"\n【评估对象】词条\"如何人类行为\" vs 作用域词条\"如何反映人类双标行为的\"\n【核心动机】反映\n【动机维度 0.00】词条“如何人类行为”没有明确的动作意图,无法与原始问题的“反映”动作进行匹配。\n【品类维度 0.70】核心主体词'人类行为'匹配,但限定词'双标'缺失,属于核心主体匹配但限定词不完全匹配的情况。\n【最终得分 0.21】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.21已≤0.5\n【加权系数计算】\n0.069\n 来源词总得分: 0.07\n 系数: 0.07【计算公式】base_score × 系数 = 0.21 × 0.07\n【最终得分(截断后)】0.01",
  6092. "strategy": "域内组合",
  6093. "iteration": 2,
  6094. "is_selected": true,
  6095. "type_label": "[疑问引导+修饰短语]",
  6096. "source_words": [
  6097. [
  6098. "如何"
  6099. ],
  6100. [
  6101. "人类",
  6102. "行为"
  6103. ]
  6104. ],
  6105. "from_segments": [
  6106. "如何",
  6107. "反映人类双标行为的"
  6108. ],
  6109. "domains": [
  6110. 0,
  6111. 2
  6112. ],
  6113. "domains_str": "D0,D2",
  6114. "source_word_details": [
  6115. {
  6116. "domain_index": 0,
  6117. "segment_type": "疑问引导",
  6118. "segment_text": "如何",
  6119. "words": [
  6120. {
  6121. "text": "如何",
  6122. "score": 0.024
  6123. }
  6124. ]
  6125. },
  6126. {
  6127. "domain_index": 2,
  6128. "segment_type": "修饰短语",
  6129. "segment_text": "反映人类双标行为的",
  6130. "words": [
  6131. {
  6132. "text": "人类",
  6133. "score": 0.024
  6134. },
  6135. {
  6136. "text": "行为",
  6137. "score": 0.024
  6138. }
  6139. ]
  6140. }
  6141. ],
  6142. "source_scores": [
  6143. 0.024,
  6144. 0.024,
  6145. 0.024
  6146. ],
  6147. "is_above_sources": false,
  6148. "max_source_score": 0.024,
  6149. "scoreColor": "#ef4444"
  6150. },
  6151. "comb_如何双标行为_r2_9": {
  6152. "type": "domain_combination",
  6153. "query": "如何双标行为",
  6154. "level": 22,
  6155. "relevance_score": 0.0226125,
  6156. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"如何双标行为\"\n【评估对象】词条\"如何双标行为\" vs 作用域词条\"如何反映人类双标行为的\"\n【核心动机】反映\n【动机维度 0.00】原始问题核心动机是'反映',词条没有明确的动作意图,无法评估动机匹配度。\n【品类维度 0.75】核心主体'双标行为'匹配,但限定词'如何反映人类'与'如何'存在差异,后者更直接指向行为本身,而非其反映方式。\n【最终得分 0.22】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.22已≤0.5\n【加权系数计算】\n0.1005\n 来源词总得分: 0.10\n 系数: 0.10【计算公式】base_score × 系数 = 0.22 × 0.10\n【最终得分(截断后)】0.02",
  6157. "strategy": "域内组合",
  6158. "iteration": 2,
  6159. "is_selected": true,
  6160. "type_label": "[疑问引导+修饰短语]",
  6161. "source_words": [
  6162. [
  6163. "如何"
  6164. ],
  6165. [
  6166. "双标",
  6167. "行为"
  6168. ]
  6169. ],
  6170. "from_segments": [
  6171. "如何",
  6172. "反映人类双标行为的"
  6173. ],
  6174. "domains": [
  6175. 0,
  6176. 2
  6177. ],
  6178. "domains_str": "D0,D2",
  6179. "source_word_details": [
  6180. {
  6181. "domain_index": 0,
  6182. "segment_type": "疑问引导",
  6183. "segment_text": "如何",
  6184. "words": [
  6185. {
  6186. "text": "如何",
  6187. "score": 0.024
  6188. }
  6189. ]
  6190. },
  6191. {
  6192. "domain_index": 2,
  6193. "segment_type": "修饰短语",
  6194. "segment_text": "反映人类双标行为的",
  6195. "words": [
  6196. {
  6197. "text": "双标",
  6198. "score": 0.024
  6199. },
  6200. {
  6201. "text": "行为",
  6202. "score": 0.024
  6203. }
  6204. ]
  6205. }
  6206. ],
  6207. "source_scores": [
  6208. 0.024,
  6209. 0.024,
  6210. 0.024
  6211. ],
  6212. "is_above_sources": false,
  6213. "max_source_score": 0.024,
  6214. "scoreColor": "#ef4444"
  6215. },
  6216. "comb_如何反映人类双标_r2_10": {
  6217. "type": "domain_combination",
  6218. "query": "如何反映人类双标",
  6219. "level": 22,
  6220. "relevance_score": 0.109956,
  6221. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"如何反映人类双标\"\n【评估对象】词条\"如何反映人类双标\" vs 作用域词条\"如何反映人类双标行为的\"\n【核心动机】反映\n【动机维度 0.98】原始问题和词条的核心动作都是“反映”,语义完全一致。\n【品类维度 0.98】核心主体“人类双标行为”与“人类双标”高度匹配,仅在限定词上存在微小差异(“行为的”与空),但语义上完全一致,因此匹配度极高。\n【最终得分 0.98】\n【规则说明】规则A:动机高分保护生效(动机0.98≥0.8),实际得分0.98已≥0.7\n【加权系数计算】\n0.1122\n 来源词总得分: 0.11\n 系数: 0.11【计算公式】base_score × 系数 = 0.98 × 0.11\n【最终得分(截断后)】0.11",
  6222. "strategy": "域内组合",
  6223. "iteration": 2,
  6224. "is_selected": true,
  6225. "type_label": "[疑问引导+修饰短语]",
  6226. "source_words": [
  6227. [
  6228. "如何"
  6229. ],
  6230. [
  6231. "反映",
  6232. "人类",
  6233. "双标"
  6234. ]
  6235. ],
  6236. "from_segments": [
  6237. "如何",
  6238. "反映人类双标行为的"
  6239. ],
  6240. "domains": [
  6241. 0,
  6242. 2
  6243. ],
  6244. "domains_str": "D0,D2",
  6245. "source_word_details": [
  6246. {
  6247. "domain_index": 0,
  6248. "segment_type": "疑问引导",
  6249. "segment_text": "如何",
  6250. "words": [
  6251. {
  6252. "text": "如何",
  6253. "score": 0.024
  6254. }
  6255. ]
  6256. },
  6257. {
  6258. "domain_index": 2,
  6259. "segment_type": "修饰短语",
  6260. "segment_text": "反映人类双标行为的",
  6261. "words": [
  6262. {
  6263. "text": "反映",
  6264. "score": 0.024
  6265. },
  6266. {
  6267. "text": "人类",
  6268. "score": 0.024
  6269. },
  6270. {
  6271. "text": "双标",
  6272. "score": 0.024
  6273. }
  6274. ]
  6275. }
  6276. ],
  6277. "source_scores": [
  6278. 0.024,
  6279. 0.024,
  6280. 0.024,
  6281. 0.024
  6282. ],
  6283. "is_above_sources": true,
  6284. "max_source_score": 0.024,
  6285. "scoreColor": "#22c55e"
  6286. },
  6287. "comb_如何反映人类行为_r2_11": {
  6288. "type": "domain_combination",
  6289. "query": "如何反映人类行为",
  6290. "level": 22,
  6291. "relevance_score": 0.080541,
  6292. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"如何反映人类行为\"\n【评估对象】词条\"如何反映人类行为\" vs 作用域词条\"如何反映人类双标行为的\"\n【核心动机】反映\n【动机维度 0.90】原始问题和词条的核心动机都是“反映”,动机完全一致。\n【品类维度 0.75】核心主体“人类行为”匹配,限定词“双标”缺失,属于合理泛化。\n【最终得分 0.85】\n【规则说明】规则A:动机高分保护生效(动机0.90≥0.8),实际得分0.85已≥0.7\n【加权系数计算】\n0.0942\n 来源词总得分: 0.09\n 系数: 0.09【计算公式】base_score × 系数 = 0.85 × 0.09\n【最终得分(截断后)】0.08",
  6293. "strategy": "域内组合",
  6294. "iteration": 2,
  6295. "is_selected": true,
  6296. "type_label": "[疑问引导+修饰短语]",
  6297. "source_words": [
  6298. [
  6299. "如何"
  6300. ],
  6301. [
  6302. "反映",
  6303. "人类",
  6304. "行为"
  6305. ]
  6306. ],
  6307. "from_segments": [
  6308. "如何",
  6309. "反映人类双标行为的"
  6310. ],
  6311. "domains": [
  6312. 0,
  6313. 2
  6314. ],
  6315. "domains_str": "D0,D2",
  6316. "source_word_details": [
  6317. {
  6318. "domain_index": 0,
  6319. "segment_type": "疑问引导",
  6320. "segment_text": "如何",
  6321. "words": [
  6322. {
  6323. "text": "如何",
  6324. "score": 0.024
  6325. }
  6326. ]
  6327. },
  6328. {
  6329. "domain_index": 2,
  6330. "segment_type": "修饰短语",
  6331. "segment_text": "反映人类双标行为的",
  6332. "words": [
  6333. {
  6334. "text": "反映",
  6335. "score": 0.024
  6336. },
  6337. {
  6338. "text": "人类",
  6339. "score": 0.024
  6340. },
  6341. {
  6342. "text": "行为",
  6343. "score": 0.024
  6344. }
  6345. ]
  6346. }
  6347. ],
  6348. "source_scores": [
  6349. 0.024,
  6350. 0.024,
  6351. 0.024,
  6352. 0.024
  6353. ],
  6354. "is_above_sources": true,
  6355. "max_source_score": 0.024,
  6356. "scoreColor": "#22c55e"
  6357. },
  6358. "comb_如何反映双标行为_r2_12": {
  6359. "type": "domain_combination",
  6360. "query": "如何反映双标行为",
  6361. "level": 22,
  6362. "relevance_score": 0.096078,
  6363. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"如何反映双标行为\"\n【评估对象】词条\"如何反映双标行为\" vs 作用域词条\"如何反映人类双标行为的\"\n【核心动机】反映\n【动机维度 0.98】原始问题和词条的核心动作都是“反映”,语义完全一致。\n【品类维度 0.90】核心主体'双标行为'完全匹配,限定词'人类'在词条中被省略,但语义上仍指代人类双标行为,属于合理泛化,因此匹配度高。\n【最终得分 0.96】\n【规则说明】规则A:动机高分保护生效(动机0.98≥0.8),实际得分0.96已≥0.7\n【加权系数计算】\n0.1005\n 来源词总得分: 0.10\n 系数: 0.10【计算公式】base_score × 系数 = 0.96 × 0.10\n【最终得分(截断后)】0.10",
  6364. "strategy": "域内组合",
  6365. "iteration": 2,
  6366. "is_selected": true,
  6367. "type_label": "[疑问引导+修饰短语]",
  6368. "source_words": [
  6369. [
  6370. "如何"
  6371. ],
  6372. [
  6373. "反映",
  6374. "双标",
  6375. "行为"
  6376. ]
  6377. ],
  6378. "from_segments": [
  6379. "如何",
  6380. "反映人类双标行为的"
  6381. ],
  6382. "domains": [
  6383. 0,
  6384. 2
  6385. ],
  6386. "domains_str": "D0,D2",
  6387. "source_word_details": [
  6388. {
  6389. "domain_index": 0,
  6390. "segment_type": "疑问引导",
  6391. "segment_text": "如何",
  6392. "words": [
  6393. {
  6394. "text": "如何",
  6395. "score": 0.024
  6396. }
  6397. ]
  6398. },
  6399. {
  6400. "domain_index": 2,
  6401. "segment_type": "修饰短语",
  6402. "segment_text": "反映人类双标行为的",
  6403. "words": [
  6404. {
  6405. "text": "反映",
  6406. "score": 0.024
  6407. },
  6408. {
  6409. "text": "双标",
  6410. "score": 0.024
  6411. },
  6412. {
  6413. "text": "行为",
  6414. "score": 0.024
  6415. }
  6416. ]
  6417. }
  6418. ],
  6419. "source_scores": [
  6420. 0.024,
  6421. 0.024,
  6422. 0.024,
  6423. 0.024
  6424. ],
  6425. "is_above_sources": true,
  6426. "max_source_score": 0.024,
  6427. "scoreColor": "#22c55e"
  6428. },
  6429. "comb_如何人类双标行为_r2_13": {
  6430. "type": "domain_combination",
  6431. "query": "如何人类双标行为",
  6432. "level": 22,
  6433. "relevance_score": 0.029925,
  6434. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"如何人类双标行为\"\n【评估对象】词条\"如何人类双标行为\" vs 作用域词条\"如何反映人类双标行为的\"\n【核心动机】反映\n【动机维度 0.00】词条无明确动作意图,无法评估动作匹配度\n【品类维度 0.95】核心主体“人类双标行为”完全匹配,限定词“如何反映”与“如何”高度匹配,仅缺少“反映”一词,但语义上仍保持一致性。\n【最终得分 0.28】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.28已≤0.5\n【加权系数计算】\n0.10500000000000001\n 来源词总得分: 0.11\n 系数: 0.11【计算公式】base_score × 系数 = 0.28 × 0.11\n【最终得分(截断后)】0.03",
  6435. "strategy": "域内组合",
  6436. "iteration": 2,
  6437. "is_selected": true,
  6438. "type_label": "[疑问引导+修饰短语]",
  6439. "source_words": [
  6440. [
  6441. "如何"
  6442. ],
  6443. [
  6444. "人类",
  6445. "双标",
  6446. "行为"
  6447. ]
  6448. ],
  6449. "from_segments": [
  6450. "如何",
  6451. "反映人类双标行为的"
  6452. ],
  6453. "domains": [
  6454. 0,
  6455. 2
  6456. ],
  6457. "domains_str": "D0,D2",
  6458. "source_word_details": [
  6459. {
  6460. "domain_index": 0,
  6461. "segment_type": "疑问引导",
  6462. "segment_text": "如何",
  6463. "words": [
  6464. {
  6465. "text": "如何",
  6466. "score": 0.024
  6467. }
  6468. ]
  6469. },
  6470. {
  6471. "domain_index": 2,
  6472. "segment_type": "修饰短语",
  6473. "segment_text": "反映人类双标行为的",
  6474. "words": [
  6475. {
  6476. "text": "人类",
  6477. "score": 0.024
  6478. },
  6479. {
  6480. "text": "双标",
  6481. "score": 0.024
  6482. },
  6483. {
  6484. "text": "行为",
  6485. "score": 0.024
  6486. }
  6487. ]
  6488. }
  6489. ],
  6490. "source_scores": [
  6491. 0.024,
  6492. 0.024,
  6493. 0.024,
  6494. 0.024
  6495. ],
  6496. "is_above_sources": true,
  6497. "max_source_score": 0.024,
  6498. "scoreColor": "#22c55e"
  6499. },
  6500. "comb_如何反映人类双标行为_r2_14": {
  6501. "type": "domain_combination",
  6502. "query": "如何反映人类双标行为",
  6503. "level": 22,
  6504. "relevance_score": 0.1122,
  6505. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"如何反映人类双标行为\"\n【评估对象】词条\"如何反映人类双标行为\" vs 作用域词条\"如何反映人类双标行为的\"\n【核心动机】反映\n【动机维度 1.00】词条与原始问题的核心动机完全一致,都是“反映”。\n【品类维度 1.00】核心主体和所有关键限定词完全匹配,词条与同一作用域词条完全一致。\n【最终得分 1.00】\n【规则说明】规则A:动机高分保护生效(动机1.00≥0.8),实际得分1.00已≥0.7\n【加权系数计算】\n0.1122\n 来源词总得分: 0.11\n 系数: 0.11【计算公式】base_score × 系数 = 1.00 × 0.11\n【最终得分(截断后)】0.11",
  6506. "strategy": "域内组合",
  6507. "iteration": 2,
  6508. "is_selected": true,
  6509. "type_label": "[疑问引导+修饰短语]",
  6510. "source_words": [
  6511. [
  6512. "如何"
  6513. ],
  6514. [
  6515. "反映",
  6516. "人类",
  6517. "双标",
  6518. "行为"
  6519. ]
  6520. ],
  6521. "from_segments": [
  6522. "如何",
  6523. "反映人类双标行为的"
  6524. ],
  6525. "domains": [
  6526. 0,
  6527. 2
  6528. ],
  6529. "domains_str": "D0,D2",
  6530. "source_word_details": [
  6531. {
  6532. "domain_index": 0,
  6533. "segment_type": "疑问引导",
  6534. "segment_text": "如何",
  6535. "words": [
  6536. {
  6537. "text": "如何",
  6538. "score": 0.024
  6539. }
  6540. ]
  6541. },
  6542. {
  6543. "domain_index": 2,
  6544. "segment_type": "修饰短语",
  6545. "segment_text": "反映人类双标行为的",
  6546. "words": [
  6547. {
  6548. "text": "反映",
  6549. "score": 0.024
  6550. },
  6551. {
  6552. "text": "人类",
  6553. "score": 0.024
  6554. },
  6555. {
  6556. "text": "双标",
  6557. "score": 0.024
  6558. },
  6559. {
  6560. "text": "行为",
  6561. "score": 0.024
  6562. }
  6563. ]
  6564. }
  6565. ],
  6566. "source_scores": [
  6567. 0.024,
  6568. 0.024,
  6569. 0.024,
  6570. 0.024,
  6571. 0.024
  6572. ],
  6573. "is_above_sources": true,
  6574. "max_source_score": 0.024,
  6575. "scoreColor": "#22c55e"
  6576. },
  6577. "comb_如何猫咪_r2_15": {
  6578. "type": "domain_combination",
  6579. "query": "如何猫咪",
  6580. "level": 22,
  6581. "relevance_score": 0.011969999999999998,
  6582. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"如何猫咪\"\n【评估对象】词条\"如何猫咪\" vs 作用域词条\"如何猫咪表情包梗图\"\n【核心动机】制作/生成猫咪表情包梗图\n【动机维度 0.00】词条“如何猫咪”无明确动作意图,无法评估动作匹配度。\n【品类维度 0.35】核心主体'猫咪'匹配,但限定词'表情包梗图'缺失,导致品类泛化。\n【最终得分 0.10】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.10已≤0.5\n【加权系数计算】\n0.11399999999999999\n 来源词总得分: 0.11\n 系数: 0.11【计算公式】base_score × 系数 = 0.10 × 0.11\n【最终得分(截断后)】0.01",
  6583. "strategy": "域内组合",
  6584. "iteration": 2,
  6585. "is_selected": true,
  6586. "type_label": "[疑问引导+中心名词]",
  6587. "source_words": [
  6588. [
  6589. "如何"
  6590. ],
  6591. [
  6592. "猫咪"
  6593. ]
  6594. ],
  6595. "from_segments": [
  6596. "如何",
  6597. "猫咪表情包梗图"
  6598. ],
  6599. "domains": [
  6600. 0,
  6601. 3
  6602. ],
  6603. "domains_str": "D0,D3",
  6604. "source_word_details": [
  6605. {
  6606. "domain_index": 0,
  6607. "segment_type": "疑问引导",
  6608. "segment_text": "如何",
  6609. "words": [
  6610. {
  6611. "text": "如何",
  6612. "score": 0.024
  6613. }
  6614. ]
  6615. },
  6616. {
  6617. "domain_index": 3,
  6618. "segment_type": "中心名词",
  6619. "segment_text": "猫咪表情包梗图",
  6620. "words": [
  6621. {
  6622. "text": "猫咪",
  6623. "score": 0.09
  6624. }
  6625. ]
  6626. }
  6627. ],
  6628. "source_scores": [
  6629. 0.024,
  6630. 0.09
  6631. ],
  6632. "is_above_sources": false,
  6633. "max_source_score": 0.09,
  6634. "scoreColor": "#ef4444"
  6635. },
  6636. "comb_如何表情包_r2_16": {
  6637. "type": "domain_combination",
  6638. "query": "如何表情包",
  6639. "level": 22,
  6640. "relevance_score": 0.14876999999999999,
  6641. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"如何表情包\"\n【评估对象】词条\"如何表情包\" vs 作用域词条\"如何猫咪表情包梗图\"\n【核心动机】制作/生成猫咪表情包梗图\n【动机维度 0.90】原始问题和词条的核心动机都是'制作/生成表情包',词条是原始问题动作的泛化,动机高度一致。\n【品类维度 0.75】核心主体“表情包”匹配,但限定词“猫咪”缺失,属于合理泛化。\n【最终得分 0.85】\n【规则说明】规则A:动机高分保护生效(动机0.90≥0.8),实际得分0.85已≥0.7\n【加权系数计算】\n0.174\n 来源词总得分: 0.17\n 系数: 0.17【计算公式】base_score × 系数 = 0.85 × 0.17\n【最终得分(截断后)】0.15",
  6642. "strategy": "域内组合",
  6643. "iteration": 2,
  6644. "is_selected": true,
  6645. "type_label": "[疑问引导+中心名词]",
  6646. "source_words": [
  6647. [
  6648. "如何"
  6649. ],
  6650. [
  6651. "表情包"
  6652. ]
  6653. ],
  6654. "from_segments": [
  6655. "如何",
  6656. "猫咪表情包梗图"
  6657. ],
  6658. "domains": [
  6659. 0,
  6660. 3
  6661. ],
  6662. "domains_str": "D0,D3",
  6663. "source_word_details": [
  6664. {
  6665. "domain_index": 0,
  6666. "segment_type": "疑问引导",
  6667. "segment_text": "如何",
  6668. "words": [
  6669. {
  6670. "text": "如何",
  6671. "score": 0.024
  6672. }
  6673. ]
  6674. },
  6675. {
  6676. "domain_index": 3,
  6677. "segment_type": "中心名词",
  6678. "segment_text": "猫咪表情包梗图",
  6679. "words": [
  6680. {
  6681. "text": "表情包",
  6682. "score": 0.15
  6683. }
  6684. ]
  6685. }
  6686. ],
  6687. "source_scores": [
  6688. 0.024,
  6689. 0.15
  6690. ],
  6691. "is_above_sources": false,
  6692. "max_source_score": 0.15,
  6693. "scoreColor": "#ef4444"
  6694. },
  6695. "comb_如何梗图_r2_17": {
  6696. "type": "domain_combination",
  6697. "query": "如何梗图",
  6698. "level": 22,
  6699. "relevance_score": 0.0336,
  6700. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"如何梗图\"\n【评估对象】词条\"如何梗图\" vs 作用域词条\"如何猫咪表情包梗图\"\n【核心动机】制作/生成猫咪表情包梗图\n【动机维度 0.90】原始问题和词条的核心动机都是'制作/生成梗图',词条是原始问题动机的泛化,动机高度一致。\n【品类维度 0.08】原始问题是'猫咪表情包梗图',限定了主体是'猫咪表情包'。词条是'梗图',是一个通用概念,没有限定主体。通用概念不等于特定概念,因此品类匹配度低。\n【最终得分 0.70】\n【规则说明】规则A:动机高分保护(动机0.90≥0.8),最终得分下限=0.7\n【加权系数计算】\n0.048\n 来源词总得分: 0.05\n 系数: 0.05【计算公式】base_score × 系数 = 0.70 × 0.05\n【最终得分(截断后)】0.03",
  6701. "strategy": "域内组合",
  6702. "iteration": 2,
  6703. "is_selected": true,
  6704. "type_label": "[疑问引导+中心名词]",
  6705. "source_words": [
  6706. [
  6707. "如何"
  6708. ],
  6709. [
  6710. "梗图"
  6711. ]
  6712. ],
  6713. "from_segments": [
  6714. "如何",
  6715. "猫咪表情包梗图"
  6716. ],
  6717. "domains": [
  6718. 0,
  6719. 3
  6720. ],
  6721. "domains_str": "D0,D3",
  6722. "source_word_details": [
  6723. {
  6724. "domain_index": 0,
  6725. "segment_type": "疑问引导",
  6726. "segment_text": "如何",
  6727. "words": [
  6728. {
  6729. "text": "如何",
  6730. "score": 0.024
  6731. }
  6732. ]
  6733. },
  6734. {
  6735. "domain_index": 3,
  6736. "segment_type": "中心名词",
  6737. "segment_text": "猫咪表情包梗图",
  6738. "words": [
  6739. {
  6740. "text": "梗图",
  6741. "score": 0.024
  6742. }
  6743. ]
  6744. }
  6745. ],
  6746. "source_scores": [
  6747. 0.024,
  6748. 0.024
  6749. ],
  6750. "is_above_sources": true,
  6751. "max_source_score": 0.024,
  6752. "scoreColor": "#22c55e"
  6753. },
  6754. "comb_如何猫咪表情包_r2_18": {
  6755. "type": "domain_combination",
  6756. "query": "如何猫咪表情包",
  6757. "level": 22,
  6758. "relevance_score": 0.22427759999999997,
  6759. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"如何猫咪表情包\"\n【评估对象】词条\"如何猫咪表情包\" vs 作用域词条\"如何猫咪表情包梗图\"\n【核心动机】制作/获取猫咪表情包梗图\n【动机维度 0.98】原始问题和词条的核心动机都是关于“如何制作/获取猫咪表情包”,动机完全一致。\n【品类维度 0.90】核心主体“猫咪表情包”完全匹配,限定词“梗图”在词条中缺失,但“表情包”通常包含“梗图”的含义,属于合理泛化,因此匹配度较高。\n【最终得分 0.96】\n【规则说明】规则A:动机高分保护生效(动机0.98≥0.8),实际得分0.96已≥0.7\n【加权系数计算】\n0.23459999999999998\n 来源词总得分: 0.23\n 系数: 0.23【计算公式】base_score × 系数 = 0.96 × 0.23\n【最终得分(截断后)】0.22",
  6760. "strategy": "域内组合",
  6761. "iteration": 2,
  6762. "is_selected": true,
  6763. "type_label": "[疑问引导+中心名词]",
  6764. "source_words": [
  6765. [
  6766. "如何"
  6767. ],
  6768. [
  6769. "猫咪",
  6770. "表情包"
  6771. ]
  6772. ],
  6773. "from_segments": [
  6774. "如何",
  6775. "猫咪表情包梗图"
  6776. ],
  6777. "domains": [
  6778. 0,
  6779. 3
  6780. ],
  6781. "domains_str": "D0,D3",
  6782. "source_word_details": [
  6783. {
  6784. "domain_index": 0,
  6785. "segment_type": "疑问引导",
  6786. "segment_text": "如何",
  6787. "words": [
  6788. {
  6789. "text": "如何",
  6790. "score": 0.024
  6791. }
  6792. ]
  6793. },
  6794. {
  6795. "domain_index": 3,
  6796. "segment_type": "中心名词",
  6797. "segment_text": "猫咪表情包梗图",
  6798. "words": [
  6799. {
  6800. "text": "猫咪",
  6801. "score": 0.09
  6802. },
  6803. {
  6804. "text": "表情包",
  6805. "score": 0.15
  6806. }
  6807. ]
  6808. }
  6809. ],
  6810. "source_scores": [
  6811. 0.024,
  6812. 0.09,
  6813. 0.15
  6814. ],
  6815. "is_above_sources": true,
  6816. "max_source_score": 0.15,
  6817. "scoreColor": "#22c55e"
  6818. },
  6819. "comb_如何猫咪梗图_r2_19": {
  6820. "type": "domain_combination",
  6821. "query": "如何猫咪梗图",
  6822. "level": 22,
  6823. "relevance_score": 0.22427759999999997,
  6824. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"如何猫咪梗图\"\n【评估对象】词条\"如何猫咪梗图\" vs 作用域词条\"如何猫咪表情包梗图\"\n【核心动机】制作/生成猫咪表情包梗图\n【动机维度 0.98】原始问题和词条的核心动机都是'制作/生成',词条是原始问题的简化表达,但动机完全一致。\n【品类维度 0.90】核心主体“猫咪梗图”完全匹配,限定词“表情包”在词条中缺失,但“梗图”本身就包含“表情包”的含义,属于合理泛化,因此匹配度高。\n【最终得分 0.96】\n【规则说明】规则A:动机高分保护生效(动机0.98≥0.8),实际得分0.96已≥0.7\n【加权系数计算】\n0.23459999999999998\n 来源词总得分: 0.23\n 系数: 0.23【计算公式】base_score × 系数 = 0.96 × 0.23\n【最终得分(截断后)】0.22",
  6825. "strategy": "域内组合",
  6826. "iteration": 2,
  6827. "is_selected": true,
  6828. "type_label": "[疑问引导+中心名词]",
  6829. "source_words": [
  6830. [
  6831. "如何"
  6832. ],
  6833. [
  6834. "猫咪",
  6835. "梗图"
  6836. ]
  6837. ],
  6838. "from_segments": [
  6839. "如何",
  6840. "猫咪表情包梗图"
  6841. ],
  6842. "domains": [
  6843. 0,
  6844. 3
  6845. ],
  6846. "domains_str": "D0,D3",
  6847. "source_word_details": [
  6848. {
  6849. "domain_index": 0,
  6850. "segment_type": "疑问引导",
  6851. "segment_text": "如何",
  6852. "words": [
  6853. {
  6854. "text": "如何",
  6855. "score": 0.024
  6856. }
  6857. ]
  6858. },
  6859. {
  6860. "domain_index": 3,
  6861. "segment_type": "中心名词",
  6862. "segment_text": "猫咪表情包梗图",
  6863. "words": [
  6864. {
  6865. "text": "猫咪",
  6866. "score": 0.09
  6867. },
  6868. {
  6869. "text": "梗图",
  6870. "score": 0.024
  6871. }
  6872. ]
  6873. }
  6874. ],
  6875. "source_scores": [
  6876. 0.024,
  6877. 0.09,
  6878. 0.024
  6879. ],
  6880. "is_above_sources": true,
  6881. "max_source_score": 0.09,
  6882. "scoreColor": "#22c55e"
  6883. },
  6884. "comb_如何表情包梗图_r2_20": {
  6885. "type": "domain_combination",
  6886. "query": "如何表情包梗图",
  6887. "level": 22,
  6888. "relevance_score": 0.1705725,
  6889. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"如何表情包梗图\"\n【评估对象】词条\"如何表情包梗图\" vs 作用域词条\"如何猫咪表情包梗图\"\n【核心动机】制作/生成\n【动机维度 0.90】原始问题和词条的核心动机都是'制作/生成',动机完全一致。\n【品类维度 0.75】核心主体“表情包梗图”匹配,但限定词“猫咪”缺失。\n【最终得分 0.85】\n【规则说明】规则A:动机高分保护生效(动机0.90≥0.8),实际得分0.85已≥0.7\n【加权系数计算】\n0.19949999999999998\n 来源词总得分: 0.20\n 系数: 0.20【计算公式】base_score × 系数 = 0.85 × 0.20\n【最终得分(截断后)】0.17",
  6890. "strategy": "域内组合",
  6891. "iteration": 2,
  6892. "is_selected": true,
  6893. "type_label": "[疑问引导+中心名词]",
  6894. "source_words": [
  6895. [
  6896. "如何"
  6897. ],
  6898. [
  6899. "表情包",
  6900. "梗图"
  6901. ]
  6902. ],
  6903. "from_segments": [
  6904. "如何",
  6905. "猫咪表情包梗图"
  6906. ],
  6907. "domains": [
  6908. 0,
  6909. 3
  6910. ],
  6911. "domains_str": "D0,D3",
  6912. "source_word_details": [
  6913. {
  6914. "domain_index": 0,
  6915. "segment_type": "疑问引导",
  6916. "segment_text": "如何",
  6917. "words": [
  6918. {
  6919. "text": "如何",
  6920. "score": 0.024
  6921. }
  6922. ]
  6923. },
  6924. {
  6925. "domain_index": 3,
  6926. "segment_type": "中心名词",
  6927. "segment_text": "猫咪表情包梗图",
  6928. "words": [
  6929. {
  6930. "text": "表情包",
  6931. "score": 0.15
  6932. },
  6933. {
  6934. "text": "梗图",
  6935. "score": 0.024
  6936. }
  6937. ]
  6938. }
  6939. ],
  6940. "source_scores": [
  6941. 0.024,
  6942. 0.15,
  6943. 0.024
  6944. ],
  6945. "is_above_sources": true,
  6946. "max_source_score": 0.15,
  6947. "scoreColor": "#22c55e"
  6948. },
  6949. "comb_如何猫咪表情包梗图_r2_21": {
  6950. "type": "domain_combination",
  6951. "query": "如何猫咪表情包梗图",
  6952. "level": 22,
  6953. "relevance_score": 0.258,
  6954. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"如何猫咪表情包梗图\"\n【评估对象】词条\"如何猫咪表情包梗图\" vs 作用域词条\"如何猫咪表情包梗图\"\n【核心动机】制作/生成猫咪表情包梗图\n【动机维度 1.00】词条与原始问题的核心动机完全一致,都是关于'如何制作/生成猫咪表情包梗图'。\n【品类维度 1.00】核心主体和所有关键限定词完全匹配,词条与同一作用域词条完全一致。\n【最终得分 1.00】\n【规则说明】规则A:动机高分保护生效(动机1.00≥0.8),实际得分1.00已≥0.7\n【加权系数计算】\n0.258\n 来源词总得分: 0.26\n 系数: 0.26【计算公式】base_score × 系数 = 1.00 × 0.26\n【最终得分(截断后)】0.26",
  6955. "strategy": "域内组合",
  6956. "iteration": 2,
  6957. "is_selected": true,
  6958. "type_label": "[疑问引导+中心名词]",
  6959. "source_words": [
  6960. [
  6961. "如何"
  6962. ],
  6963. [
  6964. "猫咪",
  6965. "表情包",
  6966. "梗图"
  6967. ]
  6968. ],
  6969. "from_segments": [
  6970. "如何",
  6971. "猫咪表情包梗图"
  6972. ],
  6973. "domains": [
  6974. 0,
  6975. 3
  6976. ],
  6977. "domains_str": "D0,D3",
  6978. "source_word_details": [
  6979. {
  6980. "domain_index": 0,
  6981. "segment_type": "疑问引导",
  6982. "segment_text": "如何",
  6983. "words": [
  6984. {
  6985. "text": "如何",
  6986. "score": 0.024
  6987. }
  6988. ]
  6989. },
  6990. {
  6991. "domain_index": 3,
  6992. "segment_type": "中心名词",
  6993. "segment_text": "猫咪表情包梗图",
  6994. "words": [
  6995. {
  6996. "text": "猫咪",
  6997. "score": 0.09
  6998. },
  6999. {
  7000. "text": "表情包",
  7001. "score": 0.15
  7002. },
  7003. {
  7004. "text": "梗图",
  7005. "score": 0.024
  7006. }
  7007. ]
  7008. }
  7009. ],
  7010. "source_scores": [
  7011. 0.024,
  7012. 0.09,
  7013. 0.15,
  7014. 0.024
  7015. ],
  7016. "is_above_sources": true,
  7017. "max_source_score": 0.15,
  7018. "scoreColor": "#22c55e"
  7019. },
  7020. "comb_制作反映_r2_22": {
  7021. "type": "domain_combination",
  7022. "query": "制作反映",
  7023. "level": 22,
  7024. "relevance_score": 0.5211399999999999,
  7025. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"制作反映\"\n【评估对象】词条\"制作反映\" vs 作用域词条\"制作反映人类双标行为的\"\n【核心动机】制作\n【动机维度 0.98】原始问题的核心动机是“制作”,词条的核心动机也是“制作”,两者动作意图完全一致。\n【品类维度 0.08】sug词是通用概念,原始问题是特定概念。sug词只有'制作反映',无'人类双标行为'字眼,品类不匹配。\n【最终得分 0.71】\n【规则说明】规则A:动机高分保护生效(动机0.98≥0.8),实际得分0.71已≥0.7\n【加权系数计算】\n0.734\n 来源词总得分: 0.73\n 系数: 0.73【计算公式】base_score × 系数 = 0.71 × 0.73\n【最终得分(截断后)】0.52",
  7026. "strategy": "域内组合",
  7027. "iteration": 2,
  7028. "is_selected": true,
  7029. "type_label": "[核心动作+修饰短语]",
  7030. "source_words": [
  7031. [
  7032. "制作"
  7033. ],
  7034. [
  7035. "反映"
  7036. ]
  7037. ],
  7038. "from_segments": [
  7039. "制作",
  7040. "反映人类双标行为的"
  7041. ],
  7042. "domains": [
  7043. 1,
  7044. 2
  7045. ],
  7046. "domains_str": "D1,D2",
  7047. "source_word_details": [
  7048. {
  7049. "domain_index": 1,
  7050. "segment_type": "核心动作",
  7051. "segment_text": "制作",
  7052. "words": [
  7053. {
  7054. "text": "制作",
  7055. "score": 0.71
  7056. }
  7057. ]
  7058. },
  7059. {
  7060. "domain_index": 2,
  7061. "segment_type": "修饰短语",
  7062. "segment_text": "反映人类双标行为的",
  7063. "words": [
  7064. {
  7065. "text": "反映",
  7066. "score": 0.024
  7067. }
  7068. ]
  7069. }
  7070. ],
  7071. "source_scores": [
  7072. 0.71,
  7073. 0.024
  7074. ],
  7075. "is_above_sources": false,
  7076. "max_source_score": 0.71,
  7077. "scoreColor": "#ef4444"
  7078. },
  7079. "comb_制作人类_r2_23": {
  7080. "type": "domain_combination",
  7081. "query": "制作人类",
  7082. "level": 22,
  7083. "relevance_score": 0.5475639999999999,
  7084. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"制作人类\"\n【评估对象】词条\"制作人类\" vs 作用域词条\"制作反映人类双标行为的\"\n【核心动机】制作\n【动机维度 0.98】原始问题和词条的核心动作都是“制作”,动作意图完全一致。\n【品类维度 0.20】词条“制作人类”与同一作用域词条“制作反映人类双标行为的”在核心主体“制作”和“人类”上存在部分匹配,但词条缺少了限定词“双标行为”,导致品类匹配度较低。\n【最终得分 0.75】\n【规则说明】规则A:动机高分保护生效(动机0.98≥0.8),实际得分0.75已≥0.7\n【加权系数计算】\n0.734\n 来源词总得分: 0.73\n 系数: 0.73【计算公式】base_score × 系数 = 0.75 × 0.73\n【最终得分(截断后)】0.55",
  7085. "strategy": "域内组合",
  7086. "iteration": 2,
  7087. "is_selected": true,
  7088. "type_label": "[核心动作+修饰短语]",
  7089. "source_words": [
  7090. [
  7091. "制作"
  7092. ],
  7093. [
  7094. "人类"
  7095. ]
  7096. ],
  7097. "from_segments": [
  7098. "制作",
  7099. "反映人类双标行为的"
  7100. ],
  7101. "domains": [
  7102. 1,
  7103. 2
  7104. ],
  7105. "domains_str": "D1,D2",
  7106. "source_word_details": [
  7107. {
  7108. "domain_index": 1,
  7109. "segment_type": "核心动作",
  7110. "segment_text": "制作",
  7111. "words": [
  7112. {
  7113. "text": "制作",
  7114. "score": 0.71
  7115. }
  7116. ]
  7117. },
  7118. {
  7119. "domain_index": 2,
  7120. "segment_type": "修饰短语",
  7121. "segment_text": "反映人类双标行为的",
  7122. "words": [
  7123. {
  7124. "text": "人类",
  7125. "score": 0.024
  7126. }
  7127. ]
  7128. }
  7129. ],
  7130. "source_scores": [
  7131. 0.71,
  7132. 0.024
  7133. ],
  7134. "is_above_sources": false,
  7135. "max_source_score": 0.71,
  7136. "scoreColor": "#ef4444"
  7137. },
  7138. "comb_制作双标_r2_24": {
  7139. "type": "domain_combination",
  7140. "query": "制作双标",
  7141. "level": 22,
  7142. "relevance_score": 0.6576639999999999,
  7143. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"制作双标\"\n【评估对象】词条\"制作双标\" vs 作用域词条\"制作反映人类双标行为的\"\n【核心动机】制作\n【动机维度 0.98】原始问题的核心动机是“制作”,词条的核心动机也是“制作”,两者动作意图完全一致。\n【品类维度 0.70】核心主体'双标'匹配,但原始问题中的限定词'人类行为'在词条中缺失,词条'制作双标'可以理解为制作关于双标的内容,但未明确限定是人类行为。\n【最终得分 0.90】\n【规则说明】规则A:动机高分保护生效(动机0.98≥0.8),实际得分0.90已≥0.7\n【加权系数计算】\n0.734\n 来源词总得分: 0.73\n 系数: 0.73【计算公式】base_score × 系数 = 0.90 × 0.73\n【最终得分(截断后)】0.66",
  7144. "strategy": "域内组合",
  7145. "iteration": 2,
  7146. "is_selected": true,
  7147. "type_label": "[核心动作+修饰短语]",
  7148. "source_words": [
  7149. [
  7150. "制作"
  7151. ],
  7152. [
  7153. "双标"
  7154. ]
  7155. ],
  7156. "from_segments": [
  7157. "制作",
  7158. "反映人类双标行为的"
  7159. ],
  7160. "domains": [
  7161. 1,
  7162. 2
  7163. ],
  7164. "domains_str": "D1,D2",
  7165. "source_word_details": [
  7166. {
  7167. "domain_index": 1,
  7168. "segment_type": "核心动作",
  7169. "segment_text": "制作",
  7170. "words": [
  7171. {
  7172. "text": "制作",
  7173. "score": 0.71
  7174. }
  7175. ]
  7176. },
  7177. {
  7178. "domain_index": 2,
  7179. "segment_type": "修饰短语",
  7180. "segment_text": "反映人类双标行为的",
  7181. "words": [
  7182. {
  7183. "text": "双标",
  7184. "score": 0.024
  7185. }
  7186. ]
  7187. }
  7188. ],
  7189. "source_scores": [
  7190. 0.71,
  7191. 0.024
  7192. ],
  7193. "is_above_sources": false,
  7194. "max_source_score": 0.71,
  7195. "scoreColor": "#ef4444"
  7196. },
  7197. "comb_制作行为_r2_25": {
  7198. "type": "domain_combination",
  7199. "query": "制作行为",
  7200. "level": 22,
  7201. "relevance_score": 0.5211399999999999,
  7202. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"制作行为\"\n【评估对象】词条\"制作行为\" vs 作用域词条\"制作反映人类双标行为的\"\n【核心动机】制作\n【动机维度 0.98】原始问题的核心动机是'制作',词条的核心动机也是'制作',两者动作意图完全一致。\n【品类维度 0.08】原始问题是特定概念“反映人类双标行为的”,而词条“制作行为”是通用概念,品类不匹配,因此得分较低。\n【最终得分 0.71】\n【规则说明】规则A:动机高分保护生效(动机0.98≥0.8),实际得分0.71已≥0.7\n【加权系数计算】\n0.734\n 来源词总得分: 0.73\n 系数: 0.73【计算公式】base_score × 系数 = 0.71 × 0.73\n【最终得分(截断后)】0.52",
  7203. "strategy": "域内组合",
  7204. "iteration": 2,
  7205. "is_selected": true,
  7206. "type_label": "[核心动作+修饰短语]",
  7207. "source_words": [
  7208. [
  7209. "制作"
  7210. ],
  7211. [
  7212. "行为"
  7213. ]
  7214. ],
  7215. "from_segments": [
  7216. "制作",
  7217. "反映人类双标行为的"
  7218. ],
  7219. "domains": [
  7220. 1,
  7221. 2
  7222. ],
  7223. "domains_str": "D1,D2",
  7224. "source_word_details": [
  7225. {
  7226. "domain_index": 1,
  7227. "segment_type": "核心动作",
  7228. "segment_text": "制作",
  7229. "words": [
  7230. {
  7231. "text": "制作",
  7232. "score": 0.71
  7233. }
  7234. ]
  7235. },
  7236. {
  7237. "domain_index": 2,
  7238. "segment_type": "修饰短语",
  7239. "segment_text": "反映人类双标行为的",
  7240. "words": [
  7241. {
  7242. "text": "行为",
  7243. "score": 0.024
  7244. }
  7245. ]
  7246. }
  7247. ],
  7248. "source_scores": [
  7249. 0.71,
  7250. 0.024
  7251. ],
  7252. "is_above_sources": false,
  7253. "max_source_score": 0.71,
  7254. "scoreColor": "#ef4444"
  7255. },
  7256. "comb_制作反映人类_r2_26": {
  7257. "type": "domain_combination",
  7258. "query": "制作反映人类",
  7259. "level": 22,
  7260. "relevance_score": 0.667071,
  7261. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"制作反映人类\"\n【评估对象】词条\"制作反映人类\" vs 作用域词条\"制作反映人类双标行为的\"\n【核心动机】制作\n【动机维度 0.90】原始问题和词条的核心动机都是“制作”,词条是原始问题动机的泛化表达,动机一致。\n【品类维度 0.75】核心主体“制作反映人类”完全匹配,但缺少了限定词“双标行为的”,属于核心主体匹配,存在限定词匹配的情况。\n【最终得分 0.85】\n【规则说明】规则A:动机高分保护生效(动机0.90≥0.8),实际得分0.85已≥0.7\n【加权系数计算】\n0.7802\n 来源词总得分: 0.78\n 系数: 0.78【计算公式】base_score × 系数 = 0.85 × 0.78\n【最终得分(截断后)】0.67",
  7262. "strategy": "域内组合",
  7263. "iteration": 2,
  7264. "is_selected": true,
  7265. "type_label": "[核心动作+修饰短语]",
  7266. "source_words": [
  7267. [
  7268. "制作"
  7269. ],
  7270. [
  7271. "反映",
  7272. "人类"
  7273. ]
  7274. ],
  7275. "from_segments": [
  7276. "制作",
  7277. "反映人类双标行为的"
  7278. ],
  7279. "domains": [
  7280. 1,
  7281. 2
  7282. ],
  7283. "domains_str": "D1,D2",
  7284. "source_word_details": [
  7285. {
  7286. "domain_index": 1,
  7287. "segment_type": "核心动作",
  7288. "segment_text": "制作",
  7289. "words": [
  7290. {
  7291. "text": "制作",
  7292. "score": 0.71
  7293. }
  7294. ]
  7295. },
  7296. {
  7297. "domain_index": 2,
  7298. "segment_type": "修饰短语",
  7299. "segment_text": "反映人类双标行为的",
  7300. "words": [
  7301. {
  7302. "text": "反映",
  7303. "score": 0.024
  7304. },
  7305. {
  7306. "text": "人类",
  7307. "score": 0.024
  7308. }
  7309. ]
  7310. }
  7311. ],
  7312. "source_scores": [
  7313. 0.71,
  7314. 0.024,
  7315. 0.024
  7316. ],
  7317. "is_above_sources": false,
  7318. "max_source_score": 0.71,
  7319. "scoreColor": "#ef4444"
  7320. },
  7321. "comb_制作反映双标_r2_27": {
  7322. "type": "domain_combination",
  7323. "query": "制作反映双标",
  7324. "level": 22,
  7325. "relevance_score": 0.7443309999999999,
  7326. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"制作反映双标\"\n【评估对象】词条\"制作反映双标\" vs 作用域词条\"制作反映人类双标行为的\"\n【核心动机】制作\n【动机维度 0.98】原始问题的核心动机是'制作',词条的核心动机也是'制作',两者动作意图完全一致。\n【品类维度 0.85】核心主体“双标”和限定词“反映”均匹配,但缺少了“人类行为”这一限定词,属于核心主体匹配,存在限定词匹配的情况。\n【最终得分 0.94】\n【规则说明】规则A:动机高分保护生效(动机0.98≥0.8),实际得分0.94已≥0.7\n【加权系数计算】\n0.7909999999999999\n 来源词总得分: 0.79\n 系数: 0.79【计算公式】base_score × 系数 = 0.94 × 0.79\n【最终得分(截断后)】0.74",
  7327. "strategy": "域内组合",
  7328. "iteration": 2,
  7329. "is_selected": true,
  7330. "type_label": "[核心动作+修饰短语]",
  7331. "source_words": [
  7332. [
  7333. "制作"
  7334. ],
  7335. [
  7336. "反映",
  7337. "双标"
  7338. ]
  7339. ],
  7340. "from_segments": [
  7341. "制作",
  7342. "反映人类双标行为的"
  7343. ],
  7344. "domains": [
  7345. 1,
  7346. 2
  7347. ],
  7348. "domains_str": "D1,D2",
  7349. "source_word_details": [
  7350. {
  7351. "domain_index": 1,
  7352. "segment_type": "核心动作",
  7353. "segment_text": "制作",
  7354. "words": [
  7355. {
  7356. "text": "制作",
  7357. "score": 0.71
  7358. }
  7359. ]
  7360. },
  7361. {
  7362. "domain_index": 2,
  7363. "segment_type": "修饰短语",
  7364. "segment_text": "反映人类双标行为的",
  7365. "words": [
  7366. {
  7367. "text": "反映",
  7368. "score": 0.024
  7369. },
  7370. {
  7371. "text": "双标",
  7372. "score": 0.024
  7373. }
  7374. ]
  7375. }
  7376. ],
  7377. "source_scores": [
  7378. 0.71,
  7379. 0.024,
  7380. 0.024
  7381. ],
  7382. "is_above_sources": true,
  7383. "max_source_score": 0.71,
  7384. "scoreColor": "#22c55e"
  7385. },
  7386. "comb_制作反映行为_r2_28": {
  7387. "type": "domain_combination",
  7388. "query": "制作反映行为",
  7389. "level": 22,
  7390. "relevance_score": 0.5092119999999999,
  7391. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"制作反映行为\"\n【评估对象】词条\"制作反映行为\" vs 作用域词条\"制作反映人类双标行为的\"\n【核心动机】制作\n【动机维度 0.98】原始问题和词条的核心动作都是“制作”,动作意图完全一致。\n【品类维度 0.08】sug词是通用概念“制作反映行为”,原始问题是特定概念“制作反映人类双标行为的”。通用概念不等于特定概念,因此品类不匹配,评分较低。\n【最终得分 0.71】\n【规则说明】规则A:动机高分保护生效(动机0.98≥0.8),实际得分0.71已≥0.7\n【加权系数计算】\n0.7172\n 来源词总得分: 0.72\n 系数: 0.72【计算公式】base_score × 系数 = 0.71 × 0.72\n【最终得分(截断后)】0.51",
  7392. "strategy": "域内组合",
  7393. "iteration": 2,
  7394. "is_selected": true,
  7395. "type_label": "[核心动作+修饰短语]",
  7396. "source_words": [
  7397. [
  7398. "制作"
  7399. ],
  7400. [
  7401. "反映",
  7402. "行为"
  7403. ]
  7404. ],
  7405. "from_segments": [
  7406. "制作",
  7407. "反映人类双标行为的"
  7408. ],
  7409. "domains": [
  7410. 1,
  7411. 2
  7412. ],
  7413. "domains_str": "D1,D2",
  7414. "source_word_details": [
  7415. {
  7416. "domain_index": 1,
  7417. "segment_type": "核心动作",
  7418. "segment_text": "制作",
  7419. "words": [
  7420. {
  7421. "text": "制作",
  7422. "score": 0.71
  7423. }
  7424. ]
  7425. },
  7426. {
  7427. "domain_index": 2,
  7428. "segment_type": "修饰短语",
  7429. "segment_text": "反映人类双标行为的",
  7430. "words": [
  7431. {
  7432. "text": "反映",
  7433. "score": 0.024
  7434. },
  7435. {
  7436. "text": "行为",
  7437. "score": 0.024
  7438. }
  7439. ]
  7440. }
  7441. ],
  7442. "source_scores": [
  7443. 0.71,
  7444. 0.024,
  7445. 0.024
  7446. ],
  7447. "is_above_sources": false,
  7448. "max_source_score": 0.71,
  7449. "scoreColor": "#ef4444"
  7450. },
  7451. "comb_制作人类双标_r2_29": {
  7452. "type": "domain_combination",
  7453. "query": "制作人类双标",
  7454. "level": 22,
  7455. "relevance_score": 0.7561959999999999,
  7456. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"制作人类双标\"\n【评估对象】词条\"制作人类双标\" vs 作用域词条\"制作反映人类双标行为的\"\n【核心动机】制作\n【动机维度 0.98】原始问题和词条的核心动作都是“制作”,动机意图完全一致。\n【品类维度 0.90】核心主体“人类双标”完全匹配,限定词“制作”也匹配,但缺少“行为的”这个限定词,因此略有扣分。\n【最终得分 0.96】\n【规则说明】规则A:动机高分保护生效(动机0.98≥0.8),实际得分0.96已≥0.7\n【加权系数计算】\n0.7909999999999999\n 来源词总得分: 0.79\n 系数: 0.79【计算公式】base_score × 系数 = 0.96 × 0.79\n【最终得分(截断后)】0.76",
  7457. "strategy": "域内组合",
  7458. "iteration": 2,
  7459. "is_selected": true,
  7460. "type_label": "[核心动作+修饰短语]",
  7461. "source_words": [
  7462. [
  7463. "制作"
  7464. ],
  7465. [
  7466. "人类",
  7467. "双标"
  7468. ]
  7469. ],
  7470. "from_segments": [
  7471. "制作",
  7472. "反映人类双标行为的"
  7473. ],
  7474. "domains": [
  7475. 1,
  7476. 2
  7477. ],
  7478. "domains_str": "D1,D2",
  7479. "source_word_details": [
  7480. {
  7481. "domain_index": 1,
  7482. "segment_type": "核心动作",
  7483. "segment_text": "制作",
  7484. "words": [
  7485. {
  7486. "text": "制作",
  7487. "score": 0.71
  7488. }
  7489. ]
  7490. },
  7491. {
  7492. "domain_index": 2,
  7493. "segment_type": "修饰短语",
  7494. "segment_text": "反映人类双标行为的",
  7495. "words": [
  7496. {
  7497. "text": "人类",
  7498. "score": 0.024
  7499. },
  7500. {
  7501. "text": "双标",
  7502. "score": 0.024
  7503. }
  7504. ]
  7505. }
  7506. ],
  7507. "source_scores": [
  7508. 0.71,
  7509. 0.024,
  7510. 0.024
  7511. ],
  7512. "is_above_sources": true,
  7513. "max_source_score": 0.71,
  7514. "scoreColor": "#22c55e"
  7515. },
  7516. "comb_制作人类行为_r2_30": {
  7517. "type": "domain_combination",
  7518. "query": "制作人类行为",
  7519. "level": 22,
  7520. "relevance_score": 0.67648,
  7521. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"制作人类行为\"\n【评估对象】词条\"制作人类行为\" vs 作用域词条\"制作反映人类双标行为的\"\n【核心动机】制作\n【动机维度 0.98】原始问题和词条的核心动作都是“制作”,动作意图完全一致。\n【品类维度 0.70】核心主体“制作人类行为”与“制作反映人类双标行为的”匹配,但限定词“双标”缺失,属于核心主体匹配但限定词不完全匹配的情况。\n【最终得分 0.90】\n【规则说明】规则A:动机高分保护生效(动机0.98≥0.8),实际得分0.90已≥0.7\n【加权系数计算】\n0.755\n 来源词总得分: 0.76\n 系数: 0.76【计算公式】base_score × 系数 = 0.90 × 0.76\n【最终得分(截断后)】0.68",
  7522. "strategy": "域内组合",
  7523. "iteration": 2,
  7524. "is_selected": true,
  7525. "type_label": "[核心动作+修饰短语]",
  7526. "source_words": [
  7527. [
  7528. "制作"
  7529. ],
  7530. [
  7531. "人类",
  7532. "行为"
  7533. ]
  7534. ],
  7535. "from_segments": [
  7536. "制作",
  7537. "反映人类双标行为的"
  7538. ],
  7539. "domains": [
  7540. 1,
  7541. 2
  7542. ],
  7543. "domains_str": "D1,D2",
  7544. "source_word_details": [
  7545. {
  7546. "domain_index": 1,
  7547. "segment_type": "核心动作",
  7548. "segment_text": "制作",
  7549. "words": [
  7550. {
  7551. "text": "制作",
  7552. "score": 0.71
  7553. }
  7554. ]
  7555. },
  7556. {
  7557. "domain_index": 2,
  7558. "segment_type": "修饰短语",
  7559. "segment_text": "反映人类双标行为的",
  7560. "words": [
  7561. {
  7562. "text": "人类",
  7563. "score": 0.024
  7564. },
  7565. {
  7566. "text": "行为",
  7567. "score": 0.024
  7568. }
  7569. ]
  7570. }
  7571. ],
  7572. "source_scores": [
  7573. 0.71,
  7574. 0.024,
  7575. 0.024
  7576. ],
  7577. "is_above_sources": false,
  7578. "max_source_score": 0.71,
  7579. "scoreColor": "#ef4444"
  7580. },
  7581. "comb_制作双标行为_r2_31": {
  7582. "type": "domain_combination",
  7583. "query": "制作双标行为",
  7584. "level": 22,
  7585. "relevance_score": 0.7235799999999999,
  7586. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"制作双标行为\"\n【评估对象】词条\"制作双标行为\" vs 作用域词条\"制作反映人类双标行为的\"\n【核心动机】制作\n【动机维度 0.98】原始问题和词条的核心动作意图都是“制作”,语义完全一致。\n【品类维度 0.78】核心主体词“制作”和“双标行为”均匹配,但缺少了限定词“人类”和“反映”,因此给予较高但非满分评分。\n【最终得分 0.92】\n【规则说明】规则A:动机高分保护生效(动机0.98≥0.8),实际得分0.92已≥0.7\n【加权系数计算】\n0.7865\n 来源词总得分: 0.79\n 系数: 0.79【计算公式】base_score × 系数 = 0.92 × 0.79\n【最终得分(截断后)】0.72",
  7587. "strategy": "域内组合",
  7588. "iteration": 2,
  7589. "is_selected": true,
  7590. "type_label": "[核心动作+修饰短语]",
  7591. "source_words": [
  7592. [
  7593. "制作"
  7594. ],
  7595. [
  7596. "双标",
  7597. "行为"
  7598. ]
  7599. ],
  7600. "from_segments": [
  7601. "制作",
  7602. "反映人类双标行为的"
  7603. ],
  7604. "domains": [
  7605. 1,
  7606. 2
  7607. ],
  7608. "domains_str": "D1,D2",
  7609. "source_word_details": [
  7610. {
  7611. "domain_index": 1,
  7612. "segment_type": "核心动作",
  7613. "segment_text": "制作",
  7614. "words": [
  7615. {
  7616. "text": "制作",
  7617. "score": 0.71
  7618. }
  7619. ]
  7620. },
  7621. {
  7622. "domain_index": 2,
  7623. "segment_type": "修饰短语",
  7624. "segment_text": "反映人类双标行为的",
  7625. "words": [
  7626. {
  7627. "text": "双标",
  7628. "score": 0.024
  7629. },
  7630. {
  7631. "text": "行为",
  7632. "score": 0.024
  7633. }
  7634. ]
  7635. }
  7636. ],
  7637. "source_scores": [
  7638. 0.71,
  7639. 0.024,
  7640. 0.024
  7641. ],
  7642. "is_above_sources": true,
  7643. "max_source_score": 0.71,
  7644. "scoreColor": "#22c55e"
  7645. },
  7646. "comb_制作反映人类双标_r2_32": {
  7647. "type": "domain_combination",
  7648. "query": "制作反映人类双标",
  7649. "level": 22,
  7650. "relevance_score": 0.7630792,
  7651. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"制作反映人类双标\"\n【评估对象】词条\"制作反映人类双标\" vs 作用域词条\"制作反映人类双标行为的\"\n【核心动机】制作\n【动机维度 0.98】词条与原始问题的核心动机均为“制作”,动作意图完全一致。\n【品类维度 0.90】核心主体“人类双标”完全匹配,限定词“制作反映”也完全匹配。词条是同一作用域词条的截断,因此匹配度很高。\n【最终得分 0.96】\n【规则说明】规则A:动机高分保护生效(动机0.98≥0.8),实际得分0.96已≥0.7\n【加权系数计算】\n0.7982\n 来源词总得分: 0.80\n 系数: 0.80【计算公式】base_score × 系数 = 0.96 × 0.80\n【最终得分(截断后)】0.76",
  7652. "strategy": "域内组合",
  7653. "iteration": 2,
  7654. "is_selected": true,
  7655. "type_label": "[核心动作+修饰短语]",
  7656. "source_words": [
  7657. [
  7658. "制作"
  7659. ],
  7660. [
  7661. "反映",
  7662. "人类",
  7663. "双标"
  7664. ]
  7665. ],
  7666. "from_segments": [
  7667. "制作",
  7668. "反映人类双标行为的"
  7669. ],
  7670. "domains": [
  7671. 1,
  7672. 2
  7673. ],
  7674. "domains_str": "D1,D2",
  7675. "source_word_details": [
  7676. {
  7677. "domain_index": 1,
  7678. "segment_type": "核心动作",
  7679. "segment_text": "制作",
  7680. "words": [
  7681. {
  7682. "text": "制作",
  7683. "score": 0.71
  7684. }
  7685. ]
  7686. },
  7687. {
  7688. "domain_index": 2,
  7689. "segment_type": "修饰短语",
  7690. "segment_text": "反映人类双标行为的",
  7691. "words": [
  7692. {
  7693. "text": "反映",
  7694. "score": 0.024
  7695. },
  7696. {
  7697. "text": "人类",
  7698. "score": 0.024
  7699. },
  7700. {
  7701. "text": "双标",
  7702. "score": 0.024
  7703. }
  7704. ]
  7705. }
  7706. ],
  7707. "source_scores": [
  7708. 0.71,
  7709. 0.024,
  7710. 0.024,
  7711. 0.024
  7712. ],
  7713. "is_above_sources": true,
  7714. "max_source_score": 0.71,
  7715. "scoreColor": "#22c55e"
  7716. },
  7717. "comb_制作反映人类行为_r2_33": {
  7718. "type": "domain_combination",
  7719. "query": "制作反映人类行为",
  7720. "level": 22,
  7721. "relevance_score": 0.717784,
  7722. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"制作反映人类行为\"\n【评估对象】词条\"制作反映人类行为\" vs 作用域词条\"制作反映人类双标行为的\"\n【核心动机】制作\n【动机维度 0.98】原始问题和词条的核心动作都是“制作”,动作意图完全一致。\n【品类维度 0.78】核心主体'制作反映人类行为'匹配,但限定词'双标'缺失,属于核心主体匹配但限定词部分缺失的情况。\n【最终得分 0.92】\n【规则说明】规则A:动机高分保护生效(动机0.98≥0.8),实际得分0.92已≥0.7\n【加权系数计算】\n0.7802\n 来源词总得分: 0.78\n 系数: 0.78【计算公式】base_score × 系数 = 0.92 × 0.78\n【最终得分(截断后)】0.72",
  7723. "strategy": "域内组合",
  7724. "iteration": 2,
  7725. "is_selected": true,
  7726. "type_label": "[核心动作+修饰短语]",
  7727. "source_words": [
  7728. [
  7729. "制作"
  7730. ],
  7731. [
  7732. "反映",
  7733. "人类",
  7734. "行为"
  7735. ]
  7736. ],
  7737. "from_segments": [
  7738. "制作",
  7739. "反映人类双标行为的"
  7740. ],
  7741. "domains": [
  7742. 1,
  7743. 2
  7744. ],
  7745. "domains_str": "D1,D2",
  7746. "source_word_details": [
  7747. {
  7748. "domain_index": 1,
  7749. "segment_type": "核心动作",
  7750. "segment_text": "制作",
  7751. "words": [
  7752. {
  7753. "text": "制作",
  7754. "score": 0.71
  7755. }
  7756. ]
  7757. },
  7758. {
  7759. "domain_index": 2,
  7760. "segment_type": "修饰短语",
  7761. "segment_text": "反映人类双标行为的",
  7762. "words": [
  7763. {
  7764. "text": "反映",
  7765. "score": 0.024
  7766. },
  7767. {
  7768. "text": "人类",
  7769. "score": 0.024
  7770. },
  7771. {
  7772. "text": "行为",
  7773. "score": 0.024
  7774. }
  7775. ]
  7776. }
  7777. ],
  7778. "source_scores": [
  7779. 0.71,
  7780. 0.024,
  7781. 0.024,
  7782. 0.024
  7783. ],
  7784. "is_above_sources": true,
  7785. "max_source_score": 0.71,
  7786. "scoreColor": "#22c55e"
  7787. },
  7788. "comb_制作反映双标行为_r2_34": {
  7789. "type": "domain_combination",
  7790. "query": "制作反映双标行为",
  7791. "level": 22,
  7792. "relevance_score": 0.7400964999999999,
  7793. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"制作反映双标行为\"\n【评估对象】词条\"制作反映双标行为\" vs 作用域词条\"制作反映人类双标行为的\"\n【核心动机】制作\n【动机维度 0.98】原始问题和词条的核心动作都是“制作”,动作意图完全一致。\n【品类维度 0.85】核心主体“双标行为”完全匹配,限定词“制作反映”也完全匹配。原始问题中的“人类”在词条中被省略,但由于“双标行为”通常指人类行为,因此省略不影响核心品类匹配度,属于合理泛化。\n【最终得分 0.94】\n【规则说明】规则A:动机高分保护生效(动机0.98≥0.8),实际得分0.94已≥0.7\n【加权系数计算】\n0.7865\n 来源词总得分: 0.79\n 系数: 0.79【计算公式】base_score × 系数 = 0.94 × 0.79\n【最终得分(截断后)】0.74",
  7794. "strategy": "域内组合",
  7795. "iteration": 2,
  7796. "is_selected": true,
  7797. "type_label": "[核心动作+修饰短语]",
  7798. "source_words": [
  7799. [
  7800. "制作"
  7801. ],
  7802. [
  7803. "反映",
  7804. "双标",
  7805. "行为"
  7806. ]
  7807. ],
  7808. "from_segments": [
  7809. "制作",
  7810. "反映人类双标行为的"
  7811. ],
  7812. "domains": [
  7813. 1,
  7814. 2
  7815. ],
  7816. "domains_str": "D1,D2",
  7817. "source_word_details": [
  7818. {
  7819. "domain_index": 1,
  7820. "segment_type": "核心动作",
  7821. "segment_text": "制作",
  7822. "words": [
  7823. {
  7824. "text": "制作",
  7825. "score": 0.71
  7826. }
  7827. ]
  7828. },
  7829. {
  7830. "domain_index": 2,
  7831. "segment_type": "修饰短语",
  7832. "segment_text": "反映人类双标行为的",
  7833. "words": [
  7834. {
  7835. "text": "反映",
  7836. "score": 0.024
  7837. },
  7838. {
  7839. "text": "双标",
  7840. "score": 0.024
  7841. },
  7842. {
  7843. "text": "行为",
  7844. "score": 0.024
  7845. }
  7846. ]
  7847. }
  7848. ],
  7849. "source_scores": [
  7850. 0.71,
  7851. 0.024,
  7852. 0.024,
  7853. 0.024
  7854. ],
  7855. "is_above_sources": true,
  7856. "max_source_score": 0.71,
  7857. "scoreColor": "#22c55e"
  7858. },
  7859. "comb_制作人类双标行为_r2_35": {
  7860. "type": "domain_combination",
  7861. "query": "制作人类双标行为",
  7862. "level": 22,
  7863. "relevance_score": 0.7561959999999999,
  7864. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"制作人类双标行为\"\n【评估对象】词条\"制作人类双标行为\" vs 作用域词条\"制作反映人类双标行为的\"\n【核心动机】制作\n【动机维度 0.98】原始问题和词条的核心动作都是“制作”,语义完全一致。\n【品类维度 0.90】核心主体“人类双标行为”完全匹配,限定词“制作”也完全匹配,但原始问题中“反映”和词条中“制作”在语义上略有差异,因此给予0.9分。\n【最终得分 0.96】\n【规则说明】规则A:动机高分保护生效(动机0.98≥0.8),实际得分0.96已≥0.7\n【加权系数计算】\n0.7909999999999999\n 来源词总得分: 0.79\n 系数: 0.79【计算公式】base_score × 系数 = 0.96 × 0.79\n【最终得分(截断后)】0.76",
  7865. "strategy": "域内组合",
  7866. "iteration": 2,
  7867. "is_selected": true,
  7868. "type_label": "[核心动作+修饰短语]",
  7869. "source_words": [
  7870. [
  7871. "制作"
  7872. ],
  7873. [
  7874. "人类",
  7875. "双标",
  7876. "行为"
  7877. ]
  7878. ],
  7879. "from_segments": [
  7880. "制作",
  7881. "反映人类双标行为的"
  7882. ],
  7883. "domains": [
  7884. 1,
  7885. 2
  7886. ],
  7887. "domains_str": "D1,D2",
  7888. "source_word_details": [
  7889. {
  7890. "domain_index": 1,
  7891. "segment_type": "核心动作",
  7892. "segment_text": "制作",
  7893. "words": [
  7894. {
  7895. "text": "制作",
  7896. "score": 0.71
  7897. }
  7898. ]
  7899. },
  7900. {
  7901. "domain_index": 2,
  7902. "segment_type": "修饰短语",
  7903. "segment_text": "反映人类双标行为的",
  7904. "words": [
  7905. {
  7906. "text": "人类",
  7907. "score": 0.024
  7908. },
  7909. {
  7910. "text": "双标",
  7911. "score": 0.024
  7912. },
  7913. {
  7914. "text": "行为",
  7915. "score": 0.024
  7916. }
  7917. ]
  7918. }
  7919. ],
  7920. "source_scores": [
  7921. 0.71,
  7922. 0.024,
  7923. 0.024,
  7924. 0.024
  7925. ],
  7926. "is_above_sources": true,
  7927. "max_source_score": 0.71,
  7928. "scoreColor": "#22c55e"
  7929. },
  7930. "comb_制作反映人类双标行为_r2_36": {
  7931. "type": "domain_combination",
  7932. "query": "制作反映人类双标行为",
  7933. "level": 22,
  7934. "relevance_score": 0.782236,
  7935. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"制作反映人类双标行为\"\n【评估对象】词条\"制作反映人类双标行为\" vs 作用域词条\"制作反映人类双标行为的\"\n【核心动机】制作\n【动机维度 0.98】原始问题和词条的核心动作都是“制作”,语义完全一致。\n【品类维度 0.98】核心主体和所有关键限定词完全匹配,仅缺少一个语气助词,不影响品类匹配度。\n【最终得分 0.98】\n【规则说明】规则A:动机高分保护生效(动机0.98≥0.8),实际得分0.98已≥0.7\n【加权系数计算】\n0.7982\n 来源词总得分: 0.80\n 系数: 0.80【计算公式】base_score × 系数 = 0.98 × 0.80\n【最终得分(截断后)】0.78",
  7936. "strategy": "域内组合",
  7937. "iteration": 2,
  7938. "is_selected": true,
  7939. "type_label": "[核心动作+修饰短语]",
  7940. "source_words": [
  7941. [
  7942. "制作"
  7943. ],
  7944. [
  7945. "反映",
  7946. "人类",
  7947. "双标",
  7948. "行为"
  7949. ]
  7950. ],
  7951. "from_segments": [
  7952. "制作",
  7953. "反映人类双标行为的"
  7954. ],
  7955. "domains": [
  7956. 1,
  7957. 2
  7958. ],
  7959. "domains_str": "D1,D2",
  7960. "source_word_details": [
  7961. {
  7962. "domain_index": 1,
  7963. "segment_type": "核心动作",
  7964. "segment_text": "制作",
  7965. "words": [
  7966. {
  7967. "text": "制作",
  7968. "score": 0.71
  7969. }
  7970. ]
  7971. },
  7972. {
  7973. "domain_index": 2,
  7974. "segment_type": "修饰短语",
  7975. "segment_text": "反映人类双标行为的",
  7976. "words": [
  7977. {
  7978. "text": "反映",
  7979. "score": 0.024
  7980. },
  7981. {
  7982. "text": "人类",
  7983. "score": 0.024
  7984. },
  7985. {
  7986. "text": "双标",
  7987. "score": 0.024
  7988. },
  7989. {
  7990. "text": "行为",
  7991. "score": 0.024
  7992. }
  7993. ]
  7994. }
  7995. ],
  7996. "source_scores": [
  7997. 0.71,
  7998. 0.024,
  7999. 0.024,
  8000. 0.024,
  8001. 0.024
  8002. ],
  8003. "is_above_sources": true,
  8004. "max_source_score": 0.71,
  8005. "scoreColor": "#22c55e"
  8006. },
  8007. "comb_制作猫咪_r2_37": {
  8008. "type": "domain_combination",
  8009. "query": "制作猫咪",
  8010. "level": 22,
  8011. "relevance_score": 0.576,
  8012. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"制作猫咪\"\n【评估对象】词条\"制作猫咪\" vs 作用域词条\"制作猫咪表情包梗图\"\n【核心动机】制作\n【动机维度 0.90】原始问题和词条的核心动作都是“制作”,动作意图高度一致。\n【品类维度 0.30】核心主体'猫咪'匹配,但限定词'表情包梗图'缺失,且'制作猫咪'的语义身份与'制作猫咪表情包梗图'中的'猫咪'不同,前者可能指制作猫咪本身(如模型、玩偶),后者指以猫咪为素材进行创作。\n【最终得分 0.72】\n【规则说明】规则A:动机高分保护生效(动机0.90≥0.8),实际得分0.72已≥0.7\n【加权系数计算】\n0.7999999999999999\n 来源词总得分: 0.80\n 系数: 0.80【计算公式】base_score × 系数 = 0.72 × 0.80\n【最终得分(截断后)】0.58",
  8013. "strategy": "域内组合",
  8014. "iteration": 2,
  8015. "is_selected": true,
  8016. "type_label": "[核心动作+中心名词]",
  8017. "source_words": [
  8018. [
  8019. "制作"
  8020. ],
  8021. [
  8022. "猫咪"
  8023. ]
  8024. ],
  8025. "from_segments": [
  8026. "制作",
  8027. "猫咪表情包梗图"
  8028. ],
  8029. "domains": [
  8030. 1,
  8031. 3
  8032. ],
  8033. "domains_str": "D1,D3",
  8034. "source_word_details": [
  8035. {
  8036. "domain_index": 1,
  8037. "segment_type": "核心动作",
  8038. "segment_text": "制作",
  8039. "words": [
  8040. {
  8041. "text": "制作",
  8042. "score": 0.71
  8043. }
  8044. ]
  8045. },
  8046. {
  8047. "domain_index": 3,
  8048. "segment_type": "中心名词",
  8049. "segment_text": "猫咪表情包梗图",
  8050. "words": [
  8051. {
  8052. "text": "猫咪",
  8053. "score": 0.09
  8054. }
  8055. ]
  8056. }
  8057. ],
  8058. "source_scores": [
  8059. 0.71,
  8060. 0.09
  8061. ],
  8062. "is_above_sources": false,
  8063. "max_source_score": 0.71,
  8064. "scoreColor": "#ef4444"
  8065. },
  8066. "comb_制作表情包_r2_38": {
  8067. "type": "domain_combination",
  8068. "query": "制作表情包",
  8069. "level": 22,
  8070. "relevance_score": 0.7911999999999999,
  8071. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"制作表情包\"\n【评估对象】词条\"制作表情包\" vs 作用域词条\"制作猫咪表情包梗图\"\n【核心动机】制作\n【动机维度 0.98】原始问题和词条的核心动作都是“制作”,动机意图完全一致。\n【品类维度 0.78】核心主体'制作表情包'完全匹配,但限定词'猫咪'和'梗图'缺失,属于核心主体匹配,存在限定词缺失的情况。\n【最终得分 0.92】\n【规则说明】规则A:动机高分保护生效(动机0.98≥0.8),实际得分0.92已≥0.7\n【加权系数计算】\n0.86\n 来源词总得分: 0.86\n 系数: 0.86【计算公式】base_score × 系数 = 0.92 × 0.86\n【最终得分(截断后)】0.79",
  8072. "strategy": "域内组合",
  8073. "iteration": 2,
  8074. "is_selected": true,
  8075. "type_label": "[核心动作+中心名词]",
  8076. "source_words": [
  8077. [
  8078. "制作"
  8079. ],
  8080. [
  8081. "表情包"
  8082. ]
  8083. ],
  8084. "from_segments": [
  8085. "制作",
  8086. "猫咪表情包梗图"
  8087. ],
  8088. "domains": [
  8089. 1,
  8090. 3
  8091. ],
  8092. "domains_str": "D1,D3",
  8093. "source_word_details": [
  8094. {
  8095. "domain_index": 1,
  8096. "segment_type": "核心动作",
  8097. "segment_text": "制作",
  8098. "words": [
  8099. {
  8100. "text": "制作",
  8101. "score": 0.71
  8102. }
  8103. ]
  8104. },
  8105. {
  8106. "domain_index": 3,
  8107. "segment_type": "中心名词",
  8108. "segment_text": "猫咪表情包梗图",
  8109. "words": [
  8110. {
  8111. "text": "表情包",
  8112. "score": 0.15
  8113. }
  8114. ]
  8115. }
  8116. ],
  8117. "source_scores": [
  8118. 0.71,
  8119. 0.15
  8120. ],
  8121. "is_above_sources": true,
  8122. "max_source_score": 0.71,
  8123. "scoreColor": "#22c55e"
  8124. },
  8125. "comb_制作梗图_r2_39": {
  8126. "type": "domain_combination",
  8127. "query": "制作梗图",
  8128. "level": 22,
  8129. "relevance_score": 0.6576639999999999,
  8130. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"制作梗图\"\n【评估对象】词条\"制作梗图\" vs 作用域词条\"制作猫咪表情包梗图\"\n【核心动机】制作\n【动机维度 0.98】原始问题和词条的核心动作都是“制作”,动作意图完全一致。\n【品类维度 0.70】核心主体'制作梗图'完全匹配,但限定词'猫咪表情包'缺失,属于合理泛化。\n【最终得分 0.90】\n【规则说明】规则A:动机高分保护生效(动机0.98≥0.8),实际得分0.90已≥0.7\n【加权系数计算】\n0.734\n 来源词总得分: 0.73\n 系数: 0.73【计算公式】base_score × 系数 = 0.90 × 0.73\n【最终得分(截断后)】0.66",
  8131. "strategy": "域内组合",
  8132. "iteration": 2,
  8133. "is_selected": true,
  8134. "type_label": "[核心动作+中心名词]",
  8135. "source_words": [
  8136. [
  8137. "制作"
  8138. ],
  8139. [
  8140. "梗图"
  8141. ]
  8142. ],
  8143. "from_segments": [
  8144. "制作",
  8145. "猫咪表情包梗图"
  8146. ],
  8147. "domains": [
  8148. 1,
  8149. 3
  8150. ],
  8151. "domains_str": "D1,D3",
  8152. "source_word_details": [
  8153. {
  8154. "domain_index": 1,
  8155. "segment_type": "核心动作",
  8156. "segment_text": "制作",
  8157. "words": [
  8158. {
  8159. "text": "制作",
  8160. "score": 0.71
  8161. }
  8162. ]
  8163. },
  8164. {
  8165. "domain_index": 3,
  8166. "segment_type": "中心名词",
  8167. "segment_text": "猫咪表情包梗图",
  8168. "words": [
  8169. {
  8170. "text": "梗图",
  8171. "score": 0.024
  8172. }
  8173. ]
  8174. }
  8175. ],
  8176. "source_scores": [
  8177. 0.71,
  8178. 0.024
  8179. ],
  8180. "is_above_sources": false,
  8181. "max_source_score": 0.71,
  8182. "scoreColor": "#ef4444"
  8183. },
  8184. "comb_制作猫咪表情包_r2_40": {
  8185. "type": "domain_combination",
  8186. "query": "制作猫咪表情包",
  8187. "level": 22,
  8188. "relevance_score": 0.8800935999999999,
  8189. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"制作猫咪表情包\"\n【评估对象】词条\"制作猫咪表情包\" vs 作用域词条\"制作猫咪表情包梗图\"\n【核心动机】制作\n【动机维度 0.98】原始问题和词条的核心动作都是“制作”,动机完全一致。\n【品类维度 0.90】核心主体“制作猫咪表情包”完全匹配,限定词“梗图”在词条中缺失,但“表情包”通常包含“梗图”的含义,属于高度相关且合理的泛化。\n【最终得分 0.96】\n【规则说明】规则A:动机高分保护生效(动机0.98≥0.8),实际得分0.96已≥0.7\n【加权系数计算】\n0.9206\n 来源词总得分: 0.92\n 系数: 0.92【计算公式】base_score × 系数 = 0.96 × 0.92\n【最终得分(截断后)】0.88",
  8190. "strategy": "域内组合",
  8191. "iteration": 2,
  8192. "is_selected": true,
  8193. "type_label": "[核心动作+中心名词]",
  8194. "source_words": [
  8195. [
  8196. "制作"
  8197. ],
  8198. [
  8199. "猫咪",
  8200. "表情包"
  8201. ]
  8202. ],
  8203. "from_segments": [
  8204. "制作",
  8205. "猫咪表情包梗图"
  8206. ],
  8207. "domains": [
  8208. 1,
  8209. 3
  8210. ],
  8211. "domains_str": "D1,D3",
  8212. "source_word_details": [
  8213. {
  8214. "domain_index": 1,
  8215. "segment_type": "核心动作",
  8216. "segment_text": "制作",
  8217. "words": [
  8218. {
  8219. "text": "制作",
  8220. "score": 0.71
  8221. }
  8222. ]
  8223. },
  8224. {
  8225. "domain_index": 3,
  8226. "segment_type": "中心名词",
  8227. "segment_text": "猫咪表情包梗图",
  8228. "words": [
  8229. {
  8230. "text": "猫咪",
  8231. "score": 0.09
  8232. },
  8233. {
  8234. "text": "表情包",
  8235. "score": 0.15
  8236. }
  8237. ]
  8238. }
  8239. ],
  8240. "source_scores": [
  8241. 0.71,
  8242. 0.09,
  8243. 0.15
  8244. ],
  8245. "is_above_sources": true,
  8246. "max_source_score": 0.71,
  8247. "scoreColor": "#22c55e"
  8248. },
  8249. "comb_制作猫咪梗图_r2_41": {
  8250. "type": "domain_combination",
  8251. "query": "制作猫咪梗图",
  8252. "level": 22,
  8253. "relevance_score": 0.8800935999999999,
  8254. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"制作猫咪梗图\"\n【评估对象】词条\"制作猫咪梗图\" vs 作用域词条\"制作猫咪表情包梗图\"\n【核心动机】制作\n【动机维度 0.98】原始问题和词条的核心动作都是“制作”,动机完全一致。\n【品类维度 0.90】核心主体“猫咪梗图”完全匹配,限定词“制作”也匹配。原始问题中的“表情包”是“梗图”的一种形式,属于合理泛化,因此匹配度很高。\n【最终得分 0.96】\n【规则说明】规则A:动机高分保护生效(动机0.98≥0.8),实际得分0.96已≥0.7\n【加权系数计算】\n0.9206\n 来源词总得分: 0.92\n 系数: 0.92【计算公式】base_score × 系数 = 0.96 × 0.92\n【最终得分(截断后)】0.88",
  8255. "strategy": "域内组合",
  8256. "iteration": 2,
  8257. "is_selected": true,
  8258. "type_label": "[核心动作+中心名词]",
  8259. "source_words": [
  8260. [
  8261. "制作"
  8262. ],
  8263. [
  8264. "猫咪",
  8265. "梗图"
  8266. ]
  8267. ],
  8268. "from_segments": [
  8269. "制作",
  8270. "猫咪表情包梗图"
  8271. ],
  8272. "domains": [
  8273. 1,
  8274. 3
  8275. ],
  8276. "domains_str": "D1,D3",
  8277. "source_word_details": [
  8278. {
  8279. "domain_index": 1,
  8280. "segment_type": "核心动作",
  8281. "segment_text": "制作",
  8282. "words": [
  8283. {
  8284. "text": "制作",
  8285. "score": 0.71
  8286. }
  8287. ]
  8288. },
  8289. {
  8290. "domain_index": 3,
  8291. "segment_type": "中心名词",
  8292. "segment_text": "猫咪表情包梗图",
  8293. "words": [
  8294. {
  8295. "text": "猫咪",
  8296. "score": 0.09
  8297. },
  8298. {
  8299. "text": "梗图",
  8300. "score": 0.024
  8301. }
  8302. ]
  8303. }
  8304. ],
  8305. "source_scores": [
  8306. 0.71,
  8307. 0.09,
  8308. 0.024
  8309. ],
  8310. "is_above_sources": true,
  8311. "max_source_score": 0.71,
  8312. "scoreColor": "#22c55e"
  8313. },
  8314. "comb_制作表情包梗图_r2_42": {
  8315. "type": "domain_combination",
  8316. "query": "制作表情包梗图",
  8317. "level": 22,
  8318. "relevance_score": 0.8146599999999999,
  8319. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"制作表情包梗图\"\n【评估对象】词条\"制作表情包梗图\" vs 作用域词条\"制作猫咪表情包梗图\"\n【核心动机】制作\n【动机维度 0.98】原始问题和词条的核心动作都是“制作”,动机完全一致。\n【品类维度 0.78】核心主体“制作表情包梗图”完全匹配,限定词“猫咪”缺失,属于核心主体匹配,存在限定词缺失的情况。\n【最终得分 0.92】\n【规则说明】规则A:动机高分保护生效(动机0.98≥0.8),实际得分0.92已≥0.7\n【加权系数计算】\n0.8855\n 来源词总得分: 0.89\n 系数: 0.89【计算公式】base_score × 系数 = 0.92 × 0.89\n【最终得分(截断后)】0.81",
  8320. "strategy": "域内组合",
  8321. "iteration": 2,
  8322. "is_selected": true,
  8323. "type_label": "[核心动作+中心名词]",
  8324. "source_words": [
  8325. [
  8326. "制作"
  8327. ],
  8328. [
  8329. "表情包",
  8330. "梗图"
  8331. ]
  8332. ],
  8333. "from_segments": [
  8334. "制作",
  8335. "猫咪表情包梗图"
  8336. ],
  8337. "domains": [
  8338. 1,
  8339. 3
  8340. ],
  8341. "domains_str": "D1,D3",
  8342. "source_word_details": [
  8343. {
  8344. "domain_index": 1,
  8345. "segment_type": "核心动作",
  8346. "segment_text": "制作",
  8347. "words": [
  8348. {
  8349. "text": "制作",
  8350. "score": 0.71
  8351. }
  8352. ]
  8353. },
  8354. {
  8355. "domain_index": 3,
  8356. "segment_type": "中心名词",
  8357. "segment_text": "猫咪表情包梗图",
  8358. "words": [
  8359. {
  8360. "text": "表情包",
  8361. "score": 0.15
  8362. },
  8363. {
  8364. "text": "梗图",
  8365. "score": 0.024
  8366. }
  8367. ]
  8368. }
  8369. ],
  8370. "source_scores": [
  8371. 0.71,
  8372. 0.15,
  8373. 0.024
  8374. ],
  8375. "is_above_sources": true,
  8376. "max_source_score": 0.71,
  8377. "scoreColor": "#22c55e"
  8378. },
  8379. "comb_制作猫咪表情包梗图_r2_43": {
  8380. "type": "domain_combination",
  8381. "query": "制作猫咪表情包梗图",
  8382. "level": 22,
  8383. "relevance_score": 0.944,
  8384. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"制作猫咪表情包梗图\"\n【评估对象】词条\"制作猫咪表情包梗图\" vs 作用域词条\"制作猫咪表情包梗图\"\n【核心动机】制作\n【动机维度 1.00】原始问题和词条的核心动作都是“制作”,动作意图完全一致。\n【品类维度 1.00】核心主体“猫咪表情包梗图”和限定词“制作”均完全匹配,达到最高匹配度。\n【最终得分 1.00】\n【规则说明】规则A:动机高分保护生效(动机1.00≥0.8),实际得分1.00已≥0.7\n【加权系数计算】\n0.944\n 来源词总得分: 0.94\n 系数: 0.94【计算公式】base_score × 系数 = 1.00 × 0.94\n【最终得分(截断后)】0.94",
  8385. "strategy": "域内组合",
  8386. "iteration": 2,
  8387. "is_selected": true,
  8388. "type_label": "[核心动作+中心名词]",
  8389. "source_words": [
  8390. [
  8391. "制作"
  8392. ],
  8393. [
  8394. "猫咪",
  8395. "表情包",
  8396. "梗图"
  8397. ]
  8398. ],
  8399. "from_segments": [
  8400. "制作",
  8401. "猫咪表情包梗图"
  8402. ],
  8403. "domains": [
  8404. 1,
  8405. 3
  8406. ],
  8407. "domains_str": "D1,D3",
  8408. "source_word_details": [
  8409. {
  8410. "domain_index": 1,
  8411. "segment_type": "核心动作",
  8412. "segment_text": "制作",
  8413. "words": [
  8414. {
  8415. "text": "制作",
  8416. "score": 0.71
  8417. }
  8418. ]
  8419. },
  8420. {
  8421. "domain_index": 3,
  8422. "segment_type": "中心名词",
  8423. "segment_text": "猫咪表情包梗图",
  8424. "words": [
  8425. {
  8426. "text": "猫咪",
  8427. "score": 0.09
  8428. },
  8429. {
  8430. "text": "表情包",
  8431. "score": 0.15
  8432. },
  8433. {
  8434. "text": "梗图",
  8435. "score": 0.024
  8436. }
  8437. ]
  8438. }
  8439. ],
  8440. "source_scores": [
  8441. 0.71,
  8442. 0.09,
  8443. 0.15,
  8444. 0.024
  8445. ],
  8446. "is_above_sources": true,
  8447. "max_source_score": 0.71,
  8448. "scoreColor": "#22c55e"
  8449. },
  8450. "comb_反映猫咪_r2_44": {
  8451. "type": "domain_combination",
  8452. "query": "反映猫咪",
  8453. "level": 22,
  8454. "relevance_score": 0.006839999999999999,
  8455. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"反映猫咪\"\n【评估对象】词条\"反映猫咪\" vs 作用域词条\"反映人类双标行为的猫咪表情包梗图\"\n【核心动机】寻找/查看\n【动机维度 0.00】词条“反映猫咪”无明确动作意图,无法评估动作匹配度。\n【品类维度 0.20】词条“反映猫咪”仅包含原始问题中的核心主体“猫咪”,但缺失了“人类双标行为”、“表情包”、“梗图”等关键限定词,导致品类匹配度较低。\n【最终得分 0.06】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.06已≤0.5\n【加权系数计算】\n0.11399999999999999\n 来源词总得分: 0.11\n 系数: 0.11【计算公式】base_score × 系数 = 0.06 × 0.11\n【最终得分(截断后)】0.01",
  8456. "strategy": "域内组合",
  8457. "iteration": 2,
  8458. "is_selected": true,
  8459. "type_label": "[修饰短语+中心名词]",
  8460. "source_words": [
  8461. [
  8462. "反映"
  8463. ],
  8464. [
  8465. "猫咪"
  8466. ]
  8467. ],
  8468. "from_segments": [
  8469. "反映人类双标行为的",
  8470. "猫咪表情包梗图"
  8471. ],
  8472. "domains": [
  8473. 2,
  8474. 3
  8475. ],
  8476. "domains_str": "D2,D3",
  8477. "source_word_details": [
  8478. {
  8479. "domain_index": 2,
  8480. "segment_type": "修饰短语",
  8481. "segment_text": "反映人类双标行为的",
  8482. "words": [
  8483. {
  8484. "text": "反映",
  8485. "score": 0.024
  8486. }
  8487. ]
  8488. },
  8489. {
  8490. "domain_index": 3,
  8491. "segment_type": "中心名词",
  8492. "segment_text": "猫咪表情包梗图",
  8493. "words": [
  8494. {
  8495. "text": "猫咪",
  8496. "score": 0.09
  8497. }
  8498. ]
  8499. }
  8500. ],
  8501. "source_scores": [
  8502. 0.024,
  8503. 0.09
  8504. ],
  8505. "is_above_sources": false,
  8506. "max_source_score": 0.09,
  8507. "scoreColor": "#ef4444"
  8508. },
  8509. "comb_反映表情包_r2_45": {
  8510. "type": "domain_combination",
  8511. "query": "反映表情包",
  8512. "level": 22,
  8513. "relevance_score": 0.004176,
  8514. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"反映表情包\"\n【评估对象】词条\"反映表情包\" vs 作用域词条\"反映人类双标行为的猫咪表情包梗图\"\n【核心动机】寻找/查看/了解\n【动机维度 0.00】原始问题和词条均无明确的动作意图,无法评估动作匹配度。\n【品类维度 0.08】词条“反映表情包”是通用概念,而同一作用域词条“反映人类双标行为的猫咪表情包梗图”是特定概念。词条仅包含“反映”和“表情包”两个词,无法体现出“人类双标行为”、“猫咪”或“梗图”等特定限定词,因此品类匹配度低,但由于都包含“表情包”这一核心词,所以给予较低的正分。\n【最终得分 0.02】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.02已≤0.5\n【加权系数计算】\n0.174\n 来源词总得分: 0.17\n 系数: 0.17【计算公式】base_score × 系数 = 0.02 × 0.17\n【最终得分(截断后)】0.00",
  8515. "strategy": "域内组合",
  8516. "iteration": 2,
  8517. "is_selected": true,
  8518. "type_label": "[修饰短语+中心名词]",
  8519. "source_words": [
  8520. [
  8521. "反映"
  8522. ],
  8523. [
  8524. "表情包"
  8525. ]
  8526. ],
  8527. "from_segments": [
  8528. "反映人类双标行为的",
  8529. "猫咪表情包梗图"
  8530. ],
  8531. "domains": [
  8532. 2,
  8533. 3
  8534. ],
  8535. "domains_str": "D2,D3",
  8536. "source_word_details": [
  8537. {
  8538. "domain_index": 2,
  8539. "segment_type": "修饰短语",
  8540. "segment_text": "反映人类双标行为的",
  8541. "words": [
  8542. {
  8543. "text": "反映",
  8544. "score": 0.024
  8545. }
  8546. ]
  8547. },
  8548. {
  8549. "domain_index": 3,
  8550. "segment_type": "中心名词",
  8551. "segment_text": "猫咪表情包梗图",
  8552. "words": [
  8553. {
  8554. "text": "表情包",
  8555. "score": 0.15
  8556. }
  8557. ]
  8558. }
  8559. ],
  8560. "source_scores": [
  8561. 0.024,
  8562. 0.15
  8563. ],
  8564. "is_above_sources": false,
  8565. "max_source_score": 0.15,
  8566. "scoreColor": "#ef4444"
  8567. },
  8568. "comb_反映梗图_r2_46": {
  8569. "type": "domain_combination",
  8570. "query": "反映梗图",
  8571. "level": 22,
  8572. "relevance_score": 0.001152,
  8573. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"反映梗图\"\n【评估对象】词条\"反映梗图\" vs 作用域词条\"反映人类双标行为的猫咪表情包梗图\"\n【核心动机】寻找/查看/制作\n【动机维度 0.00】原始问题意图是寻找或制作关于特定主题的表情包梗图,而词条“反映梗图”没有明确的动作意图,无法评估动机匹配度。\n【品类维度 0.08】词条“反映梗图”是通用概念,而同一作用域词条“反映人类双标行为的猫咪表情包梗图”是特定概念。虽然都包含“反映”和“梗图”,但词条缺少了核心主体“人类双标行为”、“猫咪表情包”等关键限定词,属于过度泛化,因此品类匹配度低。\n【最终得分 0.02】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.02已≤0.5\n【加权系数计算】\n0.048\n 来源词总得分: 0.05\n 系数: 0.05【计算公式】base_score × 系数 = 0.02 × 0.05\n【最终得分(截断后)】0.00",
  8574. "strategy": "域内组合",
  8575. "iteration": 2,
  8576. "is_selected": true,
  8577. "type_label": "[修饰短语+中心名词]",
  8578. "source_words": [
  8579. [
  8580. "反映"
  8581. ],
  8582. [
  8583. "梗图"
  8584. ]
  8585. ],
  8586. "from_segments": [
  8587. "反映人类双标行为的",
  8588. "猫咪表情包梗图"
  8589. ],
  8590. "domains": [
  8591. 2,
  8592. 3
  8593. ],
  8594. "domains_str": "D2,D3",
  8595. "source_word_details": [
  8596. {
  8597. "domain_index": 2,
  8598. "segment_type": "修饰短语",
  8599. "segment_text": "反映人类双标行为的",
  8600. "words": [
  8601. {
  8602. "text": "反映",
  8603. "score": 0.024
  8604. }
  8605. ]
  8606. },
  8607. {
  8608. "domain_index": 3,
  8609. "segment_type": "中心名词",
  8610. "segment_text": "猫咪表情包梗图",
  8611. "words": [
  8612. {
  8613. "text": "梗图",
  8614. "score": 0.024
  8615. }
  8616. ]
  8617. }
  8618. ],
  8619. "source_scores": [
  8620. 0.024,
  8621. 0.024
  8622. ],
  8623. "is_above_sources": false,
  8624. "max_source_score": 0.024,
  8625. "scoreColor": "#ef4444"
  8626. },
  8627. "comb_反映猫咪表情包_r2_47": {
  8628. "type": "domain_combination",
  8629. "query": "反映猫咪表情包",
  8630. "level": 22,
  8631. "relevance_score": 0.05278499999999999,
  8632. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"反映猫咪表情包\"\n【评估对象】词条\"反映猫咪表情包\" vs 作用域词条\"反映人类双标行为的猫咪表情包梗图\"\n【核心动机】寻找/查看\n【动机维度 0.00】原始问题和词条都无明确的动作意图,无法评估动作匹配度。\n【品类维度 0.75】核心主体“猫咪表情包”匹配,但限定词“人类双标行为”和“梗图”缺失,属于核心主体匹配但限定词不完全匹配的情况。\n【最终得分 0.22】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.22已≤0.5\n【加权系数计算】\n0.23459999999999998\n 来源词总得分: 0.23\n 系数: 0.23【计算公式】base_score × 系数 = 0.22 × 0.23\n【最终得分(截断后)】0.05",
  8633. "strategy": "域内组合",
  8634. "iteration": 2,
  8635. "is_selected": true,
  8636. "type_label": "[修饰短语+中心名词]",
  8637. "source_words": [
  8638. [
  8639. "反映"
  8640. ],
  8641. [
  8642. "猫咪",
  8643. "表情包"
  8644. ]
  8645. ],
  8646. "from_segments": [
  8647. "反映人类双标行为的",
  8648. "猫咪表情包梗图"
  8649. ],
  8650. "domains": [
  8651. 2,
  8652. 3
  8653. ],
  8654. "domains_str": "D2,D3",
  8655. "source_word_details": [
  8656. {
  8657. "domain_index": 2,
  8658. "segment_type": "修饰短语",
  8659. "segment_text": "反映人类双标行为的",
  8660. "words": [
  8661. {
  8662. "text": "反映",
  8663. "score": 0.024
  8664. }
  8665. ]
  8666. },
  8667. {
  8668. "domain_index": 3,
  8669. "segment_type": "中心名词",
  8670. "segment_text": "猫咪表情包梗图",
  8671. "words": [
  8672. {
  8673. "text": "猫咪",
  8674. "score": 0.09
  8675. },
  8676. {
  8677. "text": "表情包",
  8678. "score": 0.15
  8679. }
  8680. ]
  8681. }
  8682. ],
  8683. "source_scores": [
  8684. 0.024,
  8685. 0.09,
  8686. 0.15
  8687. ],
  8688. "is_above_sources": false,
  8689. "max_source_score": 0.15,
  8690. "scoreColor": "#ef4444"
  8691. },
  8692. "comb_反映猫咪梗图_r2_48": {
  8693. "type": "domain_combination",
  8694. "query": "反映猫咪梗图",
  8695. "level": 22,
  8696. "relevance_score": 0.05489639999999999,
  8697. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"反映猫咪梗图\"\n【评估对象】词条\"反映猫咪梗图\" vs 作用域词条\"反映人类双标行为的猫咪表情包梗图\"\n【核心动机】寻找/查看\n【动机维度 0.00】原始问题和词条均无明确动作意图,无法评估动作匹配度。\n【品类维度 0.78】核心主体'猫咪梗图'匹配,但限定词'人类双标行为'缺失,'表情包'缺失,属于核心主体匹配,存在限定词缺失的情况。\n【最终得分 0.23】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.23已≤0.5\n【加权系数计算】\n0.23459999999999998\n 来源词总得分: 0.23\n 系数: 0.23【计算公式】base_score × 系数 = 0.23 × 0.23\n【最终得分(截断后)】0.05",
  8698. "strategy": "域内组合",
  8699. "iteration": 2,
  8700. "is_selected": true,
  8701. "type_label": "[修饰短语+中心名词]",
  8702. "source_words": [
  8703. [
  8704. "反映"
  8705. ],
  8706. [
  8707. "猫咪",
  8708. "梗图"
  8709. ]
  8710. ],
  8711. "from_segments": [
  8712. "反映人类双标行为的",
  8713. "猫咪表情包梗图"
  8714. ],
  8715. "domains": [
  8716. 2,
  8717. 3
  8718. ],
  8719. "domains_str": "D2,D3",
  8720. "source_word_details": [
  8721. {
  8722. "domain_index": 2,
  8723. "segment_type": "修饰短语",
  8724. "segment_text": "反映人类双标行为的",
  8725. "words": [
  8726. {
  8727. "text": "反映",
  8728. "score": 0.024
  8729. }
  8730. ]
  8731. },
  8732. {
  8733. "domain_index": 3,
  8734. "segment_type": "中心名词",
  8735. "segment_text": "猫咪表情包梗图",
  8736. "words": [
  8737. {
  8738. "text": "猫咪",
  8739. "score": 0.09
  8740. },
  8741. {
  8742. "text": "梗图",
  8743. "score": 0.024
  8744. }
  8745. ]
  8746. }
  8747. ],
  8748. "source_scores": [
  8749. 0.024,
  8750. 0.09,
  8751. 0.024
  8752. ],
  8753. "is_above_sources": false,
  8754. "max_source_score": 0.09,
  8755. "scoreColor": "#ef4444"
  8756. },
  8757. "comb_反映表情包梗图_r2_49": {
  8758. "type": "domain_combination",
  8759. "query": "反映表情包梗图",
  8760. "level": 22,
  8761. "relevance_score": 0.004788,
  8762. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"反映表情包梗图\"\n【评估对象】词条\"反映表情包梗图\" vs 作用域词条\"反映人类双标行为的猫咪表情包梗图\"\n【核心动机】寻找/查看\n【动机维度 0.00】原始问题和词条均无明确的动作意图,无法评估动机匹配度。\n【品类维度 0.08】原始问题是特定概念“反映人类双标行为的猫咪表情包梗图”,而词条“反映表情包梗图”是通用概念,缺少了核心主体“人类双标行为”和“猫咪”这两个关键限定词,因此品类匹配度低。\n【最终得分 0.02】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.02已≤0.5\n【加权系数计算】\n0.19949999999999998\n 来源词总得分: 0.20\n 系数: 0.20【计算公式】base_score × 系数 = 0.02 × 0.20\n【最终得分(截断后)】0.00",
  8763. "strategy": "域内组合",
  8764. "iteration": 2,
  8765. "is_selected": true,
  8766. "type_label": "[修饰短语+中心名词]",
  8767. "source_words": [
  8768. [
  8769. "反映"
  8770. ],
  8771. [
  8772. "表情包",
  8773. "梗图"
  8774. ]
  8775. ],
  8776. "from_segments": [
  8777. "反映人类双标行为的",
  8778. "猫咪表情包梗图"
  8779. ],
  8780. "domains": [
  8781. 2,
  8782. 3
  8783. ],
  8784. "domains_str": "D2,D3",
  8785. "source_word_details": [
  8786. {
  8787. "domain_index": 2,
  8788. "segment_type": "修饰短语",
  8789. "segment_text": "反映人类双标行为的",
  8790. "words": [
  8791. {
  8792. "text": "反映",
  8793. "score": 0.024
  8794. }
  8795. ]
  8796. },
  8797. {
  8798. "domain_index": 3,
  8799. "segment_type": "中心名词",
  8800. "segment_text": "猫咪表情包梗图",
  8801. "words": [
  8802. {
  8803. "text": "表情包",
  8804. "score": 0.15
  8805. },
  8806. {
  8807. "text": "梗图",
  8808. "score": 0.024
  8809. }
  8810. ]
  8811. }
  8812. ],
  8813. "source_scores": [
  8814. 0.024,
  8815. 0.15,
  8816. 0.024
  8817. ],
  8818. "is_above_sources": false,
  8819. "max_source_score": 0.15,
  8820. "scoreColor": "#ef4444"
  8821. },
  8822. "comb_反映猫咪表情包梗图_r2_50": {
  8823. "type": "domain_combination",
  8824. "query": "反映猫咪表情包梗图",
  8825. "level": 22,
  8826. "relevance_score": 0.05805,
  8827. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"反映猫咪表情包梗图\"\n【评估对象】词条\"反映猫咪表情包梗图\" vs 作用域词条\"反映人类双标行为的猫咪表情包梗图\"\n【核心动机】寻找/查看/了解\n【动机维度 0.00】原始问题和词条均无明确的动作意图,无法评估动机匹配度。\n【品类维度 0.75】核心主体“猫咪表情包梗图”匹配,但限定词“反映人类双标行为”缺失。\n【最终得分 0.22】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.22已≤0.5\n【加权系数计算】\n0.258\n 来源词总得分: 0.26\n 系数: 0.26【计算公式】base_score × 系数 = 0.22 × 0.26\n【最终得分(截断后)】0.06",
  8828. "strategy": "域内组合",
  8829. "iteration": 2,
  8830. "is_selected": true,
  8831. "type_label": "[修饰短语+中心名词]",
  8832. "source_words": [
  8833. [
  8834. "反映"
  8835. ],
  8836. [
  8837. "猫咪",
  8838. "表情包",
  8839. "梗图"
  8840. ]
  8841. ],
  8842. "from_segments": [
  8843. "反映人类双标行为的",
  8844. "猫咪表情包梗图"
  8845. ],
  8846. "domains": [
  8847. 2,
  8848. 3
  8849. ],
  8850. "domains_str": "D2,D3",
  8851. "source_word_details": [
  8852. {
  8853. "domain_index": 2,
  8854. "segment_type": "修饰短语",
  8855. "segment_text": "反映人类双标行为的",
  8856. "words": [
  8857. {
  8858. "text": "反映",
  8859. "score": 0.024
  8860. }
  8861. ]
  8862. },
  8863. {
  8864. "domain_index": 3,
  8865. "segment_type": "中心名词",
  8866. "segment_text": "猫咪表情包梗图",
  8867. "words": [
  8868. {
  8869. "text": "猫咪",
  8870. "score": 0.09
  8871. },
  8872. {
  8873. "text": "表情包",
  8874. "score": 0.15
  8875. },
  8876. {
  8877. "text": "梗图",
  8878. "score": 0.024
  8879. }
  8880. ]
  8881. }
  8882. ],
  8883. "source_scores": [
  8884. 0.024,
  8885. 0.09,
  8886. 0.15,
  8887. 0.024
  8888. ],
  8889. "is_above_sources": false,
  8890. "max_source_score": 0.15,
  8891. "scoreColor": "#ef4444"
  8892. },
  8893. "comb_人类猫咪_r2_51": {
  8894. "type": "domain_combination",
  8895. "query": "人类猫咪",
  8896. "level": 22,
  8897. "relevance_score": 0.0027359999999999997,
  8898. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"人类猫咪\"\n【评估对象】词条\"人类猫咪\" vs 作用域词条\"反映人类双标行为的猫咪表情包梗图\"\n【核心动机】寻找/查看\n【动机维度 0.00】词条“人类猫咪”无明确的动作意图,无法与原始问题的“寻找/查看”动作进行匹配。\n【品类维度 0.08】原始问题是特定概念(反映人类双标行为的猫咪表情包梗图),而词条是通用概念(人类猫咪),词条过度泛化,仅抽象相似,因此品类匹配度低。\n【最终得分 0.02】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.02已≤0.5\n【加权系数计算】\n0.11399999999999999\n 来源词总得分: 0.11\n 系数: 0.11【计算公式】base_score × 系数 = 0.02 × 0.11\n【最终得分(截断后)】0.00",
  8899. "strategy": "域内组合",
  8900. "iteration": 2,
  8901. "is_selected": true,
  8902. "type_label": "[修饰短语+中心名词]",
  8903. "source_words": [
  8904. [
  8905. "人类"
  8906. ],
  8907. [
  8908. "猫咪"
  8909. ]
  8910. ],
  8911. "from_segments": [
  8912. "反映人类双标行为的",
  8913. "猫咪表情包梗图"
  8914. ],
  8915. "domains": [
  8916. 2,
  8917. 3
  8918. ],
  8919. "domains_str": "D2,D3",
  8920. "source_word_details": [
  8921. {
  8922. "domain_index": 2,
  8923. "segment_type": "修饰短语",
  8924. "segment_text": "反映人类双标行为的",
  8925. "words": [
  8926. {
  8927. "text": "人类",
  8928. "score": 0.024
  8929. }
  8930. ]
  8931. },
  8932. {
  8933. "domain_index": 3,
  8934. "segment_type": "中心名词",
  8935. "segment_text": "猫咪表情包梗图",
  8936. "words": [
  8937. {
  8938. "text": "猫咪",
  8939. "score": 0.09
  8940. }
  8941. ]
  8942. }
  8943. ],
  8944. "source_scores": [
  8945. 0.024,
  8946. 0.09
  8947. ],
  8948. "is_above_sources": false,
  8949. "max_source_score": 0.09,
  8950. "scoreColor": "#ef4444"
  8951. },
  8952. "comb_人类表情包_r2_52": {
  8953. "type": "domain_combination",
  8954. "query": "人类表情包",
  8955. "level": 22,
  8956. "relevance_score": 0.004176,
  8957. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"人类表情包\"\n【评估对象】词条\"人类表情包\" vs 作用域词条\"反映人类双标行为的猫咪表情包梗图\"\n【核心动机】寻找/获取\n【动机维度 0.00】原始问题是寻找/获取表情包梗图,而词条“人类表情包”无明确的动作意图,无法评估动作匹配度。\n【品类维度 0.08】原始问题是关于“猫咪表情包梗图”的特定品类,而词条“人类表情包”是一个通用概念,虽然都包含“表情包”,但主体“人类”与原始问题的“猫咪”不匹配,且词条过于泛化,因此品类匹配度低。\n【最终得分 0.02】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.02已≤0.5\n【加权系数计算】\n0.174\n 来源词总得分: 0.17\n 系数: 0.17【计算公式】base_score × 系数 = 0.02 × 0.17\n【最终得分(截断后)】0.00",
  8958. "strategy": "域内组合",
  8959. "iteration": 2,
  8960. "is_selected": true,
  8961. "type_label": "[修饰短语+中心名词]",
  8962. "source_words": [
  8963. [
  8964. "人类"
  8965. ],
  8966. [
  8967. "表情包"
  8968. ]
  8969. ],
  8970. "from_segments": [
  8971. "反映人类双标行为的",
  8972. "猫咪表情包梗图"
  8973. ],
  8974. "domains": [
  8975. 2,
  8976. 3
  8977. ],
  8978. "domains_str": "D2,D3",
  8979. "source_word_details": [
  8980. {
  8981. "domain_index": 2,
  8982. "segment_type": "修饰短语",
  8983. "segment_text": "反映人类双标行为的",
  8984. "words": [
  8985. {
  8986. "text": "人类",
  8987. "score": 0.024
  8988. }
  8989. ]
  8990. },
  8991. {
  8992. "domain_index": 3,
  8993. "segment_type": "中心名词",
  8994. "segment_text": "猫咪表情包梗图",
  8995. "words": [
  8996. {
  8997. "text": "表情包",
  8998. "score": 0.15
  8999. }
  9000. ]
  9001. }
  9002. ],
  9003. "source_scores": [
  9004. 0.024,
  9005. 0.15
  9006. ],
  9007. "is_above_sources": false,
  9008. "max_source_score": 0.15,
  9009. "scoreColor": "#ef4444"
  9010. },
  9011. "comb_人类梗图_r2_53": {
  9012. "type": "domain_combination",
  9013. "query": "人类梗图",
  9014. "level": 22,
  9015. "relevance_score": 0.001152,
  9016. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"人类梗图\"\n【评估对象】词条\"人类梗图\" vs 作用域词条\"反映人类双标行为的猫咪表情包梗图\"\n【核心动机】寻找/查看\n【动机维度 0.00】原始问题和词条均无明确的动作意图,无法评估动机匹配度。\n【品类维度 0.08】原始问题是特定概念“反映人类双标行为的猫咪表情包梗图”,sug词是通用概念“人类梗图”。sug词过度泛化,仅抽象相似,品类不匹配。\n【最终得分 0.02】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.02已≤0.5\n【加权系数计算】\n0.048\n 来源词总得分: 0.05\n 系数: 0.05【计算公式】base_score × 系数 = 0.02 × 0.05\n【最终得分(截断后)】0.00",
  9017. "strategy": "域内组合",
  9018. "iteration": 2,
  9019. "is_selected": true,
  9020. "type_label": "[修饰短语+中心名词]",
  9021. "source_words": [
  9022. [
  9023. "人类"
  9024. ],
  9025. [
  9026. "梗图"
  9027. ]
  9028. ],
  9029. "from_segments": [
  9030. "反映人类双标行为的",
  9031. "猫咪表情包梗图"
  9032. ],
  9033. "domains": [
  9034. 2,
  9035. 3
  9036. ],
  9037. "domains_str": "D2,D3",
  9038. "source_word_details": [
  9039. {
  9040. "domain_index": 2,
  9041. "segment_type": "修饰短语",
  9042. "segment_text": "反映人类双标行为的",
  9043. "words": [
  9044. {
  9045. "text": "人类",
  9046. "score": 0.024
  9047. }
  9048. ]
  9049. },
  9050. {
  9051. "domain_index": 3,
  9052. "segment_type": "中心名词",
  9053. "segment_text": "猫咪表情包梗图",
  9054. "words": [
  9055. {
  9056. "text": "梗图",
  9057. "score": 0.024
  9058. }
  9059. ]
  9060. }
  9061. ],
  9062. "source_scores": [
  9063. 0.024,
  9064. 0.024
  9065. ],
  9066. "is_above_sources": false,
  9067. "max_source_score": 0.024,
  9068. "scoreColor": "#ef4444"
  9069. },
  9070. "comb_人类猫咪表情包_r2_54": {
  9071. "type": "domain_combination",
  9072. "query": "人类猫咪表情包",
  9073. "level": 22,
  9074. "relevance_score": 0.04926599999999999,
  9075. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"人类猫咪表情包\"\n【评估对象】词条\"人类猫咪表情包\" vs 作用域词条\"反映人类双标行为的猫咪表情包梗图\"\n【核心动机】寻找/获取\n【动机维度 0.00】原始问题是寻找/获取表情包梗图,而词条“人类猫咪表情包”没有明确的动作意图,无法评估动机匹配度。\n【品类维度 0.70】核心主体“猫咪表情包”匹配,但限定词“反映人类双标行为”未匹配,且“梗图”也未匹配,属于核心主体匹配但限定词缺失的情况。\n【最终得分 0.21】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.21已≤0.5\n【加权系数计算】\n0.23459999999999998\n 来源词总得分: 0.23\n 系数: 0.23【计算公式】base_score × 系数 = 0.21 × 0.23\n【最终得分(截断后)】0.05",
  9076. "strategy": "域内组合",
  9077. "iteration": 2,
  9078. "is_selected": true,
  9079. "type_label": "[修饰短语+中心名词]",
  9080. "source_words": [
  9081. [
  9082. "人类"
  9083. ],
  9084. [
  9085. "猫咪",
  9086. "表情包"
  9087. ]
  9088. ],
  9089. "from_segments": [
  9090. "反映人类双标行为的",
  9091. "猫咪表情包梗图"
  9092. ],
  9093. "domains": [
  9094. 2,
  9095. 3
  9096. ],
  9097. "domains_str": "D2,D3",
  9098. "source_word_details": [
  9099. {
  9100. "domain_index": 2,
  9101. "segment_type": "修饰短语",
  9102. "segment_text": "反映人类双标行为的",
  9103. "words": [
  9104. {
  9105. "text": "人类",
  9106. "score": 0.024
  9107. }
  9108. ]
  9109. },
  9110. {
  9111. "domain_index": 3,
  9112. "segment_type": "中心名词",
  9113. "segment_text": "猫咪表情包梗图",
  9114. "words": [
  9115. {
  9116. "text": "猫咪",
  9117. "score": 0.09
  9118. },
  9119. {
  9120. "text": "表情包",
  9121. "score": 0.15
  9122. }
  9123. ]
  9124. }
  9125. ],
  9126. "source_scores": [
  9127. 0.024,
  9128. 0.09,
  9129. 0.15
  9130. ],
  9131. "is_above_sources": false,
  9132. "max_source_score": 0.15,
  9133. "scoreColor": "#ef4444"
  9134. },
  9135. "comb_人类猫咪梗图_r2_55": {
  9136. "type": "domain_combination",
  9137. "query": "人类猫咪梗图",
  9138. "level": 22,
  9139. "relevance_score": 0.05278499999999999,
  9140. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"人类猫咪梗图\"\n【评估对象】词条\"人类猫咪梗图\" vs 作用域词条\"反映人类双标行为的猫咪表情包梗图\"\n【核心动机】寻找/查看\n【动机维度 0.00】原始问题和词条均无明确的动作意图,无法评估动机匹配度。\n【品类维度 0.75】核心主体'猫咪梗图'匹配,限定词'人类'匹配,但缺失了'双标行为'和'表情包'这两个限定词,属于核心主体匹配,存在限定词匹配的情况。\n【最终得分 0.22】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.22已≤0.5\n【加权系数计算】\n0.23459999999999998\n 来源词总得分: 0.23\n 系数: 0.23【计算公式】base_score × 系数 = 0.22 × 0.23\n【最终得分(截断后)】0.05",
  9141. "strategy": "域内组合",
  9142. "iteration": 2,
  9143. "is_selected": true,
  9144. "type_label": "[修饰短语+中心名词]",
  9145. "source_words": [
  9146. [
  9147. "人类"
  9148. ],
  9149. [
  9150. "猫咪",
  9151. "梗图"
  9152. ]
  9153. ],
  9154. "from_segments": [
  9155. "反映人类双标行为的",
  9156. "猫咪表情包梗图"
  9157. ],
  9158. "domains": [
  9159. 2,
  9160. 3
  9161. ],
  9162. "domains_str": "D2,D3",
  9163. "source_word_details": [
  9164. {
  9165. "domain_index": 2,
  9166. "segment_type": "修饰短语",
  9167. "segment_text": "反映人类双标行为的",
  9168. "words": [
  9169. {
  9170. "text": "人类",
  9171. "score": 0.024
  9172. }
  9173. ]
  9174. },
  9175. {
  9176. "domain_index": 3,
  9177. "segment_type": "中心名词",
  9178. "segment_text": "猫咪表情包梗图",
  9179. "words": [
  9180. {
  9181. "text": "猫咪",
  9182. "score": 0.09
  9183. },
  9184. {
  9185. "text": "梗图",
  9186. "score": 0.024
  9187. }
  9188. ]
  9189. }
  9190. ],
  9191. "source_scores": [
  9192. 0.024,
  9193. 0.09,
  9194. 0.024
  9195. ],
  9196. "is_above_sources": false,
  9197. "max_source_score": 0.09,
  9198. "scoreColor": "#ef4444"
  9199. },
  9200. "comb_人类表情包梗图_r2_56": {
  9201. "type": "domain_combination",
  9202. "query": "人类表情包梗图",
  9203. "level": 22,
  9204. "relevance_score": 0.029924999999999997,
  9205. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"人类表情包梗图\"\n【评估对象】词条\"人类表情包梗图\" vs 作用域词条\"反映人类双标行为的猫咪表情包梗图\"\n【核心动机】原始问题无明确动作意图,主要描述一个主题或内容\n【动机维度 0.00】原始问题和词条均无明确的动作意图,无法评估动机匹配度。\n【品类维度 0.50】核心主体'表情包梗图'匹配,但限定词'人类'与原始问题中的'猫咪'存在差异,且原始问题中的'双标行为'这一限定词未匹配。\n【最终得分 0.15】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.15已≤0.5\n【加权系数计算】\n0.19949999999999998\n 来源词总得分: 0.20\n 系数: 0.20【计算公式】base_score × 系数 = 0.15 × 0.20\n【最终得分(截断后)】0.03",
  9206. "strategy": "域内组合",
  9207. "iteration": 2,
  9208. "is_selected": true,
  9209. "type_label": "[修饰短语+中心名词]",
  9210. "source_words": [
  9211. [
  9212. "人类"
  9213. ],
  9214. [
  9215. "表情包",
  9216. "梗图"
  9217. ]
  9218. ],
  9219. "from_segments": [
  9220. "反映人类双标行为的",
  9221. "猫咪表情包梗图"
  9222. ],
  9223. "domains": [
  9224. 2,
  9225. 3
  9226. ],
  9227. "domains_str": "D2,D3",
  9228. "source_word_details": [
  9229. {
  9230. "domain_index": 2,
  9231. "segment_type": "修饰短语",
  9232. "segment_text": "反映人类双标行为的",
  9233. "words": [
  9234. {
  9235. "text": "人类",
  9236. "score": 0.024
  9237. }
  9238. ]
  9239. },
  9240. {
  9241. "domain_index": 3,
  9242. "segment_type": "中心名词",
  9243. "segment_text": "猫咪表情包梗图",
  9244. "words": [
  9245. {
  9246. "text": "表情包",
  9247. "score": 0.15
  9248. },
  9249. {
  9250. "text": "梗图",
  9251. "score": 0.024
  9252. }
  9253. ]
  9254. }
  9255. ],
  9256. "source_scores": [
  9257. 0.024,
  9258. 0.15,
  9259. 0.024
  9260. ],
  9261. "is_above_sources": false,
  9262. "max_source_score": 0.15,
  9263. "scoreColor": "#ef4444"
  9264. },
  9265. "comb_人类猫咪表情包梗图_r2_57": {
  9266. "type": "domain_combination",
  9267. "query": "人类猫咪表情包梗图",
  9268. "level": 22,
  9269. "relevance_score": 0.060371999999999995,
  9270. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"人类猫咪表情包梗图\"\n【评估对象】词条\"人类猫咪表情包梗图\" vs 作用域词条\"反映人类双标行为的猫咪表情包梗图\"\n【核心动机】原始问题无明确动作意图,主要描述一个主题\n【动机维度 0.00】原始问题和词条均无明确的动作意图,无法评估动机匹配度。\n【品类维度 0.78】核心主体“猫咪表情包梗图”完全匹配,限定词“人类”匹配,但缺失了“双标行为”这一关键限定词,因此给予较高但非满分。\n【最终得分 0.23】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.23已≤0.5\n【加权系数计算】\n0.258\n 来源词总得分: 0.26\n 系数: 0.26【计算公式】base_score × 系数 = 0.23 × 0.26\n【最终得分(截断后)】0.06",
  9271. "strategy": "域内组合",
  9272. "iteration": 2,
  9273. "is_selected": true,
  9274. "type_label": "[修饰短语+中心名词]",
  9275. "source_words": [
  9276. [
  9277. "人类"
  9278. ],
  9279. [
  9280. "猫咪",
  9281. "表情包",
  9282. "梗图"
  9283. ]
  9284. ],
  9285. "from_segments": [
  9286. "反映人类双标行为的",
  9287. "猫咪表情包梗图"
  9288. ],
  9289. "domains": [
  9290. 2,
  9291. 3
  9292. ],
  9293. "domains_str": "D2,D3",
  9294. "source_word_details": [
  9295. {
  9296. "domain_index": 2,
  9297. "segment_type": "修饰短语",
  9298. "segment_text": "反映人类双标行为的",
  9299. "words": [
  9300. {
  9301. "text": "人类",
  9302. "score": 0.024
  9303. }
  9304. ]
  9305. },
  9306. {
  9307. "domain_index": 3,
  9308. "segment_type": "中心名词",
  9309. "segment_text": "猫咪表情包梗图",
  9310. "words": [
  9311. {
  9312. "text": "猫咪",
  9313. "score": 0.09
  9314. },
  9315. {
  9316. "text": "表情包",
  9317. "score": 0.15
  9318. },
  9319. {
  9320. "text": "梗图",
  9321. "score": 0.024
  9322. }
  9323. ]
  9324. }
  9325. ],
  9326. "source_scores": [
  9327. 0.024,
  9328. 0.09,
  9329. 0.15,
  9330. 0.024
  9331. ],
  9332. "is_above_sources": false,
  9333. "max_source_score": 0.15,
  9334. "scoreColor": "#ef4444"
  9335. },
  9336. "comb_双标猫咪_r2_58": {
  9337. "type": "domain_combination",
  9338. "query": "双标猫咪",
  9339. "level": 22,
  9340. "relevance_score": 0.026675999999999995,
  9341. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"双标猫咪\"\n【评估对象】词条\"双标猫咪\" vs 作用域词条\"反映人类双标行为的猫咪表情包梗图\"\n【核心动机】原始问题无明确动作意图,主要为描述性词语\n【动机维度 0.00】原始问题和词条均无明确的动作意图,无法评估动机维度匹配度。\n【品类维度 0.78】核心主体'双标'和'猫咪'匹配,但限定词'行为'、'表情包'、'梗图'缺失,属于核心主体匹配,存在限定词匹配的情况。\n【最终得分 0.23】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.23已≤0.5\n【加权系数计算】\n0.11399999999999999\n 来源词总得分: 0.11\n 系数: 0.11【计算公式】base_score × 系数 = 0.23 × 0.11\n【最终得分(截断后)】0.03",
  9342. "strategy": "域内组合",
  9343. "iteration": 2,
  9344. "is_selected": true,
  9345. "type_label": "[修饰短语+中心名词]",
  9346. "source_words": [
  9347. [
  9348. "双标"
  9349. ],
  9350. [
  9351. "猫咪"
  9352. ]
  9353. ],
  9354. "from_segments": [
  9355. "反映人类双标行为的",
  9356. "猫咪表情包梗图"
  9357. ],
  9358. "domains": [
  9359. 2,
  9360. 3
  9361. ],
  9362. "domains_str": "D2,D3",
  9363. "source_word_details": [
  9364. {
  9365. "domain_index": 2,
  9366. "segment_type": "修饰短语",
  9367. "segment_text": "反映人类双标行为的",
  9368. "words": [
  9369. {
  9370. "text": "双标",
  9371. "score": 0.024
  9372. }
  9373. ]
  9374. },
  9375. {
  9376. "domain_index": 3,
  9377. "segment_type": "中心名词",
  9378. "segment_text": "猫咪表情包梗图",
  9379. "words": [
  9380. {
  9381. "text": "猫咪",
  9382. "score": 0.09
  9383. }
  9384. ]
  9385. }
  9386. ],
  9387. "source_scores": [
  9388. 0.024,
  9389. 0.09
  9390. ],
  9391. "is_above_sources": false,
  9392. "max_source_score": 0.09,
  9393. "scoreColor": "#ef4444"
  9394. },
  9395. "comb_双标表情包_r2_59": {
  9396. "type": "domain_combination",
  9397. "query": "双标表情包",
  9398. "level": 22,
  9399. "relevance_score": 0.040715999999999995,
  9400. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"双标表情包\"\n【评估对象】词条\"双标表情包\" vs 作用域词条\"反映人类双标行为的猫咪表情包梗图\"\n【核心动机】寻找/获取\n【动机维度 0.00】原始问题是寻找/获取表情包梗图,而词条“双标表情包”没有明确的动作意图,无法进行动机匹配。\n【品类维度 0.78】核心主体“双标”和“表情包”匹配,但缺失了“人类行为”、“猫咪”和“梗图”等限定词,属于核心主体匹配,存在限定词匹配的情况。\n【最终得分 0.23】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.23已≤0.5\n【加权系数计算】\n0.174\n 来源词总得分: 0.17\n 系数: 0.17【计算公式】base_score × 系数 = 0.23 × 0.17\n【最终得分(截断后)】0.04",
  9401. "strategy": "域内组合",
  9402. "iteration": 2,
  9403. "is_selected": true,
  9404. "type_label": "[修饰短语+中心名词]",
  9405. "source_words": [
  9406. [
  9407. "双标"
  9408. ],
  9409. [
  9410. "表情包"
  9411. ]
  9412. ],
  9413. "from_segments": [
  9414. "反映人类双标行为的",
  9415. "猫咪表情包梗图"
  9416. ],
  9417. "domains": [
  9418. 2,
  9419. 3
  9420. ],
  9421. "domains_str": "D2,D3",
  9422. "source_word_details": [
  9423. {
  9424. "domain_index": 2,
  9425. "segment_type": "修饰短语",
  9426. "segment_text": "反映人类双标行为的",
  9427. "words": [
  9428. {
  9429. "text": "双标",
  9430. "score": 0.024
  9431. }
  9432. ]
  9433. },
  9434. {
  9435. "domain_index": 3,
  9436. "segment_type": "中心名词",
  9437. "segment_text": "猫咪表情包梗图",
  9438. "words": [
  9439. {
  9440. "text": "表情包",
  9441. "score": 0.15
  9442. }
  9443. ]
  9444. }
  9445. ],
  9446. "source_scores": [
  9447. 0.024,
  9448. 0.15
  9449. ],
  9450. "is_above_sources": false,
  9451. "max_source_score": 0.15,
  9452. "scoreColor": "#ef4444"
  9453. },
  9454. "comb_双标梗图_r2_60": {
  9455. "type": "domain_combination",
  9456. "query": "双标梗图",
  9457. "level": 22,
  9458. "relevance_score": 0.010799999999999999,
  9459. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"双标梗图\"\n【评估对象】词条\"双标梗图\" vs 作用域词条\"反映人类双标行为的猫咪表情包梗图\"\n【核心动机】寻找/获取\n【动机维度 0.00】原始问题是寻找/获取梗图,但词条本身没有明确的动作意图,无法评估动机匹配度。\n【品类维度 0.75】核心主体“双标梗图”匹配,但限定词“人类双标行为的猫咪表情包”缺失,属于核心主体匹配但限定词不完全匹配的情况。\n【最终得分 0.22】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.22已≤0.5\n【加权系数计算】\n0.048\n 来源词总得分: 0.05\n 系数: 0.05【计算公式】base_score × 系数 = 0.22 × 0.05\n【最终得分(截断后)】0.01",
  9460. "strategy": "域内组合",
  9461. "iteration": 2,
  9462. "is_selected": true,
  9463. "type_label": "[修饰短语+中心名词]",
  9464. "source_words": [
  9465. [
  9466. "双标"
  9467. ],
  9468. [
  9469. "梗图"
  9470. ]
  9471. ],
  9472. "from_segments": [
  9473. "反映人类双标行为的",
  9474. "猫咪表情包梗图"
  9475. ],
  9476. "domains": [
  9477. 2,
  9478. 3
  9479. ],
  9480. "domains_str": "D2,D3",
  9481. "source_word_details": [
  9482. {
  9483. "domain_index": 2,
  9484. "segment_type": "修饰短语",
  9485. "segment_text": "反映人类双标行为的",
  9486. "words": [
  9487. {
  9488. "text": "双标",
  9489. "score": 0.024
  9490. }
  9491. ]
  9492. },
  9493. {
  9494. "domain_index": 3,
  9495. "segment_type": "中心名词",
  9496. "segment_text": "猫咪表情包梗图",
  9497. "words": [
  9498. {
  9499. "text": "梗图",
  9500. "score": 0.024
  9501. }
  9502. ]
  9503. }
  9504. ],
  9505. "source_scores": [
  9506. 0.024,
  9507. 0.024
  9508. ],
  9509. "is_above_sources": false,
  9510. "max_source_score": 0.024,
  9511. "scoreColor": "#ef4444"
  9512. },
  9513. "comb_双标猫咪表情包_r2_61": {
  9514. "type": "domain_combination",
  9515. "query": "双标猫咪表情包",
  9516. "level": 22,
  9517. "relevance_score": 0.059822999999999994,
  9518. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"双标猫咪表情包\"\n【评估对象】词条\"双标猫咪表情包\" vs 作用域词条\"反映人类双标行为的猫咪表情包梗图\"\n【核心动机】原始问题无明确动作意图,主要描述一个主题或内容\n【动机维度 0.00】原始问题和词条均无明确的动作意图,无法评估动机匹配度。\n【品类维度 0.85】核心主体'双标猫咪表情包'与原始问题中的'双标行为的猫咪表情包梗图'高度匹配,限定词'双标'和'猫咪表情包'均包含,仅缺少'梗图'这一细微限定,但语义上高度一致。\n【最终得分 0.26】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.26已≤0.5\n【加权系数计算】\n0.23459999999999998\n 来源词总得分: 0.23\n 系数: 0.23【计算公式】base_score × 系数 = 0.26 × 0.23\n【最终得分(截断后)】0.06",
  9519. "strategy": "域内组合",
  9520. "iteration": 2,
  9521. "is_selected": true,
  9522. "type_label": "[修饰短语+中心名词]",
  9523. "source_words": [
  9524. [
  9525. "双标"
  9526. ],
  9527. [
  9528. "猫咪",
  9529. "表情包"
  9530. ]
  9531. ],
  9532. "from_segments": [
  9533. "反映人类双标行为的",
  9534. "猫咪表情包梗图"
  9535. ],
  9536. "domains": [
  9537. 2,
  9538. 3
  9539. ],
  9540. "domains_str": "D2,D3",
  9541. "source_word_details": [
  9542. {
  9543. "domain_index": 2,
  9544. "segment_type": "修饰短语",
  9545. "segment_text": "反映人类双标行为的",
  9546. "words": [
  9547. {
  9548. "text": "双标",
  9549. "score": 0.024
  9550. }
  9551. ]
  9552. },
  9553. {
  9554. "domain_index": 3,
  9555. "segment_type": "中心名词",
  9556. "segment_text": "猫咪表情包梗图",
  9557. "words": [
  9558. {
  9559. "text": "猫咪",
  9560. "score": 0.09
  9561. },
  9562. {
  9563. "text": "表情包",
  9564. "score": 0.15
  9565. }
  9566. ]
  9567. }
  9568. ],
  9569. "source_scores": [
  9570. 0.024,
  9571. 0.09,
  9572. 0.15
  9573. ],
  9574. "is_above_sources": false,
  9575. "max_source_score": 0.15,
  9576. "scoreColor": "#ef4444"
  9577. },
  9578. "comb_双标猫咪梗图_r2_62": {
  9579. "type": "domain_combination",
  9580. "query": "双标猫咪梗图",
  9581. "level": 22,
  9582. "relevance_score": 0.063342,
  9583. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"双标猫咪梗图\"\n【评估对象】词条\"双标猫咪梗图\" vs 作用域词条\"反映人类双标行为的猫咪表情包梗图\"\n【核心动机】原始问题无明确动作意图,主要描述一个主题\n【动机维度 0.00】原始问题和词条均无明确的动作意图,无法评估动机匹配度。\n【品类维度 0.90】核心主体“双标猫咪梗图”与原始问题“反映人类双标行为的猫咪表情包梗图”高度匹配,限定词“双标”、“猫咪”、“梗图”均包含,仅缺少“表情包”和“反映人类行为”的限定,但语义上高度一致。\n【最终得分 0.27】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.27已≤0.5\n【加权系数计算】\n0.23459999999999998\n 来源词总得分: 0.23\n 系数: 0.23【计算公式】base_score × 系数 = 0.27 × 0.23\n【最终得分(截断后)】0.06",
  9584. "strategy": "域内组合",
  9585. "iteration": 2,
  9586. "is_selected": true,
  9587. "type_label": "[修饰短语+中心名词]",
  9588. "source_words": [
  9589. [
  9590. "双标"
  9591. ],
  9592. [
  9593. "猫咪",
  9594. "梗图"
  9595. ]
  9596. ],
  9597. "from_segments": [
  9598. "反映人类双标行为的",
  9599. "猫咪表情包梗图"
  9600. ],
  9601. "domains": [
  9602. 2,
  9603. 3
  9604. ],
  9605. "domains_str": "D2,D3",
  9606. "source_word_details": [
  9607. {
  9608. "domain_index": 2,
  9609. "segment_type": "修饰短语",
  9610. "segment_text": "反映人类双标行为的",
  9611. "words": [
  9612. {
  9613. "text": "双标",
  9614. "score": 0.024
  9615. }
  9616. ]
  9617. },
  9618. {
  9619. "domain_index": 3,
  9620. "segment_type": "中心名词",
  9621. "segment_text": "猫咪表情包梗图",
  9622. "words": [
  9623. {
  9624. "text": "猫咪",
  9625. "score": 0.09
  9626. },
  9627. {
  9628. "text": "梗图",
  9629. "score": 0.024
  9630. }
  9631. ]
  9632. }
  9633. ],
  9634. "source_scores": [
  9635. 0.024,
  9636. 0.09,
  9637. 0.024
  9638. ],
  9639. "is_above_sources": false,
  9640. "max_source_score": 0.09,
  9641. "scoreColor": "#ef4444"
  9642. },
  9643. "comb_双标表情包梗图_r2_63": {
  9644. "type": "domain_combination",
  9645. "query": "双标表情包梗图",
  9646. "level": 22,
  9647. "relevance_score": 0.046682999999999995,
  9648. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"双标表情包梗图\"\n【评估对象】词条\"双标表情包梗图\" vs 作用域词条\"反映人类双标行为的猫咪表情包梗图\"\n【核心动机】原始问题无明确动作意图,主要描述一个对象或主题\n【动机维度 0.00】原始问题和词条均无明确的动作意图,无法评估动机匹配度。\n【品类维度 0.78】核心主体“双标行为”和“表情包梗图”匹配,但限定词“猫咪”缺失,在词条中缺失,属于部分匹配。\n【最终得分 0.23】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.23已≤0.5\n【加权系数计算】\n0.19949999999999998\n 来源词总得分: 0.20\n 系数: 0.20【计算公式】base_score × 系数 = 0.23 × 0.20\n【最终得分(截断后)】0.05",
  9649. "strategy": "域内组合",
  9650. "iteration": 2,
  9651. "is_selected": true,
  9652. "type_label": "[修饰短语+中心名词]",
  9653. "source_words": [
  9654. [
  9655. "双标"
  9656. ],
  9657. [
  9658. "表情包",
  9659. "梗图"
  9660. ]
  9661. ],
  9662. "from_segments": [
  9663. "反映人类双标行为的",
  9664. "猫咪表情包梗图"
  9665. ],
  9666. "domains": [
  9667. 2,
  9668. 3
  9669. ],
  9670. "domains_str": "D2,D3",
  9671. "source_word_details": [
  9672. {
  9673. "domain_index": 2,
  9674. "segment_type": "修饰短语",
  9675. "segment_text": "反映人类双标行为的",
  9676. "words": [
  9677. {
  9678. "text": "双标",
  9679. "score": 0.024
  9680. }
  9681. ]
  9682. },
  9683. {
  9684. "domain_index": 3,
  9685. "segment_type": "中心名词",
  9686. "segment_text": "猫咪表情包梗图",
  9687. "words": [
  9688. {
  9689. "text": "表情包",
  9690. "score": 0.15
  9691. },
  9692. {
  9693. "text": "梗图",
  9694. "score": 0.024
  9695. }
  9696. ]
  9697. }
  9698. ],
  9699. "source_scores": [
  9700. 0.024,
  9701. 0.15,
  9702. 0.024
  9703. ],
  9704. "is_above_sources": false,
  9705. "max_source_score": 0.15,
  9706. "scoreColor": "#ef4444"
  9707. },
  9708. "comb_双标猫咪表情包梗图_r2_64": {
  9709. "type": "domain_combination",
  9710. "query": "双标猫咪表情包梗图",
  9711. "level": 22,
  9712. "relevance_score": 0.06966,
  9713. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"双标猫咪表情包梗图\"\n【评估对象】词条\"双标猫咪表情包梗图\" vs 作用域词条\"反映人类双标行为的猫咪表情包梗图\"\n【核心动机】寻找/查看\n【动机维度 0.00】原始问题和词条均无明确的动作意图,无法评估动机匹配度。\n【品类维度 0.90】核心主体“猫咪表情包梗图”和关键限定词“双标”完全匹配,仅缺少“反映人类行为”这一修饰性限定词,但其核心品类意图高度一致。\n【最终得分 0.27】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.27已≤0.5\n【加权系数计算】\n0.258\n 来源词总得分: 0.26\n 系数: 0.26【计算公式】base_score × 系数 = 0.27 × 0.26\n【最终得分(截断后)】0.07",
  9714. "strategy": "域内组合",
  9715. "iteration": 2,
  9716. "is_selected": true,
  9717. "type_label": "[修饰短语+中心名词]",
  9718. "source_words": [
  9719. [
  9720. "双标"
  9721. ],
  9722. [
  9723. "猫咪",
  9724. "表情包",
  9725. "梗图"
  9726. ]
  9727. ],
  9728. "from_segments": [
  9729. "反映人类双标行为的",
  9730. "猫咪表情包梗图"
  9731. ],
  9732. "domains": [
  9733. 2,
  9734. 3
  9735. ],
  9736. "domains_str": "D2,D3",
  9737. "source_word_details": [
  9738. {
  9739. "domain_index": 2,
  9740. "segment_type": "修饰短语",
  9741. "segment_text": "反映人类双标行为的",
  9742. "words": [
  9743. {
  9744. "text": "双标",
  9745. "score": 0.024
  9746. }
  9747. ]
  9748. },
  9749. {
  9750. "domain_index": 3,
  9751. "segment_type": "中心名词",
  9752. "segment_text": "猫咪表情包梗图",
  9753. "words": [
  9754. {
  9755. "text": "猫咪",
  9756. "score": 0.09
  9757. },
  9758. {
  9759. "text": "表情包",
  9760. "score": 0.15
  9761. },
  9762. {
  9763. "text": "梗图",
  9764. "score": 0.024
  9765. }
  9766. ]
  9767. }
  9768. ],
  9769. "source_scores": [
  9770. 0.024,
  9771. 0.09,
  9772. 0.15,
  9773. 0.024
  9774. ],
  9775. "is_above_sources": false,
  9776. "max_source_score": 0.15,
  9777. "scoreColor": "#ef4444"
  9778. },
  9779. "comb_行为猫咪_r2_65": {
  9780. "type": "domain_combination",
  9781. "query": "行为猫咪",
  9782. "level": 22,
  9783. "relevance_score": 0.0027359999999999997,
  9784. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"行为猫咪\"\n【评估对象】词条\"行为猫咪\" vs 作用域词条\"反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作/寻找\n【动机维度 0.00】原始问题意图是制作或寻找表情包梗图,而词条“行为猫咪”无明确动作意图,无法评估动作匹配度。\n【品类维度 0.08】原始问题是特定概念“反映人类双标行为的猫咪表情包梗图”,而词条“行为猫咪”是通用概念。词条仅包含原始问题中的部分主体词“行为”和“猫咪”,但缺失了所有限定词,且“行为猫咪”本身是一个泛化的概念,无法直接匹配原始问题的具体品类,因此品类匹配度低。\n【最终得分 0.02】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.02已≤0.5\n【加权系数计算】\n0.11399999999999999\n 来源词总得分: 0.11\n 系数: 0.11【计算公式】base_score × 系数 = 0.02 × 0.11\n【最终得分(截断后)】0.00",
  9785. "strategy": "域内组合",
  9786. "iteration": 2,
  9787. "is_selected": true,
  9788. "type_label": "[修饰短语+中心名词]",
  9789. "source_words": [
  9790. [
  9791. "行为"
  9792. ],
  9793. [
  9794. "猫咪"
  9795. ]
  9796. ],
  9797. "from_segments": [
  9798. "反映人类双标行为的",
  9799. "猫咪表情包梗图"
  9800. ],
  9801. "domains": [
  9802. 2,
  9803. 3
  9804. ],
  9805. "domains_str": "D2,D3",
  9806. "source_word_details": [
  9807. {
  9808. "domain_index": 2,
  9809. "segment_type": "修饰短语",
  9810. "segment_text": "反映人类双标行为的",
  9811. "words": [
  9812. {
  9813. "text": "行为",
  9814. "score": 0.024
  9815. }
  9816. ]
  9817. },
  9818. {
  9819. "domain_index": 3,
  9820. "segment_type": "中心名词",
  9821. "segment_text": "猫咪表情包梗图",
  9822. "words": [
  9823. {
  9824. "text": "猫咪",
  9825. "score": 0.09
  9826. }
  9827. ]
  9828. }
  9829. ],
  9830. "source_scores": [
  9831. 0.024,
  9832. 0.09
  9833. ],
  9834. "is_above_sources": false,
  9835. "max_source_score": 0.09,
  9836. "scoreColor": "#ef4444"
  9837. },
  9838. "comb_行为表情包_r2_66": {
  9839. "type": "domain_combination",
  9840. "query": "行为表情包",
  9841. "level": 22,
  9842. "relevance_score": 0.004176,
  9843. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"行为表情包\"\n【评估对象】词条\"行为表情包\" vs 作用域词条\"反映人类双标行为的猫咪表情包梗图\"\n【核心动机】寻找/获取\n【动机维度 0.00】原始问题是寻找/获取表情包梗图,而词条“行为表情包”本身没有明确的动作意图,无法评估动机匹配度。\n【品类维度 0.08】原始问题是特定概念“反映人类双标行为的猫咪表情包梗图”,sug词“行为表情包”是通用概念,虽然包含“行为”和“表情包”,但缺少了核心主体“猫咪”和限定词“双标行为”,属于主体词过度泛化或仅抽象相似,因此评分较低。\n【最终得分 0.02】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.02已≤0.5\n【加权系数计算】\n0.174\n 来源词总得分: 0.17\n 系数: 0.17【计算公式】base_score × 系数 = 0.02 × 0.17\n【最终得分(截断后)】0.00",
  9844. "strategy": "域内组合",
  9845. "iteration": 2,
  9846. "is_selected": true,
  9847. "type_label": "[修饰短语+中心名词]",
  9848. "source_words": [
  9849. [
  9850. "行为"
  9851. ],
  9852. [
  9853. "表情包"
  9854. ]
  9855. ],
  9856. "from_segments": [
  9857. "反映人类双标行为的",
  9858. "猫咪表情包梗图"
  9859. ],
  9860. "domains": [
  9861. 2,
  9862. 3
  9863. ],
  9864. "domains_str": "D2,D3",
  9865. "source_word_details": [
  9866. {
  9867. "domain_index": 2,
  9868. "segment_type": "修饰短语",
  9869. "segment_text": "反映人类双标行为的",
  9870. "words": [
  9871. {
  9872. "text": "行为",
  9873. "score": 0.024
  9874. }
  9875. ]
  9876. },
  9877. {
  9878. "domain_index": 3,
  9879. "segment_type": "中心名词",
  9880. "segment_text": "猫咪表情包梗图",
  9881. "words": [
  9882. {
  9883. "text": "表情包",
  9884. "score": 0.15
  9885. }
  9886. ]
  9887. }
  9888. ],
  9889. "source_scores": [
  9890. 0.024,
  9891. 0.15
  9892. ],
  9893. "is_above_sources": false,
  9894. "max_source_score": 0.15,
  9895. "scoreColor": "#ef4444"
  9896. },
  9897. "comb_行为梗图_r2_67": {
  9898. "type": "domain_combination",
  9899. "query": "行为梗图",
  9900. "level": 22,
  9901. "relevance_score": 0.001152,
  9902. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"行为梗图\"\n【评估对象】词条\"行为梗图\" vs 作用域词条\"反映人类双标行为的猫咪表情包梗图\"\n【核心动机】寻找/获取\n【动机维度 0.00】词条“行为梗图”无明确动作意图,无法评估动作匹配度。\n【品类维度 0.08】原始问题是特定概念“反映人类双标行为的猫咪表情包梗图”,sug词是通用概念“行为梗图”,通用概念不等于特定概念,因此品类不匹配。\n【最终得分 0.02】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.02已≤0.5\n【加权系数计算】\n0.048\n 来源词总得分: 0.05\n 系数: 0.05【计算公式】base_score × 系数 = 0.02 × 0.05\n【最终得分(截断后)】0.00",
  9903. "strategy": "域内组合",
  9904. "iteration": 2,
  9905. "is_selected": true,
  9906. "type_label": "[修饰短语+中心名词]",
  9907. "source_words": [
  9908. [
  9909. "行为"
  9910. ],
  9911. [
  9912. "梗图"
  9913. ]
  9914. ],
  9915. "from_segments": [
  9916. "反映人类双标行为的",
  9917. "猫咪表情包梗图"
  9918. ],
  9919. "domains": [
  9920. 2,
  9921. 3
  9922. ],
  9923. "domains_str": "D2,D3",
  9924. "source_word_details": [
  9925. {
  9926. "domain_index": 2,
  9927. "segment_type": "修饰短语",
  9928. "segment_text": "反映人类双标行为的",
  9929. "words": [
  9930. {
  9931. "text": "行为",
  9932. "score": 0.024
  9933. }
  9934. ]
  9935. },
  9936. {
  9937. "domain_index": 3,
  9938. "segment_type": "中心名词",
  9939. "segment_text": "猫咪表情包梗图",
  9940. "words": [
  9941. {
  9942. "text": "梗图",
  9943. "score": 0.024
  9944. }
  9945. ]
  9946. }
  9947. ],
  9948. "source_scores": [
  9949. 0.024,
  9950. 0.024
  9951. ],
  9952. "is_above_sources": false,
  9953. "max_source_score": 0.024,
  9954. "scoreColor": "#ef4444"
  9955. },
  9956. "comb_行为猫咪表情包_r2_68": {
  9957. "type": "domain_combination",
  9958. "query": "行为猫咪表情包",
  9959. "level": 22,
  9960. "relevance_score": 0.024632999999999995,
  9961. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"行为猫咪表情包\"\n【评估对象】词条\"行为猫咪表情包\" vs 作用域词条\"反映人类双标行为的猫咪表情包梗图\"\n【核心动机】寻找/获取\n【动机维度 0.00】原始问题和词条均无明确的动作意图,无法评估动机匹配度。\n【品类维度 0.35】核心主体'猫咪表情包'匹配,但限定词'双标行为'和'梗图'缺失,且'行为'作为限定词与原始问题中的'行为'语义身份不同,原始问题中'行为'是猫咪的动作,而词条中'行为'是修饰猫咪表情包的类型。\n【最终得分 0.10】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.10已≤0.5\n【加权系数计算】\n0.23459999999999998\n 来源词总得分: 0.23\n 系数: 0.23【计算公式】base_score × 系数 = 0.10 × 0.23\n【最终得分(截断后)】0.02",
  9962. "strategy": "域内组合",
  9963. "iteration": 2,
  9964. "is_selected": true,
  9965. "type_label": "[修饰短语+中心名词]",
  9966. "source_words": [
  9967. [
  9968. "行为"
  9969. ],
  9970. [
  9971. "猫咪",
  9972. "表情包"
  9973. ]
  9974. ],
  9975. "from_segments": [
  9976. "反映人类双标行为的",
  9977. "猫咪表情包梗图"
  9978. ],
  9979. "domains": [
  9980. 2,
  9981. 3
  9982. ],
  9983. "domains_str": "D2,D3",
  9984. "source_word_details": [
  9985. {
  9986. "domain_index": 2,
  9987. "segment_type": "修饰短语",
  9988. "segment_text": "反映人类双标行为的",
  9989. "words": [
  9990. {
  9991. "text": "行为",
  9992. "score": 0.024
  9993. }
  9994. ]
  9995. },
  9996. {
  9997. "domain_index": 3,
  9998. "segment_type": "中心名词",
  9999. "segment_text": "猫咪表情包梗图",
  10000. "words": [
  10001. {
  10002. "text": "猫咪",
  10003. "score": 0.09
  10004. },
  10005. {
  10006. "text": "表情包",
  10007. "score": 0.15
  10008. }
  10009. ]
  10010. }
  10011. ],
  10012. "source_scores": [
  10013. 0.024,
  10014. 0.09,
  10015. 0.15
  10016. ],
  10017. "is_above_sources": false,
  10018. "max_source_score": 0.15,
  10019. "scoreColor": "#ef4444"
  10020. },
  10021. "comb_行为猫咪梗图_r2_69": {
  10022. "type": "domain_combination",
  10023. "query": "行为猫咪梗图",
  10024. "level": 22,
  10025. "relevance_score": 0.05489639999999999,
  10026. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"行为猫咪梗图\"\n【评估对象】词条\"行为猫咪梗图\" vs 作用域词条\"反映人类双标行为的猫咪表情包梗图\"\n【核心动机】寻找/查看\n【动机维度 0.00】原始问题和词条均无明确的动作意图,无法评估动机匹配度。\n【品类维度 0.78】核心主体'猫咪梗图'匹配,限定词'行为'部分匹配了原始问题中的'双标行为',但缺失了'双标'和'表情包'的限定。\n【最终得分 0.23】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.23已≤0.5\n【加权系数计算】\n0.23459999999999998\n 来源词总得分: 0.23\n 系数: 0.23【计算公式】base_score × 系数 = 0.23 × 0.23\n【最终得分(截断后)】0.05",
  10027. "strategy": "域内组合",
  10028. "iteration": 2,
  10029. "is_selected": true,
  10030. "type_label": "[修饰短语+中心名词]",
  10031. "source_words": [
  10032. [
  10033. "行为"
  10034. ],
  10035. [
  10036. "猫咪",
  10037. "梗图"
  10038. ]
  10039. ],
  10040. "from_segments": [
  10041. "反映人类双标行为的",
  10042. "猫咪表情包梗图"
  10043. ],
  10044. "domains": [
  10045. 2,
  10046. 3
  10047. ],
  10048. "domains_str": "D2,D3",
  10049. "source_word_details": [
  10050. {
  10051. "domain_index": 2,
  10052. "segment_type": "修饰短语",
  10053. "segment_text": "反映人类双标行为的",
  10054. "words": [
  10055. {
  10056. "text": "行为",
  10057. "score": 0.024
  10058. }
  10059. ]
  10060. },
  10061. {
  10062. "domain_index": 3,
  10063. "segment_type": "中心名词",
  10064. "segment_text": "猫咪表情包梗图",
  10065. "words": [
  10066. {
  10067. "text": "猫咪",
  10068. "score": 0.09
  10069. },
  10070. {
  10071. "text": "梗图",
  10072. "score": 0.024
  10073. }
  10074. ]
  10075. }
  10076. ],
  10077. "source_scores": [
  10078. 0.024,
  10079. 0.09,
  10080. 0.024
  10081. ],
  10082. "is_above_sources": false,
  10083. "max_source_score": 0.09,
  10084. "scoreColor": "#ef4444"
  10085. },
  10086. "comb_行为表情包梗图_r2_70": {
  10087. "type": "domain_combination",
  10088. "query": "行为表情包梗图",
  10089. "level": 22,
  10090. "relevance_score": 0.032917499999999995,
  10091. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"行为表情包梗图\"\n【评估对象】词条\"行为表情包梗图\" vs 作用域词条\"反映人类双标行为的猫咪表情包梗图\"\n【核心动机】寻找/获取\n【动机维度 0.00】原始问题和词条均无明确的动作意图,无法评估动机匹配度。\n【品类维度 0.55】核心主体'表情包梗图'匹配,限定词'行为'部分匹配了原始问题中的'双标行为',但缺失了'人类'和'猫咪'这两个关键限定词,导致匹配度中等偏上。\n【最终得分 0.17】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.17已≤0.5\n【加权系数计算】\n0.19949999999999998\n 来源词总得分: 0.20\n 系数: 0.20【计算公式】base_score × 系数 = 0.17 × 0.20\n【最终得分(截断后)】0.03",
  10092. "strategy": "域内组合",
  10093. "iteration": 2,
  10094. "is_selected": true,
  10095. "type_label": "[修饰短语+中心名词]",
  10096. "source_words": [
  10097. [
  10098. "行为"
  10099. ],
  10100. [
  10101. "表情包",
  10102. "梗图"
  10103. ]
  10104. ],
  10105. "from_segments": [
  10106. "反映人类双标行为的",
  10107. "猫咪表情包梗图"
  10108. ],
  10109. "domains": [
  10110. 2,
  10111. 3
  10112. ],
  10113. "domains_str": "D2,D3",
  10114. "source_word_details": [
  10115. {
  10116. "domain_index": 2,
  10117. "segment_type": "修饰短语",
  10118. "segment_text": "反映人类双标行为的",
  10119. "words": [
  10120. {
  10121. "text": "行为",
  10122. "score": 0.024
  10123. }
  10124. ]
  10125. },
  10126. {
  10127. "domain_index": 3,
  10128. "segment_type": "中心名词",
  10129. "segment_text": "猫咪表情包梗图",
  10130. "words": [
  10131. {
  10132. "text": "表情包",
  10133. "score": 0.15
  10134. },
  10135. {
  10136. "text": "梗图",
  10137. "score": 0.024
  10138. }
  10139. ]
  10140. }
  10141. ],
  10142. "source_scores": [
  10143. 0.024,
  10144. 0.15,
  10145. 0.024
  10146. ],
  10147. "is_above_sources": false,
  10148. "max_source_score": 0.15,
  10149. "scoreColor": "#ef4444"
  10150. },
  10151. "comb_行为猫咪表情包梗图_r2_71": {
  10152. "type": "domain_combination",
  10153. "query": "行为猫咪表情包梗图",
  10154. "level": 22,
  10155. "relevance_score": 0.05805,
  10156. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"行为猫咪表情包梗图\"\n【评估对象】词条\"行为猫咪表情包梗图\" vs 作用域词条\"反映人类双标行为的猫咪表情包梗图\"\n【核心动机】寻找/查看\n【动机维度 0.00】原始问题和词条均无明确的动作意图,无法评估动机匹配度。\n【品类维度 0.75】核心主体“猫咪表情包梗图”匹配,限定词“行为”匹配“双标行为”中的“行为”,但缺失“双标”这一关键限定词。\n【最终得分 0.22】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.22已≤0.5\n【加权系数计算】\n0.258\n 来源词总得分: 0.26\n 系数: 0.26【计算公式】base_score × 系数 = 0.22 × 0.26\n【最终得分(截断后)】0.06",
  10157. "strategy": "域内组合",
  10158. "iteration": 2,
  10159. "is_selected": true,
  10160. "type_label": "[修饰短语+中心名词]",
  10161. "source_words": [
  10162. [
  10163. "行为"
  10164. ],
  10165. [
  10166. "猫咪",
  10167. "表情包",
  10168. "梗图"
  10169. ]
  10170. ],
  10171. "from_segments": [
  10172. "反映人类双标行为的",
  10173. "猫咪表情包梗图"
  10174. ],
  10175. "domains": [
  10176. 2,
  10177. 3
  10178. ],
  10179. "domains_str": "D2,D3",
  10180. "source_word_details": [
  10181. {
  10182. "domain_index": 2,
  10183. "segment_type": "修饰短语",
  10184. "segment_text": "反映人类双标行为的",
  10185. "words": [
  10186. {
  10187. "text": "行为",
  10188. "score": 0.024
  10189. }
  10190. ]
  10191. },
  10192. {
  10193. "domain_index": 3,
  10194. "segment_type": "中心名词",
  10195. "segment_text": "猫咪表情包梗图",
  10196. "words": [
  10197. {
  10198. "text": "猫咪",
  10199. "score": 0.09
  10200. },
  10201. {
  10202. "text": "表情包",
  10203. "score": 0.15
  10204. },
  10205. {
  10206. "text": "梗图",
  10207. "score": 0.024
  10208. }
  10209. ]
  10210. }
  10211. ],
  10212. "source_scores": [
  10213. 0.024,
  10214. 0.09,
  10215. 0.15,
  10216. 0.024
  10217. ],
  10218. "is_above_sources": false,
  10219. "max_source_score": 0.15,
  10220. "scoreColor": "#ef4444"
  10221. },
  10222. "comb_反映人类猫咪_r2_72": {
  10223. "type": "domain_combination",
  10224. "query": "反映人类猫咪",
  10225. "level": 22,
  10226. "relevance_score": 0.014418,
  10227. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"反映人类猫咪\"\n【评估对象】词条\"反映人类猫咪\" vs 作用域词条\"反映人类双标行为的猫咪表情包梗图\"\n【核心动机】寻找/查看\n【动机维度 0.00】原始问题是寻找/查看表情包梗图,而词条无明确的动作意图,无法评估动作匹配度。\n【品类维度 0.30】词条“反映人类猫咪”与同一作用域词条“反映人类双标行为的猫咪表情包梗图”在核心主体“反映人类”和“猫咪”上有所匹配,但缺失了“双标行为”、“表情包”、“梗图”等关键限定词,导致品类匹配度较低。\n【最终得分 0.09】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.09已≤0.5\n【加权系数计算】\n0.1602\n 来源词总得分: 0.16\n 系数: 0.16【计算公式】base_score × 系数 = 0.09 × 0.16\n【最终得分(截断后)】0.01",
  10228. "strategy": "域内组合",
  10229. "iteration": 2,
  10230. "is_selected": true,
  10231. "type_label": "[修饰短语+中心名词]",
  10232. "source_words": [
  10233. [
  10234. "反映",
  10235. "人类"
  10236. ],
  10237. [
  10238. "猫咪"
  10239. ]
  10240. ],
  10241. "from_segments": [
  10242. "反映人类双标行为的",
  10243. "猫咪表情包梗图"
  10244. ],
  10245. "domains": [
  10246. 2,
  10247. 3
  10248. ],
  10249. "domains_str": "D2,D3",
  10250. "source_word_details": [
  10251. {
  10252. "domain_index": 2,
  10253. "segment_type": "修饰短语",
  10254. "segment_text": "反映人类双标行为的",
  10255. "words": [
  10256. {
  10257. "text": "反映",
  10258. "score": 0.024
  10259. },
  10260. {
  10261. "text": "人类",
  10262. "score": 0.024
  10263. }
  10264. ]
  10265. },
  10266. {
  10267. "domain_index": 3,
  10268. "segment_type": "中心名词",
  10269. "segment_text": "猫咪表情包梗图",
  10270. "words": [
  10271. {
  10272. "text": "猫咪",
  10273. "score": 0.09
  10274. }
  10275. ]
  10276. }
  10277. ],
  10278. "source_scores": [
  10279. 0.024,
  10280. 0.024,
  10281. 0.09
  10282. ],
  10283. "is_above_sources": false,
  10284. "max_source_score": 0.09,
  10285. "scoreColor": "#ef4444"
  10286. },
  10287. "comb_反映人类表情包_r2_73": {
  10288. "type": "domain_combination",
  10289. "query": "反映人类表情包",
  10290. "level": 22,
  10291. "relevance_score": 0.023121,
  10292. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"反映人类表情包\"\n【评估对象】词条\"反映人类表情包\" vs 作用域词条\"反映人类双标行为的猫咪表情包梗图\"\n【核心动机】寻找/获取\n【动机维度 0.00】原始问题是寻找/获取表情包,而词条“反映人类表情包”没有明确的动作意图,无法评估动作匹配度。\n【品类维度 0.35】核心主体'表情包'匹配,但限定词'人类双标行为'和'猫咪'缺失,且词条'反映人类表情包'的语义身份与原始问题中'反映人类双标行为的猫咪表情包梗图'的语义身份不同,原始问题中'人类'是行为者,词条中'人类'是表情包的限定词。\n【最终得分 0.10】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.10已≤0.5\n【加权系数计算】\n0.2202\n 来源词总得分: 0.22\n 系数: 0.22【计算公式】base_score × 系数 = 0.10 × 0.22\n【最终得分(截断后)】0.02",
  10293. "strategy": "域内组合",
  10294. "iteration": 2,
  10295. "is_selected": true,
  10296. "type_label": "[修饰短语+中心名词]",
  10297. "source_words": [
  10298. [
  10299. "反映",
  10300. "人类"
  10301. ],
  10302. [
  10303. "表情包"
  10304. ]
  10305. ],
  10306. "from_segments": [
  10307. "反映人类双标行为的",
  10308. "猫咪表情包梗图"
  10309. ],
  10310. "domains": [
  10311. 2,
  10312. 3
  10313. ],
  10314. "domains_str": "D2,D3",
  10315. "source_word_details": [
  10316. {
  10317. "domain_index": 2,
  10318. "segment_type": "修饰短语",
  10319. "segment_text": "反映人类双标行为的",
  10320. "words": [
  10321. {
  10322. "text": "反映",
  10323. "score": 0.024
  10324. },
  10325. {
  10326. "text": "人类",
  10327. "score": 0.024
  10328. }
  10329. ]
  10330. },
  10331. {
  10332. "domain_index": 3,
  10333. "segment_type": "中心名词",
  10334. "segment_text": "猫咪表情包梗图",
  10335. "words": [
  10336. {
  10337. "text": "表情包",
  10338. "score": 0.15
  10339. }
  10340. ]
  10341. }
  10342. ],
  10343. "source_scores": [
  10344. 0.024,
  10345. 0.024,
  10346. 0.15
  10347. ],
  10348. "is_above_sources": false,
  10349. "max_source_score": 0.15,
  10350. "scoreColor": "#ef4444"
  10351. },
  10352. "comb_反映人类梗图_r2_74": {
  10353. "type": "domain_combination",
  10354. "query": "反映人类梗图",
  10355. "level": 22,
  10356. "relevance_score": 0.009891,
  10357. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"反映人类梗图\"\n【评估对象】词条\"反映人类梗图\" vs 作用域词条\"反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作/寻找/理解\n【动机维度 0.00】原始问题和词条均无明确的动作意图,无法评估动机匹配度。\n【品类维度 0.35】核心主体'梗图'匹配,限定词'反映人类'匹配,但缺失了'双标行为'和'猫咪表情包'这两个重要的限定词,导致匹配度中等偏低。\n【最终得分 0.10】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.10已≤0.5\n【加权系数计算】\n0.0942\n 来源词总得分: 0.09\n 系数: 0.09【计算公式】base_score × 系数 = 0.10 × 0.09\n【最终得分(截断后)】0.01",
  10358. "strategy": "域内组合",
  10359. "iteration": 2,
  10360. "is_selected": true,
  10361. "type_label": "[修饰短语+中心名词]",
  10362. "source_words": [
  10363. [
  10364. "反映",
  10365. "人类"
  10366. ],
  10367. [
  10368. "梗图"
  10369. ]
  10370. ],
  10371. "from_segments": [
  10372. "反映人类双标行为的",
  10373. "猫咪表情包梗图"
  10374. ],
  10375. "domains": [
  10376. 2,
  10377. 3
  10378. ],
  10379. "domains_str": "D2,D3",
  10380. "source_word_details": [
  10381. {
  10382. "domain_index": 2,
  10383. "segment_type": "修饰短语",
  10384. "segment_text": "反映人类双标行为的",
  10385. "words": [
  10386. {
  10387. "text": "反映",
  10388. "score": 0.024
  10389. },
  10390. {
  10391. "text": "人类",
  10392. "score": 0.024
  10393. }
  10394. ]
  10395. },
  10396. {
  10397. "domain_index": 3,
  10398. "segment_type": "中心名词",
  10399. "segment_text": "猫咪表情包梗图",
  10400. "words": [
  10401. {
  10402. "text": "梗图",
  10403. "score": 0.024
  10404. }
  10405. ]
  10406. }
  10407. ],
  10408. "source_scores": [
  10409. 0.024,
  10410. 0.024,
  10411. 0.024
  10412. ],
  10413. "is_above_sources": false,
  10414. "max_source_score": 0.024,
  10415. "scoreColor": "#ef4444"
  10416. },
  10417. "comb_反映人类猫咪表情包_r2_75": {
  10418. "type": "domain_combination",
  10419. "query": "反映人类猫咪表情包",
  10420. "level": 22,
  10421. "relevance_score": 0.025272,
  10422. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"反映人类猫咪表情包\"\n【评估对象】词条\"反映人类猫咪表情包\" vs 作用域词条\"反映人类双标行为的猫咪表情包梗图\"\n【核心动机】寻找/查看\n【动机维度 0.00】原始问题和词条均无明确的动作意图,无法评估动机匹配度。\n【品类维度 0.30】核心主体'猫咪表情包'匹配,但限定词'反映人类双标行为'完全缺失,且'反映人类'这个限定词在词条中被泛化,导致语义身份发生变化。\n【最终得分 0.09】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.09已≤0.5\n【加权系数计算】\n0.2808\n 来源词总得分: 0.28\n 系数: 0.28【计算公式】base_score × 系数 = 0.09 × 0.28\n【最终得分(截断后)】0.03",
  10423. "strategy": "域内组合",
  10424. "iteration": 2,
  10425. "is_selected": true,
  10426. "type_label": "[修饰短语+中心名词]",
  10427. "source_words": [
  10428. [
  10429. "反映",
  10430. "人类"
  10431. ],
  10432. [
  10433. "猫咪",
  10434. "表情包"
  10435. ]
  10436. ],
  10437. "from_segments": [
  10438. "反映人类双标行为的",
  10439. "猫咪表情包梗图"
  10440. ],
  10441. "domains": [
  10442. 2,
  10443. 3
  10444. ],
  10445. "domains_str": "D2,D3",
  10446. "source_word_details": [
  10447. {
  10448. "domain_index": 2,
  10449. "segment_type": "修饰短语",
  10450. "segment_text": "反映人类双标行为的",
  10451. "words": [
  10452. {
  10453. "text": "反映",
  10454. "score": 0.024
  10455. },
  10456. {
  10457. "text": "人类",
  10458. "score": 0.024
  10459. }
  10460. ]
  10461. },
  10462. {
  10463. "domain_index": 3,
  10464. "segment_type": "中心名词",
  10465. "segment_text": "猫咪表情包梗图",
  10466. "words": [
  10467. {
  10468. "text": "猫咪",
  10469. "score": 0.09
  10470. },
  10471. {
  10472. "text": "表情包",
  10473. "score": 0.15
  10474. }
  10475. ]
  10476. }
  10477. ],
  10478. "source_scores": [
  10479. 0.024,
  10480. 0.024,
  10481. 0.09,
  10482. 0.15
  10483. ],
  10484. "is_above_sources": false,
  10485. "max_source_score": 0.15,
  10486. "scoreColor": "#ef4444"
  10487. },
  10488. "comb_反映人类猫咪梗图_r2_76": {
  10489. "type": "domain_combination",
  10490. "query": "反映人类猫咪梗图",
  10491. "level": 22,
  10492. "relevance_score": 0.058968,
  10493. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"反映人类猫咪梗图\"\n【评估对象】词条\"反映人类猫咪梗图\" vs 作用域词条\"反映人类双标行为的猫咪表情包梗图\"\n【核心动机】寻找/查看\n【动机维度 0.00】原始问题和词条均无明确的动作意图,无法评估动机匹配度。\n【品类维度 0.70】核心主体'人类猫咪梗图'匹配,但限定词'双标行为'和'表情包'缺失,导致匹配度下降。\n【最终得分 0.21】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.21已≤0.5\n【加权系数计算】\n0.2808\n 来源词总得分: 0.28\n 系数: 0.28【计算公式】base_score × 系数 = 0.21 × 0.28\n【最终得分(截断后)】0.06",
  10494. "strategy": "域内组合",
  10495. "iteration": 2,
  10496. "is_selected": true,
  10497. "type_label": "[修饰短语+中心名词]",
  10498. "source_words": [
  10499. [
  10500. "反映",
  10501. "人类"
  10502. ],
  10503. [
  10504. "猫咪",
  10505. "梗图"
  10506. ]
  10507. ],
  10508. "from_segments": [
  10509. "反映人类双标行为的",
  10510. "猫咪表情包梗图"
  10511. ],
  10512. "domains": [
  10513. 2,
  10514. 3
  10515. ],
  10516. "domains_str": "D2,D3",
  10517. "source_word_details": [
  10518. {
  10519. "domain_index": 2,
  10520. "segment_type": "修饰短语",
  10521. "segment_text": "反映人类双标行为的",
  10522. "words": [
  10523. {
  10524. "text": "反映",
  10525. "score": 0.024
  10526. },
  10527. {
  10528. "text": "人类",
  10529. "score": 0.024
  10530. }
  10531. ]
  10532. },
  10533. {
  10534. "domain_index": 3,
  10535. "segment_type": "中心名词",
  10536. "segment_text": "猫咪表情包梗图",
  10537. "words": [
  10538. {
  10539. "text": "猫咪",
  10540. "score": 0.09
  10541. },
  10542. {
  10543. "text": "梗图",
  10544. "score": 0.024
  10545. }
  10546. ]
  10547. }
  10548. ],
  10549. "source_scores": [
  10550. 0.024,
  10551. 0.024,
  10552. 0.09,
  10553. 0.024
  10554. ],
  10555. "is_above_sources": false,
  10556. "max_source_score": 0.09,
  10557. "scoreColor": "#ef4444"
  10558. },
  10559. "comb_反映人类表情包梗图_r2_77": {
  10560. "type": "domain_combination",
  10561. "query": "反映人类表情包梗图",
  10562. "level": 22,
  10563. "relevance_score": 0.05528249999999999,
  10564. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"反映人类表情包梗图\"\n【评估对象】词条\"反映人类表情包梗图\" vs 作用域词条\"反映人类双标行为的猫咪表情包梗图\"\n【核心动机】寻找/查看\n【动机维度 0.00】原始问题和词条均无明确的动作意图,无法评估动机匹配度。\n【品类维度 0.75】核心主体“表情包梗图”匹配,限定词“反映人类”匹配,但缺失了“双标行为”和“猫咪”这两个限定词,属于核心主体匹配,存在部分限定词匹配的情况。\n【最终得分 0.22】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.22已≤0.5\n【加权系数计算】\n0.24569999999999997\n 来源词总得分: 0.25\n 系数: 0.25【计算公式】base_score × 系数 = 0.22 × 0.25\n【最终得分(截断后)】0.06",
  10565. "strategy": "域内组合",
  10566. "iteration": 2,
  10567. "is_selected": true,
  10568. "type_label": "[修饰短语+中心名词]",
  10569. "source_words": [
  10570. [
  10571. "反映",
  10572. "人类"
  10573. ],
  10574. [
  10575. "表情包",
  10576. "梗图"
  10577. ]
  10578. ],
  10579. "from_segments": [
  10580. "反映人类双标行为的",
  10581. "猫咪表情包梗图"
  10582. ],
  10583. "domains": [
  10584. 2,
  10585. 3
  10586. ],
  10587. "domains_str": "D2,D3",
  10588. "source_word_details": [
  10589. {
  10590. "domain_index": 2,
  10591. "segment_type": "修饰短语",
  10592. "segment_text": "反映人类双标行为的",
  10593. "words": [
  10594. {
  10595. "text": "反映",
  10596. "score": 0.024
  10597. },
  10598. {
  10599. "text": "人类",
  10600. "score": 0.024
  10601. }
  10602. ]
  10603. },
  10604. {
  10605. "domain_index": 3,
  10606. "segment_type": "中心名词",
  10607. "segment_text": "猫咪表情包梗图",
  10608. "words": [
  10609. {
  10610. "text": "表情包",
  10611. "score": 0.15
  10612. },
  10613. {
  10614. "text": "梗图",
  10615. "score": 0.024
  10616. }
  10617. ]
  10618. }
  10619. ],
  10620. "source_scores": [
  10621. 0.024,
  10622. 0.024,
  10623. 0.15,
  10624. 0.024
  10625. ],
  10626. "is_above_sources": false,
  10627. "max_source_score": 0.15,
  10628. "scoreColor": "#ef4444"
  10629. },
  10630. "comb_反映人类猫咪表情包梗图_r2_78": {
  10631. "type": "domain_combination",
  10632. "query": "反映人类猫咪表情包梗图",
  10633. "level": 22,
  10634. "relevance_score": 0.06844499999999999,
  10635. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"反映人类猫咪表情包梗图\"\n【评估对象】词条\"反映人类猫咪表情包梗图\" vs 作用域词条\"反映人类双标行为的猫咪表情包梗图\"\n【核心动机】无明确动作意图\n【动机维度 0.00】原始问题和词条均无明确的动作意图,无法评估动机匹配度。\n【品类维度 0.75】核心主体“人类猫咪表情包梗图”匹配,但限定词“双标行为”缺失,属于核心主体匹配但限定词不完全匹配的情况。\n【最终得分 0.22】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.22已≤0.5\n【加权系数计算】\n0.30419999999999997\n 来源词总得分: 0.30\n 系数: 0.30【计算公式】base_score × 系数 = 0.22 × 0.30\n【最终得分(截断后)】0.07",
  10636. "strategy": "域内组合",
  10637. "iteration": 2,
  10638. "is_selected": true,
  10639. "type_label": "[修饰短语+中心名词]",
  10640. "source_words": [
  10641. [
  10642. "反映",
  10643. "人类"
  10644. ],
  10645. [
  10646. "猫咪",
  10647. "表情包",
  10648. "梗图"
  10649. ]
  10650. ],
  10651. "from_segments": [
  10652. "反映人类双标行为的",
  10653. "猫咪表情包梗图"
  10654. ],
  10655. "domains": [
  10656. 2,
  10657. 3
  10658. ],
  10659. "domains_str": "D2,D3",
  10660. "source_word_details": [
  10661. {
  10662. "domain_index": 2,
  10663. "segment_type": "修饰短语",
  10664. "segment_text": "反映人类双标行为的",
  10665. "words": [
  10666. {
  10667. "text": "反映",
  10668. "score": 0.024
  10669. },
  10670. {
  10671. "text": "人类",
  10672. "score": 0.024
  10673. }
  10674. ]
  10675. },
  10676. {
  10677. "domain_index": 3,
  10678. "segment_type": "中心名词",
  10679. "segment_text": "猫咪表情包梗图",
  10680. "words": [
  10681. {
  10682. "text": "猫咪",
  10683. "score": 0.09
  10684. },
  10685. {
  10686. "text": "表情包",
  10687. "score": 0.15
  10688. },
  10689. {
  10690. "text": "梗图",
  10691. "score": 0.024
  10692. }
  10693. ]
  10694. }
  10695. ],
  10696. "source_scores": [
  10697. 0.024,
  10698. 0.024,
  10699. 0.09,
  10700. 0.15,
  10701. 0.024
  10702. ],
  10703. "is_above_sources": false,
  10704. "max_source_score": 0.15,
  10705. "scoreColor": "#ef4444"
  10706. },
  10707. "comb_反映双标猫咪_r2_79": {
  10708. "type": "domain_combination",
  10709. "query": "反映双标猫咪",
  10710. "level": 22,
  10711. "relevance_score": 0.040013999999999994,
  10712. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"反映双标猫咪\"\n【评估对象】词条\"反映双标猫咪\" vs 作用域词条\"反映人类双标行为的猫咪表情包梗图\"\n【核心动机】原始问题无明确动作意图,主要描述一个主题或内容\n【动机维度 0.00】原始问题和词条均无明确的动作意图,无法评估动机匹配度。\n【品类维度 0.78】核心主体'双标猫咪'匹配,但缺失了限定词'表情包梗图',属于核心主体匹配但限定词不完全匹配的情况。\n【最终得分 0.23】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.23已≤0.5\n【加权系数计算】\n0.17099999999999999\n 来源词总得分: 0.17\n 系数: 0.17【计算公式】base_score × 系数 = 0.23 × 0.17\n【最终得分(截断后)】0.04",
  10713. "strategy": "域内组合",
  10714. "iteration": 2,
  10715. "is_selected": true,
  10716. "type_label": "[修饰短语+中心名词]",
  10717. "source_words": [
  10718. [
  10719. "反映",
  10720. "双标"
  10721. ],
  10722. [
  10723. "猫咪"
  10724. ]
  10725. ],
  10726. "from_segments": [
  10727. "反映人类双标行为的",
  10728. "猫咪表情包梗图"
  10729. ],
  10730. "domains": [
  10731. 2,
  10732. 3
  10733. ],
  10734. "domains_str": "D2,D3",
  10735. "source_word_details": [
  10736. {
  10737. "domain_index": 2,
  10738. "segment_type": "修饰短语",
  10739. "segment_text": "反映人类双标行为的",
  10740. "words": [
  10741. {
  10742. "text": "反映",
  10743. "score": 0.024
  10744. },
  10745. {
  10746. "text": "双标",
  10747. "score": 0.024
  10748. }
  10749. ]
  10750. },
  10751. {
  10752. "domain_index": 3,
  10753. "segment_type": "中心名词",
  10754. "segment_text": "猫咪表情包梗图",
  10755. "words": [
  10756. {
  10757. "text": "猫咪",
  10758. "score": 0.09
  10759. }
  10760. ]
  10761. }
  10762. ],
  10763. "source_scores": [
  10764. 0.024,
  10765. 0.024,
  10766. 0.09
  10767. ],
  10768. "is_above_sources": false,
  10769. "max_source_score": 0.09,
  10770. "scoreColor": "#ef4444"
  10771. },
  10772. "comb_反映双标表情包_r2_80": {
  10773. "type": "domain_combination",
  10774. "query": "反映双标表情包",
  10775. "level": 22,
  10776. "relevance_score": 0.05405399999999999,
  10777. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"反映双标表情包\"\n【评估对象】词条\"反映双标表情包\" vs 作用域词条\"反映人类双标行为的猫咪表情包梗图\"\n【核心动机】制作/寻找/理解\n【动机维度 0.00】原始问题和词条均无明确的动作意图,无法评估动机匹配度。\n【品类维度 0.78】核心主体“双标表情包”匹配,但缺失了限定词“人类行为”和“猫咪”\n【最终得分 0.23】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.23已≤0.5\n【加权系数计算】\n0.23099999999999998\n 来源词总得分: 0.23\n 系数: 0.23【计算公式】base_score × 系数 = 0.23 × 0.23\n【最终得分(截断后)】0.05",
  10778. "strategy": "域内组合",
  10779. "iteration": 2,
  10780. "is_selected": true,
  10781. "type_label": "[修饰短语+中心名词]",
  10782. "source_words": [
  10783. [
  10784. "反映",
  10785. "双标"
  10786. ],
  10787. [
  10788. "表情包"
  10789. ]
  10790. ],
  10791. "from_segments": [
  10792. "反映人类双标行为的",
  10793. "猫咪表情包梗图"
  10794. ],
  10795. "domains": [
  10796. 2,
  10797. 3
  10798. ],
  10799. "domains_str": "D2,D3",
  10800. "source_word_details": [
  10801. {
  10802. "domain_index": 2,
  10803. "segment_type": "修饰短语",
  10804. "segment_text": "反映人类双标行为的",
  10805. "words": [
  10806. {
  10807. "text": "反映",
  10808. "score": 0.024
  10809. },
  10810. {
  10811. "text": "双标",
  10812. "score": 0.024
  10813. }
  10814. ]
  10815. },
  10816. {
  10817. "domain_index": 3,
  10818. "segment_type": "中心名词",
  10819. "segment_text": "猫咪表情包梗图",
  10820. "words": [
  10821. {
  10822. "text": "表情包",
  10823. "score": 0.15
  10824. }
  10825. ]
  10826. }
  10827. ],
  10828. "source_scores": [
  10829. 0.024,
  10830. 0.024,
  10831. 0.15
  10832. ],
  10833. "is_above_sources": false,
  10834. "max_source_score": 0.15,
  10835. "scoreColor": "#ef4444"
  10836. },
  10837. "comb_反映双标梗图_r2_81": {
  10838. "type": "domain_combination",
  10839. "query": "反映双标梗图",
  10840. "level": 22,
  10841. "relevance_score": 0.02457,
  10842. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"反映双标梗图\"\n【评估对象】词条\"反映双标梗图\" vs 作用域词条\"反映人类双标行为的猫咪表情包梗图\"\n【核心动机】寻找/查看\n【动机维度 0.00】原始问题和词条均无明确的动作意图,无法评估动机匹配度。\n【品类维度 0.78】核心主体'双标梗图'匹配,但缺失了限定词'人类行为'和'猫咪表情包',属于核心主体匹配,存在限定词匹配的情况。\n【最终得分 0.23】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.23已≤0.5\n【加权系数计算】\n0.10500000000000001\n 来源词总得分: 0.11\n 系数: 0.11【计算公式】base_score × 系数 = 0.23 × 0.11\n【最终得分(截断后)】0.02",
  10843. "strategy": "域内组合",
  10844. "iteration": 2,
  10845. "is_selected": true,
  10846. "type_label": "[修饰短语+中心名词]",
  10847. "source_words": [
  10848. [
  10849. "反映",
  10850. "双标"
  10851. ],
  10852. [
  10853. "梗图"
  10854. ]
  10855. ],
  10856. "from_segments": [
  10857. "反映人类双标行为的",
  10858. "猫咪表情包梗图"
  10859. ],
  10860. "domains": [
  10861. 2,
  10862. 3
  10863. ],
  10864. "domains_str": "D2,D3",
  10865. "source_word_details": [
  10866. {
  10867. "domain_index": 2,
  10868. "segment_type": "修饰短语",
  10869. "segment_text": "反映人类双标行为的",
  10870. "words": [
  10871. {
  10872. "text": "反映",
  10873. "score": 0.024
  10874. },
  10875. {
  10876. "text": "双标",
  10877. "score": 0.024
  10878. }
  10879. ]
  10880. },
  10881. {
  10882. "domain_index": 3,
  10883. "segment_type": "中心名词",
  10884. "segment_text": "猫咪表情包梗图",
  10885. "words": [
  10886. {
  10887. "text": "梗图",
  10888. "score": 0.024
  10889. }
  10890. ]
  10891. }
  10892. ],
  10893. "source_scores": [
  10894. 0.024,
  10895. 0.024,
  10896. 0.024
  10897. ],
  10898. "is_above_sources": true,
  10899. "max_source_score": 0.024,
  10900. "scoreColor": "#22c55e"
  10901. },
  10902. "comb_反映双标猫咪表情包_r2_82": {
  10903. "type": "domain_combination",
  10904. "query": "反映双标猫咪表情包",
  10905. "level": 22,
  10906. "relevance_score": 0.074358,
  10907. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"反映双标猫咪表情包\"\n【评估对象】词条\"反映双标猫咪表情包\" vs 作用域词条\"反映人类双标行为的猫咪表情包梗图\"\n【核心动机】寻找/获取\n【动机维度 0.00】原始问题和词条均无明确的动作意图,无法评估动机匹配度。\n【品类维度 0.85】核心主体“双标猫咪表情包”匹配,限定词“反映”匹配,但缺失了“人类行为”和“梗图”这两个限定词,因此给予较高但非满分评分。\n【最终得分 0.26】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.26已≤0.5\n【加权系数计算】\n0.29159999999999997\n 来源词总得分: 0.29\n 系数: 0.29【计算公式】base_score × 系数 = 0.26 × 0.29\n【最终得分(截断后)】0.07",
  10908. "strategy": "域内组合",
  10909. "iteration": 2,
  10910. "is_selected": true,
  10911. "type_label": "[修饰短语+中心名词]",
  10912. "source_words": [
  10913. [
  10914. "反映",
  10915. "双标"
  10916. ],
  10917. [
  10918. "猫咪",
  10919. "表情包"
  10920. ]
  10921. ],
  10922. "from_segments": [
  10923. "反映人类双标行为的",
  10924. "猫咪表情包梗图"
  10925. ],
  10926. "domains": [
  10927. 2,
  10928. 3
  10929. ],
  10930. "domains_str": "D2,D3",
  10931. "source_word_details": [
  10932. {
  10933. "domain_index": 2,
  10934. "segment_type": "修饰短语",
  10935. "segment_text": "反映人类双标行为的",
  10936. "words": [
  10937. {
  10938. "text": "反映",
  10939. "score": 0.024
  10940. },
  10941. {
  10942. "text": "双标",
  10943. "score": 0.024
  10944. }
  10945. ]
  10946. },
  10947. {
  10948. "domain_index": 3,
  10949. "segment_type": "中心名词",
  10950. "segment_text": "猫咪表情包梗图",
  10951. "words": [
  10952. {
  10953. "text": "猫咪",
  10954. "score": 0.09
  10955. },
  10956. {
  10957. "text": "表情包",
  10958. "score": 0.15
  10959. }
  10960. ]
  10961. }
  10962. ],
  10963. "source_scores": [
  10964. 0.024,
  10965. 0.024,
  10966. 0.09,
  10967. 0.15
  10968. ],
  10969. "is_above_sources": false,
  10970. "max_source_score": 0.15,
  10971. "scoreColor": "#ef4444"
  10972. },
  10973. "comb_反映双标猫咪梗图_r2_83": {
  10974. "type": "domain_combination",
  10975. "query": "反映双标猫咪梗图",
  10976. "level": 22,
  10977. "relevance_score": 0.27439559999999996,
  10978. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"反映双标猫咪梗图\"\n【评估对象】词条\"反映双标猫咪梗图\" vs 作用域词条\"反映人类双标行为的猫咪表情包梗图\"\n【核心动机】寻找/查看\n【动机维度 0.98】原始问题和词条都隐含了“寻找/查看”的动机,词条是原始问题动机的同义表达,动机完全一致。\n【品类维度 0.85】核心主体“双标猫咪梗图”完全匹配,限定词“反映”匹配,但缺失了“人类行为”这一限定词,因此给予高分但非满分。\n【最终得分 0.94】\n【规则说明】规则A:动机高分保护生效(动机0.98≥0.8),实际得分0.94已≥0.7\n【加权系数计算】\n0.29159999999999997\n 来源词总得分: 0.29\n 系数: 0.29【计算公式】base_score × 系数 = 0.94 × 0.29\n【最终得分(截断后)】0.27",
  10979. "strategy": "域内组合",
  10980. "iteration": 2,
  10981. "is_selected": true,
  10982. "type_label": "[修饰短语+中心名词]",
  10983. "source_words": [
  10984. [
  10985. "反映",
  10986. "双标"
  10987. ],
  10988. [
  10989. "猫咪",
  10990. "梗图"
  10991. ]
  10992. ],
  10993. "from_segments": [
  10994. "反映人类双标行为的",
  10995. "猫咪表情包梗图"
  10996. ],
  10997. "domains": [
  10998. 2,
  10999. 3
  11000. ],
  11001. "domains_str": "D2,D3",
  11002. "source_word_details": [
  11003. {
  11004. "domain_index": 2,
  11005. "segment_type": "修饰短语",
  11006. "segment_text": "反映人类双标行为的",
  11007. "words": [
  11008. {
  11009. "text": "反映",
  11010. "score": 0.024
  11011. },
  11012. {
  11013. "text": "双标",
  11014. "score": 0.024
  11015. }
  11016. ]
  11017. },
  11018. {
  11019. "domain_index": 3,
  11020. "segment_type": "中心名词",
  11021. "segment_text": "猫咪表情包梗图",
  11022. "words": [
  11023. {
  11024. "text": "猫咪",
  11025. "score": 0.09
  11026. },
  11027. {
  11028. "text": "梗图",
  11029. "score": 0.024
  11030. }
  11031. ]
  11032. }
  11033. ],
  11034. "source_scores": [
  11035. 0.024,
  11036. 0.024,
  11037. 0.09,
  11038. 0.024
  11039. ],
  11040. "is_above_sources": true,
  11041. "max_source_score": 0.09,
  11042. "scoreColor": "#22c55e"
  11043. },
  11044. "comb_反映双标表情包梗图_r2_84": {
  11045. "type": "domain_combination",
  11046. "query": "反映双标表情包梗图",
  11047. "level": 22,
  11048. "relevance_score": 0.060021,
  11049. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"反映双标表情包梗图\"\n【评估对象】词条\"反映双标表情包梗图\" vs 作用域词条\"反映人类双标行为的猫咪表情包梗图\"\n【核心动机】寻找/查看\n【动机维度 0.00】原始问题和词条均无明确的动作意图,无法评估动机匹配度。\n【品类维度 0.78】核心主体“双标表情包梗图”完全匹配,但缺失了限定词“人类”和“猫咪”,属于核心主体匹配但限定词不完全匹配的情况。\n【最终得分 0.23】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.23已≤0.5\n【加权系数计算】\n0.2565\n 来源词总得分: 0.26\n 系数: 0.26【计算公式】base_score × 系数 = 0.23 × 0.26\n【最终得分(截断后)】0.06",
  11050. "strategy": "域内组合",
  11051. "iteration": 2,
  11052. "is_selected": true,
  11053. "type_label": "[修饰短语+中心名词]",
  11054. "source_words": [
  11055. [
  11056. "反映",
  11057. "双标"
  11058. ],
  11059. [
  11060. "表情包",
  11061. "梗图"
  11062. ]
  11063. ],
  11064. "from_segments": [
  11065. "反映人类双标行为的",
  11066. "猫咪表情包梗图"
  11067. ],
  11068. "domains": [
  11069. 2,
  11070. 3
  11071. ],
  11072. "domains_str": "D2,D3",
  11073. "source_word_details": [
  11074. {
  11075. "domain_index": 2,
  11076. "segment_type": "修饰短语",
  11077. "segment_text": "反映人类双标行为的",
  11078. "words": [
  11079. {
  11080. "text": "反映",
  11081. "score": 0.024
  11082. },
  11083. {
  11084. "text": "双标",
  11085. "score": 0.024
  11086. }
  11087. ]
  11088. },
  11089. {
  11090. "domain_index": 3,
  11091. "segment_type": "中心名词",
  11092. "segment_text": "猫咪表情包梗图",
  11093. "words": [
  11094. {
  11095. "text": "表情包",
  11096. "score": 0.15
  11097. },
  11098. {
  11099. "text": "梗图",
  11100. "score": 0.024
  11101. }
  11102. ]
  11103. }
  11104. ],
  11105. "source_scores": [
  11106. 0.024,
  11107. 0.024,
  11108. 0.15,
  11109. 0.024
  11110. ],
  11111. "is_above_sources": false,
  11112. "max_source_score": 0.15,
  11113. "scoreColor": "#ef4444"
  11114. },
  11115. "comb_反映双标猫咪表情包梗图_r2_85": {
  11116. "type": "domain_combination",
  11117. "query": "反映双标猫咪表情包梗图",
  11118. "level": 22,
  11119. "relevance_score": 0.08505,
  11120. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"反映双标猫咪表情包梗图\"\n【评估对象】词条\"反映双标猫咪表情包梗图\" vs 作用域词条\"反映人类双标行为的猫咪表情包梗图\"\n【核心动机】寻找/查看\n【动机维度 0.00】原始问题和词条均无明确的动作意图,无法评估动机匹配度。\n【品类维度 0.90】核心主体'双标猫咪表情包梗图'完全匹配,但限定词'人类行为'在词条中缺失,属于限定词部分匹配。\n【最终得分 0.27】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.27已≤0.5\n【加权系数计算】\n0.315\n 来源词总得分: 0.32\n 系数: 0.32【计算公式】base_score × 系数 = 0.27 × 0.32\n【最终得分(截断后)】0.09",
  11121. "strategy": "域内组合",
  11122. "iteration": 2,
  11123. "is_selected": true,
  11124. "type_label": "[修饰短语+中心名词]",
  11125. "source_words": [
  11126. [
  11127. "反映",
  11128. "双标"
  11129. ],
  11130. [
  11131. "猫咪",
  11132. "表情包",
  11133. "梗图"
  11134. ]
  11135. ],
  11136. "from_segments": [
  11137. "反映人类双标行为的",
  11138. "猫咪表情包梗图"
  11139. ],
  11140. "domains": [
  11141. 2,
  11142. 3
  11143. ],
  11144. "domains_str": "D2,D3",
  11145. "source_word_details": [
  11146. {
  11147. "domain_index": 2,
  11148. "segment_type": "修饰短语",
  11149. "segment_text": "反映人类双标行为的",
  11150. "words": [
  11151. {
  11152. "text": "反映",
  11153. "score": 0.024
  11154. },
  11155. {
  11156. "text": "双标",
  11157. "score": 0.024
  11158. }
  11159. ]
  11160. },
  11161. {
  11162. "domain_index": 3,
  11163. "segment_type": "中心名词",
  11164. "segment_text": "猫咪表情包梗图",
  11165. "words": [
  11166. {
  11167. "text": "猫咪",
  11168. "score": 0.09
  11169. },
  11170. {
  11171. "text": "表情包",
  11172. "score": 0.15
  11173. },
  11174. {
  11175. "text": "梗图",
  11176. "score": 0.024
  11177. }
  11178. ]
  11179. }
  11180. ],
  11181. "source_scores": [
  11182. 0.024,
  11183. 0.024,
  11184. 0.09,
  11185. 0.15,
  11186. 0.024
  11187. ],
  11188. "is_above_sources": false,
  11189. "max_source_score": 0.15,
  11190. "scoreColor": "#ef4444"
  11191. },
  11192. "comb_反映行为猫咪_r2_86": {
  11193. "type": "domain_combination",
  11194. "query": "反映行为猫咪",
  11195. "level": 22,
  11196. "relevance_score": 0.010206,
  11197. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"反映行为猫咪\"\n【评估对象】词条\"反映行为猫咪\" vs 作用域词条\"反映人类双标行为的猫咪表情包梗图\"\n【核心动机】寻找/查看\n【动机维度 0.00】原始问题是寻找/查看表情包梗图,词条“反映行为猫咪”无明确动作意图,无法评估动作匹配度。\n【品类维度 0.35】核心主体'猫咪'和限定词'反映行为'匹配,但缺失了'双标'、'表情包'、'梗图'等关键限定词,导致语义不完整。\n【最终得分 0.10】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.10已≤0.5\n【加权系数计算】\n0.0972\n 来源词总得分: 0.10\n 系数: 0.10【计算公式】base_score × 系数 = 0.10 × 0.10\n【最终得分(截断后)】0.01",
  11198. "strategy": "域内组合",
  11199. "iteration": 2,
  11200. "is_selected": true,
  11201. "type_label": "[修饰短语+中心名词]",
  11202. "source_words": [
  11203. [
  11204. "反映",
  11205. "行为"
  11206. ],
  11207. [
  11208. "猫咪"
  11209. ]
  11210. ],
  11211. "from_segments": [
  11212. "反映人类双标行为的",
  11213. "猫咪表情包梗图"
  11214. ],
  11215. "domains": [
  11216. 2,
  11217. 3
  11218. ],
  11219. "domains_str": "D2,D3",
  11220. "source_word_details": [
  11221. {
  11222. "domain_index": 2,
  11223. "segment_type": "修饰短语",
  11224. "segment_text": "反映人类双标行为的",
  11225. "words": [
  11226. {
  11227. "text": "反映",
  11228. "score": 0.024
  11229. },
  11230. {
  11231. "text": "行为",
  11232. "score": 0.024
  11233. }
  11234. ]
  11235. },
  11236. {
  11237. "domain_index": 3,
  11238. "segment_type": "中心名词",
  11239. "segment_text": "猫咪表情包梗图",
  11240. "words": [
  11241. {
  11242. "text": "猫咪",
  11243. "score": 0.09
  11244. }
  11245. ]
  11246. }
  11247. ],
  11248. "source_scores": [
  11249. 0.024,
  11250. 0.024,
  11251. 0.09
  11252. ],
  11253. "is_above_sources": false,
  11254. "max_source_score": 0.09,
  11255. "scoreColor": "#ef4444"
  11256. },
  11257. "comb_反映行为表情包_r2_87": {
  11258. "type": "domain_combination",
  11259. "query": "反映行为表情包",
  11260. "level": 22,
  11261. "relevance_score": 0.016506,
  11262. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"反映行为表情包\"\n【评估对象】词条\"反映行为表情包\" vs 作用域词条\"反映人类双标行为的猫咪表情包梗图\"\n【核心动机】寻找/查看\n【动机维度 0.00】原始问题和词条均无明确的动作意图,无法评估动机匹配度。\n【品类维度 0.35】核心主体'表情包'和限定词'反映行为'匹配,但缺失了关键限定词'人类双标'和主体限定词'猫咪',导致匹配度降低。\n【最终得分 0.10】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.10已≤0.5\n【加权系数计算】\n0.1572\n 来源词总得分: 0.16\n 系数: 0.16【计算公式】base_score × 系数 = 0.10 × 0.16\n【最终得分(截断后)】0.02",
  11263. "strategy": "域内组合",
  11264. "iteration": 2,
  11265. "is_selected": true,
  11266. "type_label": "[修饰短语+中心名词]",
  11267. "source_words": [
  11268. [
  11269. "反映",
  11270. "行为"
  11271. ],
  11272. [
  11273. "表情包"
  11274. ]
  11275. ],
  11276. "from_segments": [
  11277. "反映人类双标行为的",
  11278. "猫咪表情包梗图"
  11279. ],
  11280. "domains": [
  11281. 2,
  11282. 3
  11283. ],
  11284. "domains_str": "D2,D3",
  11285. "source_word_details": [
  11286. {
  11287. "domain_index": 2,
  11288. "segment_type": "修饰短语",
  11289. "segment_text": "反映人类双标行为的",
  11290. "words": [
  11291. {
  11292. "text": "反映",
  11293. "score": 0.024
  11294. },
  11295. {
  11296. "text": "行为",
  11297. "score": 0.024
  11298. }
  11299. ]
  11300. },
  11301. {
  11302. "domain_index": 3,
  11303. "segment_type": "中心名词",
  11304. "segment_text": "猫咪表情包梗图",
  11305. "words": [
  11306. {
  11307. "text": "表情包",
  11308. "score": 0.15
  11309. }
  11310. ]
  11311. }
  11312. ],
  11313. "source_scores": [
  11314. 0.024,
  11315. 0.024,
  11316. 0.15
  11317. ],
  11318. "is_above_sources": false,
  11319. "max_source_score": 0.15,
  11320. "scoreColor": "#ef4444"
  11321. },
  11322. "comb_反映行为梗图_r2_88": {
  11323. "type": "domain_combination",
  11324. "query": "反映行为梗图",
  11325. "level": 22,
  11326. "relevance_score": 0.0007488,
  11327. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"反映行为梗图\"\n【评估对象】词条\"反映行为梗图\" vs 作用域词条\"反映人类双标行为的猫咪表情包梗图\"\n【核心动机】寻找/查看\n【动机维度 0.00】原始问题和词条均无明确的动作意图,无法评估动机匹配度。\n【品类维度 0.08】词条“反映行为梗图”是通用概念,而同一作用域词条“反映人类双标行为的猫咪表情包梗图”是特定概念。词条仅包含“行为梗图”,缺失了核心主体“人类双标行为”和限定词“猫咪表情包”,因此品类匹配度低。\n【最终得分 0.02】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.02已≤0.5\n【加权系数计算】\n0.0312\n 来源词总得分: 0.03\n 系数: 0.03【计算公式】base_score × 系数 = 0.02 × 0.03\n【最终得分(截断后)】0.00",
  11328. "strategy": "域内组合",
  11329. "iteration": 2,
  11330. "is_selected": true,
  11331. "type_label": "[修饰短语+中心名词]",
  11332. "source_words": [
  11333. [
  11334. "反映",
  11335. "行为"
  11336. ],
  11337. [
  11338. "梗图"
  11339. ]
  11340. ],
  11341. "from_segments": [
  11342. "反映人类双标行为的",
  11343. "猫咪表情包梗图"
  11344. ],
  11345. "domains": [
  11346. 2,
  11347. 3
  11348. ],
  11349. "domains_str": "D2,D3",
  11350. "source_word_details": [
  11351. {
  11352. "domain_index": 2,
  11353. "segment_type": "修饰短语",
  11354. "segment_text": "反映人类双标行为的",
  11355. "words": [
  11356. {
  11357. "text": "反映",
  11358. "score": 0.024
  11359. },
  11360. {
  11361. "text": "行为",
  11362. "score": 0.024
  11363. }
  11364. ]
  11365. },
  11366. {
  11367. "domain_index": 3,
  11368. "segment_type": "中心名词",
  11369. "segment_text": "猫咪表情包梗图",
  11370. "words": [
  11371. {
  11372. "text": "梗图",
  11373. "score": 0.024
  11374. }
  11375. ]
  11376. }
  11377. ],
  11378. "source_scores": [
  11379. 0.024,
  11380. 0.024,
  11381. 0.024
  11382. ],
  11383. "is_above_sources": false,
  11384. "max_source_score": 0.024,
  11385. "scoreColor": "#ef4444"
  11386. },
  11387. "comb_反映行为猫咪表情包_r2_89": {
  11388. "type": "domain_combination",
  11389. "query": "反映行为猫咪表情包",
  11390. "level": 22,
  11391. "relevance_score": 0.050965199999999995,
  11392. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"反映行为猫咪表情包\"\n【评估对象】词条\"反映行为猫咪表情包\" vs 作用域词条\"反映人类双标行为的猫咪表情包梗图\"\n【核心动机】寻找/获取\n【动机维度 0.00】原始问题和词条均无明确的动作意图,无法评估动机匹配度。\n【品类维度 0.78】核心主体'猫咪表情包'匹配,限定词'反映行为'部分匹配了原始问题中的'反映人类双标行为',但缺失了'双标'和'梗图'这两个限定词。\n【最终得分 0.23】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.23已≤0.5\n【加权系数计算】\n0.2178\n 来源词总得分: 0.22\n 系数: 0.22【计算公式】base_score × 系数 = 0.23 × 0.22\n【最终得分(截断后)】0.05",
  11393. "strategy": "域内组合",
  11394. "iteration": 2,
  11395. "is_selected": true,
  11396. "type_label": "[修饰短语+中心名词]",
  11397. "source_words": [
  11398. [
  11399. "反映",
  11400. "行为"
  11401. ],
  11402. [
  11403. "猫咪",
  11404. "表情包"
  11405. ]
  11406. ],
  11407. "from_segments": [
  11408. "反映人类双标行为的",
  11409. "猫咪表情包梗图"
  11410. ],
  11411. "domains": [
  11412. 2,
  11413. 3
  11414. ],
  11415. "domains_str": "D2,D3",
  11416. "source_word_details": [
  11417. {
  11418. "domain_index": 2,
  11419. "segment_type": "修饰短语",
  11420. "segment_text": "反映人类双标行为的",
  11421. "words": [
  11422. {
  11423. "text": "反映",
  11424. "score": 0.024
  11425. },
  11426. {
  11427. "text": "行为",
  11428. "score": 0.024
  11429. }
  11430. ]
  11431. },
  11432. {
  11433. "domain_index": 3,
  11434. "segment_type": "中心名词",
  11435. "segment_text": "猫咪表情包梗图",
  11436. "words": [
  11437. {
  11438. "text": "猫咪",
  11439. "score": 0.09
  11440. },
  11441. {
  11442. "text": "表情包",
  11443. "score": 0.15
  11444. }
  11445. ]
  11446. }
  11447. ],
  11448. "source_scores": [
  11449. 0.024,
  11450. 0.024,
  11451. 0.09,
  11452. 0.15
  11453. ],
  11454. "is_above_sources": false,
  11455. "max_source_score": 0.15,
  11456. "scoreColor": "#ef4444"
  11457. },
  11458. "comb_反映行为猫咪梗图_r2_90": {
  11459. "type": "domain_combination",
  11460. "query": "反映行为猫咪梗图",
  11461. "level": 22,
  11462. "relevance_score": 0.1881792,
  11463. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"反映行为猫咪梗图\"\n【评估对象】词条\"反映行为猫咪梗图\" vs 作用域词条\"反映人类双标行为的猫咪表情包梗图\"\n【核心动机】寻找/查看\n【动机维度 0.90】原始问题和词条的动机都是寻找/查看梗图,动机一致。\n【品类维度 0.78】核心主体“猫咪梗图”匹配,限定词“反映行为”匹配,但缺失了“人类双标”这一重要限定词,导致匹配度有所下降。\n【最终得分 0.86】\n【规则说明】规则A:动机高分保护生效(动机0.90≥0.8),实际得分0.86已≥0.7\n【加权系数计算】\n0.2178\n 来源词总得分: 0.22\n 系数: 0.22【计算公式】base_score × 系数 = 0.86 × 0.22\n【最终得分(截断后)】0.19",
  11464. "strategy": "域内组合",
  11465. "iteration": 2,
  11466. "is_selected": true,
  11467. "type_label": "[修饰短语+中心名词]",
  11468. "source_words": [
  11469. [
  11470. "反映",
  11471. "行为"
  11472. ],
  11473. [
  11474. "猫咪",
  11475. "梗图"
  11476. ]
  11477. ],
  11478. "from_segments": [
  11479. "反映人类双标行为的",
  11480. "猫咪表情包梗图"
  11481. ],
  11482. "domains": [
  11483. 2,
  11484. 3
  11485. ],
  11486. "domains_str": "D2,D3",
  11487. "source_word_details": [
  11488. {
  11489. "domain_index": 2,
  11490. "segment_type": "修饰短语",
  11491. "segment_text": "反映人类双标行为的",
  11492. "words": [
  11493. {
  11494. "text": "反映",
  11495. "score": 0.024
  11496. },
  11497. {
  11498. "text": "行为",
  11499. "score": 0.024
  11500. }
  11501. ]
  11502. },
  11503. {
  11504. "domain_index": 3,
  11505. "segment_type": "中心名词",
  11506. "segment_text": "猫咪表情包梗图",
  11507. "words": [
  11508. {
  11509. "text": "猫咪",
  11510. "score": 0.09
  11511. },
  11512. {
  11513. "text": "梗图",
  11514. "score": 0.024
  11515. }
  11516. ]
  11517. }
  11518. ],
  11519. "source_scores": [
  11520. 0.024,
  11521. 0.024,
  11522. 0.09,
  11523. 0.024
  11524. ],
  11525. "is_above_sources": true,
  11526. "max_source_score": 0.09,
  11527. "scoreColor": "#22c55e"
  11528. },
  11529. "comb_反映行为表情包梗图_r2_91": {
  11530. "type": "domain_combination",
  11531. "query": "反映行为表情包梗图",
  11532. "level": 22,
  11533. "relevance_score": 0.153468,
  11534. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"反映行为表情包梗图\"\n【评估对象】词条\"反映行为表情包梗图\" vs 作用域词条\"反映人类双标行为的猫咪表情包梗图\"\n【核心动机】寻找/获取反映人类双标行为的猫咪表情包梗图\n【动机维度 0.90】原始问题和词条的核心动机都是'寻找/获取'表情包梗图,词条是原始问题动机的泛化,动机一致。\n【品类维度 0.70】核心主体“表情包梗图”匹配,限定词“反映行为”与“反映人类双标行为”部分匹配,但缺失了“人类双标”和“猫咪”这两个重要限定词,属于核心主体匹配但限定词缺失的情况。\n【最终得分 0.84】\n【规则说明】规则A:动机高分保护生效(动机0.90≥0.8),实际得分0.84已≥0.7\n【加权系数计算】\n0.1827\n 来源词总得分: 0.18\n 系数: 0.18【计算公式】base_score × 系数 = 0.84 × 0.18\n【最终得分(截断后)】0.15",
  11535. "strategy": "域内组合",
  11536. "iteration": 2,
  11537. "is_selected": true,
  11538. "type_label": "[修饰短语+中心名词]",
  11539. "source_words": [
  11540. [
  11541. "反映",
  11542. "行为"
  11543. ],
  11544. [
  11545. "表情包",
  11546. "梗图"
  11547. ]
  11548. ],
  11549. "from_segments": [
  11550. "反映人类双标行为的",
  11551. "猫咪表情包梗图"
  11552. ],
  11553. "domains": [
  11554. 2,
  11555. 3
  11556. ],
  11557. "domains_str": "D2,D3",
  11558. "source_word_details": [
  11559. {
  11560. "domain_index": 2,
  11561. "segment_type": "修饰短语",
  11562. "segment_text": "反映人类双标行为的",
  11563. "words": [
  11564. {
  11565. "text": "反映",
  11566. "score": 0.024
  11567. },
  11568. {
  11569. "text": "行为",
  11570. "score": 0.024
  11571. }
  11572. ]
  11573. },
  11574. {
  11575. "domain_index": 3,
  11576. "segment_type": "中心名词",
  11577. "segment_text": "猫咪表情包梗图",
  11578. "words": [
  11579. {
  11580. "text": "表情包",
  11581. "score": 0.15
  11582. },
  11583. {
  11584. "text": "梗图",
  11585. "score": 0.024
  11586. }
  11587. ]
  11588. }
  11589. ],
  11590. "source_scores": [
  11591. 0.024,
  11592. 0.024,
  11593. 0.15,
  11594. 0.024
  11595. ],
  11596. "is_above_sources": true,
  11597. "max_source_score": 0.15,
  11598. "scoreColor": "#22c55e"
  11599. },
  11600. "comb_反映行为猫咪表情包梗图_r2_92": {
  11601. "type": "domain_combination",
  11602. "query": "反映行为猫咪表情包梗图",
  11603. "level": 22,
  11604. "relevance_score": 0.0564408,
  11605. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"反映行为猫咪表情包梗图\"\n【评估对象】词条\"反映行为猫咪表情包梗图\" vs 作用域词条\"反映人类双标行为的猫咪表情包梗图\"\n【核心动机】寻找/查看\n【动机维度 0.00】原始问题和词条都无明确的动作意图,无法评估动作匹配度。\n【品类维度 0.78】核心主体“猫咪表情包梗图”匹配,限定词“反映行为”匹配,但缺失了“人类双标”这一关键限定词,属于核心主体匹配,存在限定词匹配的情况。\n【最终得分 0.23】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.23已≤0.5\n【加权系数计算】\n0.2412\n 来源词总得分: 0.24\n 系数: 0.24【计算公式】base_score × 系数 = 0.23 × 0.24\n【最终得分(截断后)】0.06",
  11606. "strategy": "域内组合",
  11607. "iteration": 2,
  11608. "is_selected": true,
  11609. "type_label": "[修饰短语+中心名词]",
  11610. "source_words": [
  11611. [
  11612. "反映",
  11613. "行为"
  11614. ],
  11615. [
  11616. "猫咪",
  11617. "表情包",
  11618. "梗图"
  11619. ]
  11620. ],
  11621. "from_segments": [
  11622. "反映人类双标行为的",
  11623. "猫咪表情包梗图"
  11624. ],
  11625. "domains": [
  11626. 2,
  11627. 3
  11628. ],
  11629. "domains_str": "D2,D3",
  11630. "source_word_details": [
  11631. {
  11632. "domain_index": 2,
  11633. "segment_type": "修饰短语",
  11634. "segment_text": "反映人类双标行为的",
  11635. "words": [
  11636. {
  11637. "text": "反映",
  11638. "score": 0.024
  11639. },
  11640. {
  11641. "text": "行为",
  11642. "score": 0.024
  11643. }
  11644. ]
  11645. },
  11646. {
  11647. "domain_index": 3,
  11648. "segment_type": "中心名词",
  11649. "segment_text": "猫咪表情包梗图",
  11650. "words": [
  11651. {
  11652. "text": "猫咪",
  11653. "score": 0.09
  11654. },
  11655. {
  11656. "text": "表情包",
  11657. "score": 0.15
  11658. },
  11659. {
  11660. "text": "梗图",
  11661. "score": 0.024
  11662. }
  11663. ]
  11664. }
  11665. ],
  11666. "source_scores": [
  11667. 0.024,
  11668. 0.024,
  11669. 0.09,
  11670. 0.15,
  11671. 0.024
  11672. ],
  11673. "is_above_sources": false,
  11674. "max_source_score": 0.15,
  11675. "scoreColor": "#ef4444"
  11676. },
  11677. "comb_人类双标猫咪_r2_93": {
  11678. "type": "domain_combination",
  11679. "query": "人类双标猫咪",
  11680. "level": 22,
  11681. "relevance_score": 0.040013999999999994,
  11682. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"人类双标猫咪\"\n【评估对象】词条\"人类双标猫咪\" vs 作用域词条\"反映人类双标行为的猫咪表情包梗图\"\n【核心动机】原始问题无明确动作意图,主要描述一个主题或内容\n【动机维度 0.00】原始问题和词条均无明确的动作意图,无法评估动机匹配度。\n【品类维度 0.78】核心主体“人类双标”和“猫咪”匹配,但缺少限定词“表情包梗图”,属于核心主体匹配,存在限定词匹配的情况。\n【最终得分 0.23】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.23已≤0.5\n【加权系数计算】\n0.17099999999999999\n 来源词总得分: 0.17\n 系数: 0.17【计算公式】base_score × 系数 = 0.23 × 0.17\n【最终得分(截断后)】0.04",
  11683. "strategy": "域内组合",
  11684. "iteration": 2,
  11685. "is_selected": true,
  11686. "type_label": "[修饰短语+中心名词]",
  11687. "source_words": [
  11688. [
  11689. "人类",
  11690. "双标"
  11691. ],
  11692. [
  11693. "猫咪"
  11694. ]
  11695. ],
  11696. "from_segments": [
  11697. "反映人类双标行为的",
  11698. "猫咪表情包梗图"
  11699. ],
  11700. "domains": [
  11701. 2,
  11702. 3
  11703. ],
  11704. "domains_str": "D2,D3",
  11705. "source_word_details": [
  11706. {
  11707. "domain_index": 2,
  11708. "segment_type": "修饰短语",
  11709. "segment_text": "反映人类双标行为的",
  11710. "words": [
  11711. {
  11712. "text": "人类",
  11713. "score": 0.024
  11714. },
  11715. {
  11716. "text": "双标",
  11717. "score": 0.024
  11718. }
  11719. ]
  11720. },
  11721. {
  11722. "domain_index": 3,
  11723. "segment_type": "中心名词",
  11724. "segment_text": "猫咪表情包梗图",
  11725. "words": [
  11726. {
  11727. "text": "猫咪",
  11728. "score": 0.09
  11729. }
  11730. ]
  11731. }
  11732. ],
  11733. "source_scores": [
  11734. 0.024,
  11735. 0.024,
  11736. 0.09
  11737. ],
  11738. "is_above_sources": false,
  11739. "max_source_score": 0.09,
  11740. "scoreColor": "#ef4444"
  11741. },
  11742. "comb_人类双标表情包_r2_94": {
  11743. "type": "domain_combination",
  11744. "query": "人类双标表情包",
  11745. "level": 22,
  11746. "relevance_score": 0.05405399999999999,
  11747. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"人类双标表情包\"\n【评估对象】词条\"人类双标表情包\" vs 作用域词条\"反映人类双标行为的猫咪表情包梗图\"\n【核心动机】寻找/获取\n【动机维度 0.00】原始问题和词条均无明确的动作意图,无法评估动机匹配度。\n【品类维度 0.78】核心主体'人类双标'和限定词'表情包'匹配,但缺失了'猫咪'和'梗图'这两个限定词,属于核心主体匹配,存在限定词匹配的情况。\n【最终得分 0.23】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.23已≤0.5\n【加权系数计算】\n0.23099999999999998\n 来源词总得分: 0.23\n 系数: 0.23【计算公式】base_score × 系数 = 0.23 × 0.23\n【最终得分(截断后)】0.05",
  11748. "strategy": "域内组合",
  11749. "iteration": 2,
  11750. "is_selected": true,
  11751. "type_label": "[修饰短语+中心名词]",
  11752. "source_words": [
  11753. [
  11754. "人类",
  11755. "双标"
  11756. ],
  11757. [
  11758. "表情包"
  11759. ]
  11760. ],
  11761. "from_segments": [
  11762. "反映人类双标行为的",
  11763. "猫咪表情包梗图"
  11764. ],
  11765. "domains": [
  11766. 2,
  11767. 3
  11768. ],
  11769. "domains_str": "D2,D3",
  11770. "source_word_details": [
  11771. {
  11772. "domain_index": 2,
  11773. "segment_type": "修饰短语",
  11774. "segment_text": "反映人类双标行为的",
  11775. "words": [
  11776. {
  11777. "text": "人类",
  11778. "score": 0.024
  11779. },
  11780. {
  11781. "text": "双标",
  11782. "score": 0.024
  11783. }
  11784. ]
  11785. },
  11786. {
  11787. "domain_index": 3,
  11788. "segment_type": "中心名词",
  11789. "segment_text": "猫咪表情包梗图",
  11790. "words": [
  11791. {
  11792. "text": "表情包",
  11793. "score": 0.15
  11794. }
  11795. ]
  11796. }
  11797. ],
  11798. "source_scores": [
  11799. 0.024,
  11800. 0.024,
  11801. 0.15
  11802. ],
  11803. "is_above_sources": false,
  11804. "max_source_score": 0.15,
  11805. "scoreColor": "#ef4444"
  11806. },
  11807. "comb_人类双标梗图_r2_95": {
  11808. "type": "domain_combination",
  11809. "query": "人类双标梗图",
  11810. "level": 22,
  11811. "relevance_score": 0.02457,
  11812. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"人类双标梗图\"\n【评估对象】词条\"人类双标梗图\" vs 作用域词条\"反映人类双标行为的猫咪表情包梗图\"\n【核心动机】原始问题无明确动作意图,主要描述一个主题\n【动机维度 0.00】原始问题和词条均无明确的动作意图,无法评估动机维度匹配度。\n【品类维度 0.78】核心主体'人类双标梗图'与原始问题中的'人类双标行为的猫咪表情包梗图'匹配,但限定词'猫咪表情包'缺失,属于核心主体匹配,存在限定词匹配的情况。\n【最终得分 0.23】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.23已≤0.5\n【加权系数计算】\n0.10500000000000001\n 来源词总得分: 0.11\n 系数: 0.11【计算公式】base_score × 系数 = 0.23 × 0.11\n【最终得分(截断后)】0.02",
  11813. "strategy": "域内组合",
  11814. "iteration": 2,
  11815. "is_selected": true,
  11816. "type_label": "[修饰短语+中心名词]",
  11817. "source_words": [
  11818. [
  11819. "人类",
  11820. "双标"
  11821. ],
  11822. [
  11823. "梗图"
  11824. ]
  11825. ],
  11826. "from_segments": [
  11827. "反映人类双标行为的",
  11828. "猫咪表情包梗图"
  11829. ],
  11830. "domains": [
  11831. 2,
  11832. 3
  11833. ],
  11834. "domains_str": "D2,D3",
  11835. "source_word_details": [
  11836. {
  11837. "domain_index": 2,
  11838. "segment_type": "修饰短语",
  11839. "segment_text": "反映人类双标行为的",
  11840. "words": [
  11841. {
  11842. "text": "人类",
  11843. "score": 0.024
  11844. },
  11845. {
  11846. "text": "双标",
  11847. "score": 0.024
  11848. }
  11849. ]
  11850. },
  11851. {
  11852. "domain_index": 3,
  11853. "segment_type": "中心名词",
  11854. "segment_text": "猫咪表情包梗图",
  11855. "words": [
  11856. {
  11857. "text": "梗图",
  11858. "score": 0.024
  11859. }
  11860. ]
  11861. }
  11862. ],
  11863. "source_scores": [
  11864. 0.024,
  11865. 0.024,
  11866. 0.024
  11867. ],
  11868. "is_above_sources": true,
  11869. "max_source_score": 0.024,
  11870. "scoreColor": "#22c55e"
  11871. },
  11872. "comb_人类双标猫咪表情包_r2_96": {
  11873. "type": "domain_combination",
  11874. "query": "人类双标猫咪表情包",
  11875. "level": 22,
  11876. "relevance_score": 0.078732,
  11877. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"人类双标猫咪表情包\"\n【评估对象】词条\"人类双标猫咪表情包\" vs 作用域词条\"反映人类双标行为的猫咪表情包梗图\"\n【核心动机】原始问题无明确动作意图,主要描述一个主题或内容\n【动机维度 0.00】原始问题和词条均无明确的动作意图,无法评估动机维度匹配度。\n【品类维度 0.90】核心主体“人类双标猫咪表情包”完全匹配,限定词“梗图”缺失,但“表情包”本身就包含“梗图”的含义,因此匹配度很高。\n【最终得分 0.27】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.27已≤0.5\n【加权系数计算】\n0.29159999999999997\n 来源词总得分: 0.29\n 系数: 0.29【计算公式】base_score × 系数 = 0.27 × 0.29\n【最终得分(截断后)】0.08",
  11878. "strategy": "域内组合",
  11879. "iteration": 2,
  11880. "is_selected": true,
  11881. "type_label": "[修饰短语+中心名词]",
  11882. "source_words": [
  11883. [
  11884. "人类",
  11885. "双标"
  11886. ],
  11887. [
  11888. "猫咪",
  11889. "表情包"
  11890. ]
  11891. ],
  11892. "from_segments": [
  11893. "反映人类双标行为的",
  11894. "猫咪表情包梗图"
  11895. ],
  11896. "domains": [
  11897. 2,
  11898. 3
  11899. ],
  11900. "domains_str": "D2,D3",
  11901. "source_word_details": [
  11902. {
  11903. "domain_index": 2,
  11904. "segment_type": "修饰短语",
  11905. "segment_text": "反映人类双标行为的",
  11906. "words": [
  11907. {
  11908. "text": "人类",
  11909. "score": 0.024
  11910. },
  11911. {
  11912. "text": "双标",
  11913. "score": 0.024
  11914. }
  11915. ]
  11916. },
  11917. {
  11918. "domain_index": 3,
  11919. "segment_type": "中心名词",
  11920. "segment_text": "猫咪表情包梗图",
  11921. "words": [
  11922. {
  11923. "text": "猫咪",
  11924. "score": 0.09
  11925. },
  11926. {
  11927. "text": "表情包",
  11928. "score": 0.15
  11929. }
  11930. ]
  11931. }
  11932. ],
  11933. "source_scores": [
  11934. 0.024,
  11935. 0.024,
  11936. 0.09,
  11937. 0.15
  11938. ],
  11939. "is_above_sources": false,
  11940. "max_source_score": 0.15,
  11941. "scoreColor": "#ef4444"
  11942. },
  11943. "comb_人类双标猫咪梗图_r2_97": {
  11944. "type": "domain_combination",
  11945. "query": "人类双标猫咪梗图",
  11946. "level": 22,
  11947. "relevance_score": 0.078732,
  11948. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"人类双标猫咪梗图\"\n【评估对象】词条\"人类双标猫咪梗图\" vs 作用域词条\"反映人类双标行为的猫咪表情包梗图\"\n【核心动机】原始问题无明确动作意图,主要描述一个主题或内容\n【动机维度 0.00】原始问题和词条均无明确的动作意图,无法进行动机维度匹配评估。\n【品类维度 0.90】核心主体“人类双标猫咪梗图”与原始问题“反映人类双标行为的猫咪表情包梗图”高度匹配,仅缺少“表情包”这一限定词,但语义上“梗图”通常包含“表情包”的含义,因此匹配度很高。\n【最终得分 0.27】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.27已≤0.5\n【加权系数计算】\n0.29159999999999997\n 来源词总得分: 0.29\n 系数: 0.29【计算公式】base_score × 系数 = 0.27 × 0.29\n【最终得分(截断后)】0.08",
  11949. "strategy": "域内组合",
  11950. "iteration": 2,
  11951. "is_selected": true,
  11952. "type_label": "[修饰短语+中心名词]",
  11953. "source_words": [
  11954. [
  11955. "人类",
  11956. "双标"
  11957. ],
  11958. [
  11959. "猫咪",
  11960. "梗图"
  11961. ]
  11962. ],
  11963. "from_segments": [
  11964. "反映人类双标行为的",
  11965. "猫咪表情包梗图"
  11966. ],
  11967. "domains": [
  11968. 2,
  11969. 3
  11970. ],
  11971. "domains_str": "D2,D3",
  11972. "source_word_details": [
  11973. {
  11974. "domain_index": 2,
  11975. "segment_type": "修饰短语",
  11976. "segment_text": "反映人类双标行为的",
  11977. "words": [
  11978. {
  11979. "text": "人类",
  11980. "score": 0.024
  11981. },
  11982. {
  11983. "text": "双标",
  11984. "score": 0.024
  11985. }
  11986. ]
  11987. },
  11988. {
  11989. "domain_index": 3,
  11990. "segment_type": "中心名词",
  11991. "segment_text": "猫咪表情包梗图",
  11992. "words": [
  11993. {
  11994. "text": "猫咪",
  11995. "score": 0.09
  11996. },
  11997. {
  11998. "text": "梗图",
  11999. "score": 0.024
  12000. }
  12001. ]
  12002. }
  12003. ],
  12004. "source_scores": [
  12005. 0.024,
  12006. 0.024,
  12007. 0.09,
  12008. 0.024
  12009. ],
  12010. "is_above_sources": false,
  12011. "max_source_score": 0.09,
  12012. "scoreColor": "#ef4444"
  12013. },
  12014. "comb_人类双标表情包梗图_r2_98": {
  12015. "type": "domain_combination",
  12016. "query": "人类双标表情包梗图",
  12017. "level": 22,
  12018. "relevance_score": 0.060021,
  12019. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"人类双标表情包梗图\"\n【评估对象】词条\"人类双标表情包梗图\" vs 作用域词条\"反映人类双标行为的猫咪表情包梗图\"\n【核心动机】寻找/查看\n【动机维度 0.00】原始问题和词条均无明确的动作意图,无法评估动机匹配度。\n【品类维度 0.78】核心主体“人类双标表情包梗图”与“反映人类双标行为的猫咪表情包梗图”匹配,但缺少了限定词“猫咪”,因此得分在0.75-0.95之间。\n【最终得分 0.23】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.23已≤0.5\n【加权系数计算】\n0.2565\n 来源词总得分: 0.26\n 系数: 0.26【计算公式】base_score × 系数 = 0.23 × 0.26\n【最终得分(截断后)】0.06",
  12020. "strategy": "域内组合",
  12021. "iteration": 2,
  12022. "is_selected": true,
  12023. "type_label": "[修饰短语+中心名词]",
  12024. "source_words": [
  12025. [
  12026. "人类",
  12027. "双标"
  12028. ],
  12029. [
  12030. "表情包",
  12031. "梗图"
  12032. ]
  12033. ],
  12034. "from_segments": [
  12035. "反映人类双标行为的",
  12036. "猫咪表情包梗图"
  12037. ],
  12038. "domains": [
  12039. 2,
  12040. 3
  12041. ],
  12042. "domains_str": "D2,D3",
  12043. "source_word_details": [
  12044. {
  12045. "domain_index": 2,
  12046. "segment_type": "修饰短语",
  12047. "segment_text": "反映人类双标行为的",
  12048. "words": [
  12049. {
  12050. "text": "人类",
  12051. "score": 0.024
  12052. },
  12053. {
  12054. "text": "双标",
  12055. "score": 0.024
  12056. }
  12057. ]
  12058. },
  12059. {
  12060. "domain_index": 3,
  12061. "segment_type": "中心名词",
  12062. "segment_text": "猫咪表情包梗图",
  12063. "words": [
  12064. {
  12065. "text": "表情包",
  12066. "score": 0.15
  12067. },
  12068. {
  12069. "text": "梗图",
  12070. "score": 0.024
  12071. }
  12072. ]
  12073. }
  12074. ],
  12075. "source_scores": [
  12076. 0.024,
  12077. 0.024,
  12078. 0.15,
  12079. 0.024
  12080. ],
  12081. "is_above_sources": false,
  12082. "max_source_score": 0.15,
  12083. "scoreColor": "#ef4444"
  12084. },
  12085. "comb_人类双标猫咪表情包梗图_r2_99": {
  12086. "type": "domain_combination",
  12087. "query": "人类双标猫咪表情包梗图",
  12088. "level": 22,
  12089. "relevance_score": 0.09261,
  12090. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"人类双标猫咪表情包梗图\"\n【评估对象】词条\"人类双标猫咪表情包梗图\" vs 作用域词条\"反映人类双标行为的猫咪表情包梗图\"\n【核心动机】原始问题无明确动作意图,主要为描述性词语\n【动机维度 0.00】原始问题和词条都无明确的动作意图,无法评估动机匹配度。\n【品类维度 0.98】核心主体“人类双标猫咪表情包梗图”完全匹配,限定词“反映”在词条中被省略,但语义上是高度一致的,因此匹配度极高。\n【最终得分 0.29】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.29已≤0.5\n【加权系数计算】\n0.315\n 来源词总得分: 0.32\n 系数: 0.32【计算公式】base_score × 系数 = 0.29 × 0.32\n【最终得分(截断后)】0.09",
  12091. "strategy": "域内组合",
  12092. "iteration": 2,
  12093. "is_selected": true,
  12094. "type_label": "[修饰短语+中心名词]",
  12095. "source_words": [
  12096. [
  12097. "人类",
  12098. "双标"
  12099. ],
  12100. [
  12101. "猫咪",
  12102. "表情包",
  12103. "梗图"
  12104. ]
  12105. ],
  12106. "from_segments": [
  12107. "反映人类双标行为的",
  12108. "猫咪表情包梗图"
  12109. ],
  12110. "domains": [
  12111. 2,
  12112. 3
  12113. ],
  12114. "domains_str": "D2,D3",
  12115. "source_word_details": [
  12116. {
  12117. "domain_index": 2,
  12118. "segment_type": "修饰短语",
  12119. "segment_text": "反映人类双标行为的",
  12120. "words": [
  12121. {
  12122. "text": "人类",
  12123. "score": 0.024
  12124. },
  12125. {
  12126. "text": "双标",
  12127. "score": 0.024
  12128. }
  12129. ]
  12130. },
  12131. {
  12132. "domain_index": 3,
  12133. "segment_type": "中心名词",
  12134. "segment_text": "猫咪表情包梗图",
  12135. "words": [
  12136. {
  12137. "text": "猫咪",
  12138. "score": 0.09
  12139. },
  12140. {
  12141. "text": "表情包",
  12142. "score": 0.15
  12143. },
  12144. {
  12145. "text": "梗图",
  12146. "score": 0.024
  12147. }
  12148. ]
  12149. }
  12150. ],
  12151. "source_scores": [
  12152. 0.024,
  12153. 0.024,
  12154. 0.09,
  12155. 0.15,
  12156. 0.024
  12157. ],
  12158. "is_above_sources": false,
  12159. "max_source_score": 0.15,
  12160. "scoreColor": "#ef4444"
  12161. },
  12162. "comb_人类行为猫咪_r2_100": {
  12163. "type": "domain_combination",
  12164. "query": "人类行为猫咪",
  12165. "level": 22,
  12166. "relevance_score": 0.014175,
  12167. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"人类行为猫咪\"\n【评估对象】词条\"人类行为猫咪\" vs 作用域词条\"反映人类双标行为的猫咪表情包梗图\"\n【核心动机】原始问题没有明确的动作意图,主要描述的是一种内容类型(表情包梗图)及其主题(反映人类双标行为的猫咪)。\n【动机维度 0.00】原始问题和词条均无明确的动作意图,无法进行动机维度匹配评估。\n【品类维度 0.35】核心主体词“人类”、“猫咪”匹配,但限定词“双标行为”、“表情包梗图”缺失,且“行为”在原词条中是限定词,在sug词中是主体词,存在语义错位。\n【最终得分 0.10】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.10已≤0.5\n【加权系数计算】\n0.135\n 来源词总得分: 0.14\n 系数: 0.14【计算公式】base_score × 系数 = 0.10 × 0.14\n【最终得分(截断后)】0.01",
  12168. "strategy": "域内组合",
  12169. "iteration": 2,
  12170. "is_selected": true,
  12171. "type_label": "[修饰短语+中心名词]",
  12172. "source_words": [
  12173. [
  12174. "人类",
  12175. "行为"
  12176. ],
  12177. [
  12178. "猫咪"
  12179. ]
  12180. ],
  12181. "from_segments": [
  12182. "反映人类双标行为的",
  12183. "猫咪表情包梗图"
  12184. ],
  12185. "domains": [
  12186. 2,
  12187. 3
  12188. ],
  12189. "domains_str": "D2,D3",
  12190. "source_word_details": [
  12191. {
  12192. "domain_index": 2,
  12193. "segment_type": "修饰短语",
  12194. "segment_text": "反映人类双标行为的",
  12195. "words": [
  12196. {
  12197. "text": "人类",
  12198. "score": 0.024
  12199. },
  12200. {
  12201. "text": "行为",
  12202. "score": 0.024
  12203. }
  12204. ]
  12205. },
  12206. {
  12207. "domain_index": 3,
  12208. "segment_type": "中心名词",
  12209. "segment_text": "猫咪表情包梗图",
  12210. "words": [
  12211. {
  12212. "text": "猫咪",
  12213. "score": 0.09
  12214. }
  12215. ]
  12216. }
  12217. ],
  12218. "source_scores": [
  12219. 0.024,
  12220. 0.024,
  12221. 0.09
  12222. ],
  12223. "is_above_sources": false,
  12224. "max_source_score": 0.09,
  12225. "scoreColor": "#ef4444"
  12226. },
  12227. "comb_人类行为表情包_r2_101": {
  12228. "type": "domain_combination",
  12229. "query": "人类行为表情包",
  12230. "level": 22,
  12231. "relevance_score": 0.020475,
  12232. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"人类行为表情包\"\n【评估对象】词条\"人类行为表情包\" vs 作用域词条\"反映人类双标行为的猫咪表情包梗图\"\n【核心动机】寻找/查看\n【动机维度 0.00】原始问题和词条均无明确的动作意图,无法评估动机匹配度。\n【品类维度 0.35】核心主体'表情包'匹配,'人类行为'是限定词的泛化,但缺失了'猫咪'和'双标行为'等关键限定词,导致匹配度中等偏低。\n【最终得分 0.10】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.10已≤0.5\n【加权系数计算】\n0.195\n 来源词总得分: 0.20\n 系数: 0.20【计算公式】base_score × 系数 = 0.10 × 0.20\n【最终得分(截断后)】0.02",
  12233. "strategy": "域内组合",
  12234. "iteration": 2,
  12235. "is_selected": true,
  12236. "type_label": "[修饰短语+中心名词]",
  12237. "source_words": [
  12238. [
  12239. "人类",
  12240. "行为"
  12241. ],
  12242. [
  12243. "表情包"
  12244. ]
  12245. ],
  12246. "from_segments": [
  12247. "反映人类双标行为的",
  12248. "猫咪表情包梗图"
  12249. ],
  12250. "domains": [
  12251. 2,
  12252. 3
  12253. ],
  12254. "domains_str": "D2,D3",
  12255. "source_word_details": [
  12256. {
  12257. "domain_index": 2,
  12258. "segment_type": "修饰短语",
  12259. "segment_text": "反映人类双标行为的",
  12260. "words": [
  12261. {
  12262. "text": "人类",
  12263. "score": 0.024
  12264. },
  12265. {
  12266. "text": "行为",
  12267. "score": 0.024
  12268. }
  12269. ]
  12270. },
  12271. {
  12272. "domain_index": 3,
  12273. "segment_type": "中心名词",
  12274. "segment_text": "猫咪表情包梗图",
  12275. "words": [
  12276. {
  12277. "text": "表情包",
  12278. "score": 0.15
  12279. }
  12280. ]
  12281. }
  12282. ],
  12283. "source_scores": [
  12284. 0.024,
  12285. 0.024,
  12286. 0.15
  12287. ],
  12288. "is_above_sources": false,
  12289. "max_source_score": 0.15,
  12290. "scoreColor": "#ef4444"
  12291. },
  12292. "comb_人类行为梗图_r2_102": {
  12293. "type": "domain_combination",
  12294. "query": "人类行为梗图",
  12295. "level": 22,
  12296. "relevance_score": 0.007245000000000001,
  12297. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"人类行为梗图\"\n【评估对象】词条\"人类行为梗图\" vs 作用域词条\"反映人类双标行为的猫咪表情包梗图\"\n【核心动机】寻找/查看\n【动机维度 0.00】原始问题和词条均无明确的动作意图,无法评估动机匹配度。\n【品类维度 0.35】核心主体词'人类行为'匹配,但限定词'双标'、'猫咪表情包'、'梗图'缺失,且'梗图'是泛化概念,因此得分较低。\n【最终得分 0.10】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.10已≤0.5\n【加权系数计算】\n0.069\n 来源词总得分: 0.07\n 系数: 0.07【计算公式】base_score × 系数 = 0.10 × 0.07\n【最终得分(截断后)】0.01",
  12298. "strategy": "域内组合",
  12299. "iteration": 2,
  12300. "is_selected": true,
  12301. "type_label": "[修饰短语+中心名词]",
  12302. "source_words": [
  12303. [
  12304. "人类",
  12305. "行为"
  12306. ],
  12307. [
  12308. "梗图"
  12309. ]
  12310. ],
  12311. "from_segments": [
  12312. "反映人类双标行为的",
  12313. "猫咪表情包梗图"
  12314. ],
  12315. "domains": [
  12316. 2,
  12317. 3
  12318. ],
  12319. "domains_str": "D2,D3",
  12320. "source_word_details": [
  12321. {
  12322. "domain_index": 2,
  12323. "segment_type": "修饰短语",
  12324. "segment_text": "反映人类双标行为的",
  12325. "words": [
  12326. {
  12327. "text": "人类",
  12328. "score": 0.024
  12329. },
  12330. {
  12331. "text": "行为",
  12332. "score": 0.024
  12333. }
  12334. ]
  12335. },
  12336. {
  12337. "domain_index": 3,
  12338. "segment_type": "中心名词",
  12339. "segment_text": "猫咪表情包梗图",
  12340. "words": [
  12341. {
  12342. "text": "梗图",
  12343. "score": 0.024
  12344. }
  12345. ]
  12346. }
  12347. ],
  12348. "source_scores": [
  12349. 0.024,
  12350. 0.024,
  12351. 0.024
  12352. ],
  12353. "is_above_sources": false,
  12354. "max_source_score": 0.024,
  12355. "scoreColor": "#ef4444"
  12356. },
  12357. "comb_人类行为猫咪表情包_r2_103": {
  12358. "type": "domain_combination",
  12359. "query": "人类行为猫咪表情包",
  12360. "level": 22,
  12361. "relevance_score": 0.05981039999999999,
  12362. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"人类行为猫咪表情包\"\n【评估对象】词条\"人类行为猫咪表情包\" vs 作用域词条\"反映人类双标行为的猫咪表情包梗图\"\n【核心动机】寻找/查看\n【动机维度 0.00】原始问题和词条均无明确的动作意图,无法评估动机匹配度。\n【品类维度 0.78】核心主体“猫咪表情包”匹配,限定词“人类行为”匹配,但缺失了“双标行为”和“梗图”这两个限定词,属于核心主体匹配,存在限定词匹配的情况。\n【最终得分 0.23】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.23已≤0.5\n【加权系数计算】\n0.2556\n 来源词总得分: 0.26\n 系数: 0.26【计算公式】base_score × 系数 = 0.23 × 0.26\n【最终得分(截断后)】0.06",
  12363. "strategy": "域内组合",
  12364. "iteration": 2,
  12365. "is_selected": true,
  12366. "type_label": "[修饰短语+中心名词]",
  12367. "source_words": [
  12368. [
  12369. "人类",
  12370. "行为"
  12371. ],
  12372. [
  12373. "猫咪",
  12374. "表情包"
  12375. ]
  12376. ],
  12377. "from_segments": [
  12378. "反映人类双标行为的",
  12379. "猫咪表情包梗图"
  12380. ],
  12381. "domains": [
  12382. 2,
  12383. 3
  12384. ],
  12385. "domains_str": "D2,D3",
  12386. "source_word_details": [
  12387. {
  12388. "domain_index": 2,
  12389. "segment_type": "修饰短语",
  12390. "segment_text": "反映人类双标行为的",
  12391. "words": [
  12392. {
  12393. "text": "人类",
  12394. "score": 0.024
  12395. },
  12396. {
  12397. "text": "行为",
  12398. "score": 0.024
  12399. }
  12400. ]
  12401. },
  12402. {
  12403. "domain_index": 3,
  12404. "segment_type": "中心名词",
  12405. "segment_text": "猫咪表情包梗图",
  12406. "words": [
  12407. {
  12408. "text": "猫咪",
  12409. "score": 0.09
  12410. },
  12411. {
  12412. "text": "表情包",
  12413. "score": 0.15
  12414. }
  12415. ]
  12416. }
  12417. ],
  12418. "source_scores": [
  12419. 0.024,
  12420. 0.024,
  12421. 0.09,
  12422. 0.15
  12423. ],
  12424. "is_above_sources": false,
  12425. "max_source_score": 0.15,
  12426. "scoreColor": "#ef4444"
  12427. },
  12428. "comb_人类行为猫咪梗图_r2_104": {
  12429. "type": "domain_combination",
  12430. "query": "人类行为猫咪梗图",
  12431. "level": 22,
  12432. "relevance_score": 0.05981039999999999,
  12433. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"人类行为猫咪梗图\"\n【评估对象】词条\"人类行为猫咪梗图\" vs 作用域词条\"反映人类双标行为的猫咪表情包梗图\"\n【核心动机】原始问题无明确动作意图,主要描述一个主题\n【动机维度 0.00】原始问题和词条均无明确的动作意图,无法评估动机匹配度。\n【品类维度 0.78】核心主体“猫咪梗图”匹配,限定词“人类行为”匹配,但缺失了“双标行为”这一更具体的限定词,因此得分较高但未满分。\n【最终得分 0.23】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.23已≤0.5\n【加权系数计算】\n0.2556\n 来源词总得分: 0.26\n 系数: 0.26【计算公式】base_score × 系数 = 0.23 × 0.26\n【最终得分(截断后)】0.06",
  12434. "strategy": "域内组合",
  12435. "iteration": 2,
  12436. "is_selected": true,
  12437. "type_label": "[修饰短语+中心名词]",
  12438. "source_words": [
  12439. [
  12440. "人类",
  12441. "行为"
  12442. ],
  12443. [
  12444. "猫咪",
  12445. "梗图"
  12446. ]
  12447. ],
  12448. "from_segments": [
  12449. "反映人类双标行为的",
  12450. "猫咪表情包梗图"
  12451. ],
  12452. "domains": [
  12453. 2,
  12454. 3
  12455. ],
  12456. "domains_str": "D2,D3",
  12457. "source_word_details": [
  12458. {
  12459. "domain_index": 2,
  12460. "segment_type": "修饰短语",
  12461. "segment_text": "反映人类双标行为的",
  12462. "words": [
  12463. {
  12464. "text": "人类",
  12465. "score": 0.024
  12466. },
  12467. {
  12468. "text": "行为",
  12469. "score": 0.024
  12470. }
  12471. ]
  12472. },
  12473. {
  12474. "domain_index": 3,
  12475. "segment_type": "中心名词",
  12476. "segment_text": "猫咪表情包梗图",
  12477. "words": [
  12478. {
  12479. "text": "猫咪",
  12480. "score": 0.09
  12481. },
  12482. {
  12483. "text": "梗图",
  12484. "score": 0.024
  12485. }
  12486. ]
  12487. }
  12488. ],
  12489. "source_scores": [
  12490. 0.024,
  12491. 0.024,
  12492. 0.09,
  12493. 0.024
  12494. ],
  12495. "is_above_sources": false,
  12496. "max_source_score": 0.09,
  12497. "scoreColor": "#ef4444"
  12498. },
  12499. "comb_人类行为表情包梗图_r2_105": {
  12500. "type": "domain_combination",
  12501. "query": "人类行为表情包梗图",
  12502. "level": 22,
  12503. "relevance_score": 0.04961249999999999,
  12504. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"人类行为表情包梗图\"\n【评估对象】词条\"人类行为表情包梗图\" vs 作用域词条\"反映人类双标行为的猫咪表情包梗图\"\n【核心动机】寻找/查看\n【动机维度 0.00】原始问题和词条均无明确的动作意图,无法评估动机匹配度。\n【品类维度 0.75】核心主体“表情包梗图”匹配,限定词“人类行为”匹配,但缺失了“双标行为”和“猫咪”这两个限定词,属于核心主体匹配,存在限定词匹配但有缺失的情况。\n【最终得分 0.22】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.22已≤0.5\n【加权系数计算】\n0.22049999999999997\n 来源词总得分: 0.22\n 系数: 0.22【计算公式】base_score × 系数 = 0.22 × 0.22\n【最终得分(截断后)】0.05",
  12505. "strategy": "域内组合",
  12506. "iteration": 2,
  12507. "is_selected": true,
  12508. "type_label": "[修饰短语+中心名词]",
  12509. "source_words": [
  12510. [
  12511. "人类",
  12512. "行为"
  12513. ],
  12514. [
  12515. "表情包",
  12516. "梗图"
  12517. ]
  12518. ],
  12519. "from_segments": [
  12520. "反映人类双标行为的",
  12521. "猫咪表情包梗图"
  12522. ],
  12523. "domains": [
  12524. 2,
  12525. 3
  12526. ],
  12527. "domains_str": "D2,D3",
  12528. "source_word_details": [
  12529. {
  12530. "domain_index": 2,
  12531. "segment_type": "修饰短语",
  12532. "segment_text": "反映人类双标行为的",
  12533. "words": [
  12534. {
  12535. "text": "人类",
  12536. "score": 0.024
  12537. },
  12538. {
  12539. "text": "行为",
  12540. "score": 0.024
  12541. }
  12542. ]
  12543. },
  12544. {
  12545. "domain_index": 3,
  12546. "segment_type": "中心名词",
  12547. "segment_text": "猫咪表情包梗图",
  12548. "words": [
  12549. {
  12550. "text": "表情包",
  12551. "score": 0.15
  12552. },
  12553. {
  12554. "text": "梗图",
  12555. "score": 0.024
  12556. }
  12557. ]
  12558. }
  12559. ],
  12560. "source_scores": [
  12561. 0.024,
  12562. 0.024,
  12563. 0.15,
  12564. 0.024
  12565. ],
  12566. "is_above_sources": false,
  12567. "max_source_score": 0.15,
  12568. "scoreColor": "#ef4444"
  12569. },
  12570. "comb_人类行为猫咪表情包梗图_r2_106": {
  12571. "type": "domain_combination",
  12572. "query": "人类行为猫咪表情包梗图",
  12573. "level": 22,
  12574. "relevance_score": 0.071145,
  12575. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"人类行为猫咪表情包梗图\"\n【评估对象】词条\"人类行为猫咪表情包梗图\" vs 作用域词条\"反映人类双标行为的猫咪表情包梗图\"\n【核心动机】寻找/查看\n【动机维度 0.00】原始问题和词条均无明确的动作意图,无法评估动机匹配度。\n【品类维度 0.85】核心主体“猫咪表情包梗图”完全匹配,限定词“人类行为”匹配,但缺少了更具体的限定词“双标行为”,属于核心主体匹配且存在限定词匹配的情况。\n【最终得分 0.26】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.26已≤0.5\n【加权系数计算】\n0.27899999999999997\n 来源词总得分: 0.28\n 系数: 0.28【计算公式】base_score × 系数 = 0.26 × 0.28\n【最终得分(截断后)】0.07",
  12576. "strategy": "域内组合",
  12577. "iteration": 2,
  12578. "is_selected": true,
  12579. "type_label": "[修饰短语+中心名词]",
  12580. "source_words": [
  12581. [
  12582. "人类",
  12583. "行为"
  12584. ],
  12585. [
  12586. "猫咪",
  12587. "表情包",
  12588. "梗图"
  12589. ]
  12590. ],
  12591. "from_segments": [
  12592. "反映人类双标行为的",
  12593. "猫咪表情包梗图"
  12594. ],
  12595. "domains": [
  12596. 2,
  12597. 3
  12598. ],
  12599. "domains_str": "D2,D3",
  12600. "source_word_details": [
  12601. {
  12602. "domain_index": 2,
  12603. "segment_type": "修饰短语",
  12604. "segment_text": "反映人类双标行为的",
  12605. "words": [
  12606. {
  12607. "text": "人类",
  12608. "score": 0.024
  12609. },
  12610. {
  12611. "text": "行为",
  12612. "score": 0.024
  12613. }
  12614. ]
  12615. },
  12616. {
  12617. "domain_index": 3,
  12618. "segment_type": "中心名词",
  12619. "segment_text": "猫咪表情包梗图",
  12620. "words": [
  12621. {
  12622. "text": "猫咪",
  12623. "score": 0.09
  12624. },
  12625. {
  12626. "text": "表情包",
  12627. "score": 0.15
  12628. },
  12629. {
  12630. "text": "梗图",
  12631. "score": 0.024
  12632. }
  12633. ]
  12634. }
  12635. ],
  12636. "source_scores": [
  12637. 0.024,
  12638. 0.024,
  12639. 0.09,
  12640. 0.15,
  12641. 0.024
  12642. ],
  12643. "is_above_sources": false,
  12644. "max_source_score": 0.15,
  12645. "scoreColor": "#ef4444"
  12646. },
  12647. "comb_双标行为猫咪_r2_107": {
  12648. "type": "domain_combination",
  12649. "query": "双标行为猫咪",
  12650. "level": 22,
  12651. "relevance_score": 0.038960999999999996,
  12652. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"双标行为猫咪\"\n【评估对象】词条\"双标行为猫咪\" vs 作用域词条\"反映人类双标行为的猫咪表情包梗图\"\n【核心动机】原始问题无明确动作意图,主要描述一个主题\n【动机维度 0.00】原始问题和词条均无明确的动作意图,无法评估动机匹配度。\n【品类维度 0.78】核心主体'双标行为猫咪'与原始问题中的'双标行为的猫咪'高度匹配,但原始问题中包含'表情包梗图'这一限定词,词条中未体现,因此略有缺失。\n【最终得分 0.23】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.23已≤0.5\n【加权系数计算】\n0.16649999999999998\n 来源词总得分: 0.17\n 系数: 0.17【计算公式】base_score × 系数 = 0.23 × 0.17\n【最终得分(截断后)】0.04",
  12653. "strategy": "域内组合",
  12654. "iteration": 2,
  12655. "is_selected": true,
  12656. "type_label": "[修饰短语+中心名词]",
  12657. "source_words": [
  12658. [
  12659. "双标",
  12660. "行为"
  12661. ],
  12662. [
  12663. "猫咪"
  12664. ]
  12665. ],
  12666. "from_segments": [
  12667. "反映人类双标行为的",
  12668. "猫咪表情包梗图"
  12669. ],
  12670. "domains": [
  12671. 2,
  12672. 3
  12673. ],
  12674. "domains_str": "D2,D3",
  12675. "source_word_details": [
  12676. {
  12677. "domain_index": 2,
  12678. "segment_type": "修饰短语",
  12679. "segment_text": "反映人类双标行为的",
  12680. "words": [
  12681. {
  12682. "text": "双标",
  12683. "score": 0.024
  12684. },
  12685. {
  12686. "text": "行为",
  12687. "score": 0.024
  12688. }
  12689. ]
  12690. },
  12691. {
  12692. "domain_index": 3,
  12693. "segment_type": "中心名词",
  12694. "segment_text": "猫咪表情包梗图",
  12695. "words": [
  12696. {
  12697. "text": "猫咪",
  12698. "score": 0.09
  12699. }
  12700. ]
  12701. }
  12702. ],
  12703. "source_scores": [
  12704. 0.024,
  12705. 0.024,
  12706. 0.09
  12707. ],
  12708. "is_above_sources": false,
  12709. "max_source_score": 0.09,
  12710. "scoreColor": "#ef4444"
  12711. },
  12712. "comb_双标行为表情包_r2_108": {
  12713. "type": "domain_combination",
  12714. "query": "双标行为表情包",
  12715. "level": 22,
  12716. "relevance_score": 0.05096249999999999,
  12717. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"双标行为表情包\"\n【评估对象】词条\"双标行为表情包\" vs 作用域词条\"反映人类双标行为的猫咪表情包梗图\"\n【核心动机】原始问题无明确动作意图,主要描述一个主题\n【动机维度 0.00】原始问题和词条均无明确的动作意图,无法评估动机匹配度。\n【品类维度 0.75】核心主体'双标行为'和限定词'表情包'匹配,但缺失了'猫咪'和'梗图'这两个限定词,属于核心主体匹配,存在限定词匹配的情况。\n【最终得分 0.22】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.22已≤0.5\n【加权系数计算】\n0.22649999999999998\n 来源词总得分: 0.23\n 系数: 0.23【计算公式】base_score × 系数 = 0.22 × 0.23\n【最终得分(截断后)】0.05",
  12718. "strategy": "域内组合",
  12719. "iteration": 2,
  12720. "is_selected": true,
  12721. "type_label": "[修饰短语+中心名词]",
  12722. "source_words": [
  12723. [
  12724. "双标",
  12725. "行为"
  12726. ],
  12727. [
  12728. "表情包"
  12729. ]
  12730. ],
  12731. "from_segments": [
  12732. "反映人类双标行为的",
  12733. "猫咪表情包梗图"
  12734. ],
  12735. "domains": [
  12736. 2,
  12737. 3
  12738. ],
  12739. "domains_str": "D2,D3",
  12740. "source_word_details": [
  12741. {
  12742. "domain_index": 2,
  12743. "segment_type": "修饰短语",
  12744. "segment_text": "反映人类双标行为的",
  12745. "words": [
  12746. {
  12747. "text": "双标",
  12748. "score": 0.024
  12749. },
  12750. {
  12751. "text": "行为",
  12752. "score": 0.024
  12753. }
  12754. ]
  12755. },
  12756. {
  12757. "domain_index": 3,
  12758. "segment_type": "中心名词",
  12759. "segment_text": "猫咪表情包梗图",
  12760. "words": [
  12761. {
  12762. "text": "表情包",
  12763. "score": 0.15
  12764. }
  12765. ]
  12766. }
  12767. ],
  12768. "source_scores": [
  12769. 0.024,
  12770. 0.024,
  12771. 0.15
  12772. ],
  12773. "is_above_sources": false,
  12774. "max_source_score": 0.15,
  12775. "scoreColor": "#ef4444"
  12776. },
  12777. "comb_双标行为梗图_r2_109": {
  12778. "type": "domain_combination",
  12779. "query": "双标行为梗图",
  12780. "level": 22,
  12781. "relevance_score": 0.023517,
  12782. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"双标行为梗图\"\n【评估对象】词条\"双标行为梗图\" vs 作用域词条\"反映人类双标行为的猫咪表情包梗图\"\n【核心动机】寻找/查看\n【动机维度 0.00】原始问题和词条都无明确的动作意图,无法评估动机匹配度。\n【品类维度 0.78】核心主体“双标行为梗图”完全匹配,但缺失了限定词“猫咪表情包”,因此得分在0.75-0.95区间。\n【最终得分 0.23】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.23已≤0.5\n【加权系数计算】\n0.1005\n 来源词总得分: 0.10\n 系数: 0.10【计算公式】base_score × 系数 = 0.23 × 0.10\n【最终得分(截断后)】0.02",
  12783. "strategy": "域内组合",
  12784. "iteration": 2,
  12785. "is_selected": true,
  12786. "type_label": "[修饰短语+中心名词]",
  12787. "source_words": [
  12788. [
  12789. "双标",
  12790. "行为"
  12791. ],
  12792. [
  12793. "梗图"
  12794. ]
  12795. ],
  12796. "from_segments": [
  12797. "反映人类双标行为的",
  12798. "猫咪表情包梗图"
  12799. ],
  12800. "domains": [
  12801. 2,
  12802. 3
  12803. ],
  12804. "domains_str": "D2,D3",
  12805. "source_word_details": [
  12806. {
  12807. "domain_index": 2,
  12808. "segment_type": "修饰短语",
  12809. "segment_text": "反映人类双标行为的",
  12810. "words": [
  12811. {
  12812. "text": "双标",
  12813. "score": 0.024
  12814. },
  12815. {
  12816. "text": "行为",
  12817. "score": 0.024
  12818. }
  12819. ]
  12820. },
  12821. {
  12822. "domain_index": 3,
  12823. "segment_type": "中心名词",
  12824. "segment_text": "猫咪表情包梗图",
  12825. "words": [
  12826. {
  12827. "text": "梗图",
  12828. "score": 0.024
  12829. }
  12830. ]
  12831. }
  12832. ],
  12833. "source_scores": [
  12834. 0.024,
  12835. 0.024,
  12836. 0.024
  12837. ],
  12838. "is_above_sources": false,
  12839. "max_source_score": 0.024,
  12840. "scoreColor": "#ef4444"
  12841. },
  12842. "comb_双标行为猫咪表情包_r2_110": {
  12843. "type": "domain_combination",
  12844. "query": "双标行为猫咪表情包",
  12845. "level": 22,
  12846. "relevance_score": 0.077517,
  12847. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"双标行为猫咪表情包\"\n【评估对象】词条\"双标行为猫咪表情包\" vs 作用域词条\"反映人类双标行为的猫咪表情包梗图\"\n【核心动机】寻找/获取\n【动机维度 0.00】原始问题和词条均无明确的动作意图,无法评估动机匹配度。\n【品类维度 0.90】核心主体“双标行为猫咪表情包”完全匹配,但缺少了“梗图”这一限定词,因此略低于满分。\n【最终得分 0.27】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.27已≤0.5\n【加权系数计算】\n0.28709999999999997\n 来源词总得分: 0.29\n 系数: 0.29【计算公式】base_score × 系数 = 0.27 × 0.29\n【最终得分(截断后)】0.08",
  12848. "strategy": "域内组合",
  12849. "iteration": 2,
  12850. "is_selected": true,
  12851. "type_label": "[修饰短语+中心名词]",
  12852. "source_words": [
  12853. [
  12854. "双标",
  12855. "行为"
  12856. ],
  12857. [
  12858. "猫咪",
  12859. "表情包"
  12860. ]
  12861. ],
  12862. "from_segments": [
  12863. "反映人类双标行为的",
  12864. "猫咪表情包梗图"
  12865. ],
  12866. "domains": [
  12867. 2,
  12868. 3
  12869. ],
  12870. "domains_str": "D2,D3",
  12871. "source_word_details": [
  12872. {
  12873. "domain_index": 2,
  12874. "segment_type": "修饰短语",
  12875. "segment_text": "反映人类双标行为的",
  12876. "words": [
  12877. {
  12878. "text": "双标",
  12879. "score": 0.024
  12880. },
  12881. {
  12882. "text": "行为",
  12883. "score": 0.024
  12884. }
  12885. ]
  12886. },
  12887. {
  12888. "domain_index": 3,
  12889. "segment_type": "中心名词",
  12890. "segment_text": "猫咪表情包梗图",
  12891. "words": [
  12892. {
  12893. "text": "猫咪",
  12894. "score": 0.09
  12895. },
  12896. {
  12897. "text": "表情包",
  12898. "score": 0.15
  12899. }
  12900. ]
  12901. }
  12902. ],
  12903. "source_scores": [
  12904. 0.024,
  12905. 0.024,
  12906. 0.09,
  12907. 0.15
  12908. ],
  12909. "is_above_sources": false,
  12910. "max_source_score": 0.15,
  12911. "scoreColor": "#ef4444"
  12912. },
  12913. "comb_双标行为猫咪梗图_r2_111": {
  12914. "type": "domain_combination",
  12915. "query": "双标行为猫咪梗图",
  12916. "level": 22,
  12917. "relevance_score": 0.077517,
  12918. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"双标行为猫咪梗图\"\n【评估对象】词条\"双标行为猫咪梗图\" vs 作用域词条\"反映人类双标行为的猫咪表情包梗图\"\n【核心动机】原始问题无明确动作意图,主要描述一个主题或内容。\n【动机维度 0.00】原始问题和词条均无明确的动作意图,无法进行动机维度匹配评估。\n【品类维度 0.90】核心主体“双标行为猫咪梗图”与“反映人类双标行为的猫咪表情包梗图”高度匹配,限定词“表情包”在词条中省略但语义上一致,因此匹配度高。\n【最终得分 0.27】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.27已≤0.5\n【加权系数计算】\n0.28709999999999997\n 来源词总得分: 0.29\n 系数: 0.29【计算公式】base_score × 系数 = 0.27 × 0.29\n【最终得分(截断后)】0.08",
  12919. "strategy": "域内组合",
  12920. "iteration": 2,
  12921. "is_selected": true,
  12922. "type_label": "[修饰短语+中心名词]",
  12923. "source_words": [
  12924. [
  12925. "双标",
  12926. "行为"
  12927. ],
  12928. [
  12929. "猫咪",
  12930. "梗图"
  12931. ]
  12932. ],
  12933. "from_segments": [
  12934. "反映人类双标行为的",
  12935. "猫咪表情包梗图"
  12936. ],
  12937. "domains": [
  12938. 2,
  12939. 3
  12940. ],
  12941. "domains_str": "D2,D3",
  12942. "source_word_details": [
  12943. {
  12944. "domain_index": 2,
  12945. "segment_type": "修饰短语",
  12946. "segment_text": "反映人类双标行为的",
  12947. "words": [
  12948. {
  12949. "text": "双标",
  12950. "score": 0.024
  12951. },
  12952. {
  12953. "text": "行为",
  12954. "score": 0.024
  12955. }
  12956. ]
  12957. },
  12958. {
  12959. "domain_index": 3,
  12960. "segment_type": "中心名词",
  12961. "segment_text": "猫咪表情包梗图",
  12962. "words": [
  12963. {
  12964. "text": "猫咪",
  12965. "score": 0.09
  12966. },
  12967. {
  12968. "text": "梗图",
  12969. "score": 0.024
  12970. }
  12971. ]
  12972. }
  12973. ],
  12974. "source_scores": [
  12975. 0.024,
  12976. 0.024,
  12977. 0.09,
  12978. 0.024
  12979. ],
  12980. "is_above_sources": false,
  12981. "max_source_score": 0.09,
  12982. "scoreColor": "#ef4444"
  12983. },
  12984. "comb_双标行为表情包梗图_r2_112": {
  12985. "type": "domain_combination",
  12986. "query": "双标行为表情包梗图",
  12987. "level": 22,
  12988. "relevance_score": 0.058968,
  12989. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"双标行为表情包梗图\"\n【评估对象】词条\"双标行为表情包梗图\" vs 作用域词条\"反映人类双标行为的猫咪表情包梗图\"\n【核心动机】寻找/查看\n【动机维度 0.00】原始问题和词条均无明确的动作意图,无法评估动机匹配度。\n【品类维度 0.78】核心主体“双标行为表情包梗图”完全匹配,但缺失了限定词“猫咪”,导致匹配度略有下降。\n【最终得分 0.23】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.23已≤0.5\n【加权系数计算】\n0.252\n 来源词总得分: 0.25\n 系数: 0.25【计算公式】base_score × 系数 = 0.23 × 0.25\n【最终得分(截断后)】0.06",
  12990. "strategy": "域内组合",
  12991. "iteration": 2,
  12992. "is_selected": true,
  12993. "type_label": "[修饰短语+中心名词]",
  12994. "source_words": [
  12995. [
  12996. "双标",
  12997. "行为"
  12998. ],
  12999. [
  13000. "表情包",
  13001. "梗图"
  13002. ]
  13003. ],
  13004. "from_segments": [
  13005. "反映人类双标行为的",
  13006. "猫咪表情包梗图"
  13007. ],
  13008. "domains": [
  13009. 2,
  13010. 3
  13011. ],
  13012. "domains_str": "D2,D3",
  13013. "source_word_details": [
  13014. {
  13015. "domain_index": 2,
  13016. "segment_type": "修饰短语",
  13017. "segment_text": "反映人类双标行为的",
  13018. "words": [
  13019. {
  13020. "text": "双标",
  13021. "score": 0.024
  13022. },
  13023. {
  13024. "text": "行为",
  13025. "score": 0.024
  13026. }
  13027. ]
  13028. },
  13029. {
  13030. "domain_index": 3,
  13031. "segment_type": "中心名词",
  13032. "segment_text": "猫咪表情包梗图",
  13033. "words": [
  13034. {
  13035. "text": "表情包",
  13036. "score": 0.15
  13037. },
  13038. {
  13039. "text": "梗图",
  13040. "score": 0.024
  13041. }
  13042. ]
  13043. }
  13044. ],
  13045. "source_scores": [
  13046. 0.024,
  13047. 0.024,
  13048. 0.15,
  13049. 0.024
  13050. ],
  13051. "is_above_sources": false,
  13052. "max_source_score": 0.15,
  13053. "scoreColor": "#ef4444"
  13054. },
  13055. "comb_双标行为猫咪表情包梗图_r2_113": {
  13056. "type": "domain_combination",
  13057. "query": "双标行为猫咪表情包梗图",
  13058. "level": 22,
  13059. "relevance_score": 0.091287,
  13060. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"双标行为猫咪表情包梗图\"\n【评估对象】词条\"双标行为猫咪表情包梗图\" vs 作用域词条\"反映人类双标行为的猫咪表情包梗图\"\n【核心动机】无明确动作意图\n【动机维度 0.00】原始问题和词条均无明确的动作意图,无法评估动机匹配度。\n【品类维度 0.98】核心主体“双标行为猫咪表情包梗图”完全匹配,限定词“反映人类”在词条中被省略,但语义上是高度一致的,属于合理省略。\n【最终得分 0.29】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.29已≤0.5\n【加权系数计算】\n0.3105\n 来源词总得分: 0.31\n 系数: 0.31【计算公式】base_score × 系数 = 0.29 × 0.31\n【最终得分(截断后)】0.09",
  13061. "strategy": "域内组合",
  13062. "iteration": 2,
  13063. "is_selected": true,
  13064. "type_label": "[修饰短语+中心名词]",
  13065. "source_words": [
  13066. [
  13067. "双标",
  13068. "行为"
  13069. ],
  13070. [
  13071. "猫咪",
  13072. "表情包",
  13073. "梗图"
  13074. ]
  13075. ],
  13076. "from_segments": [
  13077. "反映人类双标行为的",
  13078. "猫咪表情包梗图"
  13079. ],
  13080. "domains": [
  13081. 2,
  13082. 3
  13083. ],
  13084. "domains_str": "D2,D3",
  13085. "source_word_details": [
  13086. {
  13087. "domain_index": 2,
  13088. "segment_type": "修饰短语",
  13089. "segment_text": "反映人类双标行为的",
  13090. "words": [
  13091. {
  13092. "text": "双标",
  13093. "score": 0.024
  13094. },
  13095. {
  13096. "text": "行为",
  13097. "score": 0.024
  13098. }
  13099. ]
  13100. },
  13101. {
  13102. "domain_index": 3,
  13103. "segment_type": "中心名词",
  13104. "segment_text": "猫咪表情包梗图",
  13105. "words": [
  13106. {
  13107. "text": "猫咪",
  13108. "score": 0.09
  13109. },
  13110. {
  13111. "text": "表情包",
  13112. "score": 0.15
  13113. },
  13114. {
  13115. "text": "梗图",
  13116. "score": 0.024
  13117. }
  13118. ]
  13119. }
  13120. ],
  13121. "source_scores": [
  13122. 0.024,
  13123. 0.024,
  13124. 0.09,
  13125. 0.15,
  13126. 0.024
  13127. ],
  13128. "is_above_sources": false,
  13129. "max_source_score": 0.15,
  13130. "scoreColor": "#ef4444"
  13131. },
  13132. "comb_反映人类双标猫咪_r2_114": {
  13133. "type": "domain_combination",
  13134. "query": "反映人类双标猫咪",
  13135. "level": 22,
  13136. "relevance_score": 0.041698799999999994,
  13137. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"反映人类双标猫咪\"\n【评估对象】词条\"反映人类双标猫咪\" vs 作用域词条\"反映人类双标行为的猫咪表情包梗图\"\n【核心动机】寻找/获取\n【动机维度 0.00】词条无明确动作意图,无法评估动作匹配度\n【品类维度 0.78】核心主体“人类双标猫咪”匹配,但缺少了限定词“表情包梗图”,导致匹配度略有下降。\n【最终得分 0.23】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.23已≤0.5\n【加权系数计算】\n0.1782\n 来源词总得分: 0.18\n 系数: 0.18【计算公式】base_score × 系数 = 0.23 × 0.18\n【最终得分(截断后)】0.04",
  13138. "strategy": "域内组合",
  13139. "iteration": 2,
  13140. "is_selected": true,
  13141. "type_label": "[修饰短语+中心名词]",
  13142. "source_words": [
  13143. [
  13144. "反映",
  13145. "人类",
  13146. "双标"
  13147. ],
  13148. [
  13149. "猫咪"
  13150. ]
  13151. ],
  13152. "from_segments": [
  13153. "反映人类双标行为的",
  13154. "猫咪表情包梗图"
  13155. ],
  13156. "domains": [
  13157. 2,
  13158. 3
  13159. ],
  13160. "domains_str": "D2,D3",
  13161. "source_word_details": [
  13162. {
  13163. "domain_index": 2,
  13164. "segment_type": "修饰短语",
  13165. "segment_text": "反映人类双标行为的",
  13166. "words": [
  13167. {
  13168. "text": "反映",
  13169. "score": 0.024
  13170. },
  13171. {
  13172. "text": "人类",
  13173. "score": 0.024
  13174. },
  13175. {
  13176. "text": "双标",
  13177. "score": 0.024
  13178. }
  13179. ]
  13180. },
  13181. {
  13182. "domain_index": 3,
  13183. "segment_type": "中心名词",
  13184. "segment_text": "猫咪表情包梗图",
  13185. "words": [
  13186. {
  13187. "text": "猫咪",
  13188. "score": 0.09
  13189. }
  13190. ]
  13191. }
  13192. ],
  13193. "source_scores": [
  13194. 0.024,
  13195. 0.024,
  13196. 0.024,
  13197. 0.09
  13198. ],
  13199. "is_above_sources": false,
  13200. "max_source_score": 0.09,
  13201. "scoreColor": "#ef4444"
  13202. },
  13203. "comb_反映人类双标表情包_r2_115": {
  13204. "type": "domain_combination",
  13205. "query": "反映人类双标表情包",
  13206. "level": 22,
  13207. "relevance_score": 0.053595,
  13208. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"反映人类双标表情包\"\n【评估对象】词条\"反映人类双标表情包\" vs 作用域词条\"反映人类双标行为的猫咪表情包梗图\"\n【核心动机】无明确动作意图,主要为描述性内容\n【动机维度 0.00】原始问题和词条均无明确的动作意图,无法进行动机维度评估。\n【品类维度 0.75】核心主体“反映人类双标表情包”匹配,但缺失了限定词“猫咪”和“梗图”。\n【最终得分 0.22】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.22已≤0.5\n【加权系数计算】\n0.2382\n 来源词总得分: 0.24\n 系数: 0.24【计算公式】base_score × 系数 = 0.22 × 0.24\n【最终得分(截断后)】0.05",
  13209. "strategy": "域内组合",
  13210. "iteration": 2,
  13211. "is_selected": true,
  13212. "type_label": "[修饰短语+中心名词]",
  13213. "source_words": [
  13214. [
  13215. "反映",
  13216. "人类",
  13217. "双标"
  13218. ],
  13219. [
  13220. "表情包"
  13221. ]
  13222. ],
  13223. "from_segments": [
  13224. "反映人类双标行为的",
  13225. "猫咪表情包梗图"
  13226. ],
  13227. "domains": [
  13228. 2,
  13229. 3
  13230. ],
  13231. "domains_str": "D2,D3",
  13232. "source_word_details": [
  13233. {
  13234. "domain_index": 2,
  13235. "segment_type": "修饰短语",
  13236. "segment_text": "反映人类双标行为的",
  13237. "words": [
  13238. {
  13239. "text": "反映",
  13240. "score": 0.024
  13241. },
  13242. {
  13243. "text": "人类",
  13244. "score": 0.024
  13245. },
  13246. {
  13247. "text": "双标",
  13248. "score": 0.024
  13249. }
  13250. ]
  13251. },
  13252. {
  13253. "domain_index": 3,
  13254. "segment_type": "中心名词",
  13255. "segment_text": "猫咪表情包梗图",
  13256. "words": [
  13257. {
  13258. "text": "表情包",
  13259. "score": 0.15
  13260. }
  13261. ]
  13262. }
  13263. ],
  13264. "source_scores": [
  13265. 0.024,
  13266. 0.024,
  13267. 0.024,
  13268. 0.15
  13269. ],
  13270. "is_above_sources": false,
  13271. "max_source_score": 0.15,
  13272. "scoreColor": "#ef4444"
  13273. },
  13274. "comb_反映人类双标梗图_r2_116": {
  13275. "type": "domain_combination",
  13276. "query": "反映人类双标梗图",
  13277. "level": 22,
  13278. "relevance_score": 0.0262548,
  13279. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"反映人类双标梗图\"\n【评估对象】词条\"反映人类双标梗图\" vs 作用域词条\"反映人类双标行为的猫咪表情包梗图\"\n【核心动机】寻找/查看\n【动机维度 0.00】原始问题和词条均无明确的动作意图,无法评估动机匹配度。\n【品类维度 0.78】核心主体“人类双标梗图”完全匹配,但限定词“猫咪表情包”缺失,属于核心主体匹配但限定词部分缺失的情况。\n【最终得分 0.23】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.23已≤0.5\n【加权系数计算】\n0.1122\n 来源词总得分: 0.11\n 系数: 0.11【计算公式】base_score × 系数 = 0.23 × 0.11\n【最终得分(截断后)】0.03",
  13280. "strategy": "域内组合",
  13281. "iteration": 2,
  13282. "is_selected": true,
  13283. "type_label": "[修饰短语+中心名词]",
  13284. "source_words": [
  13285. [
  13286. "反映",
  13287. "人类",
  13288. "双标"
  13289. ],
  13290. [
  13291. "梗图"
  13292. ]
  13293. ],
  13294. "from_segments": [
  13295. "反映人类双标行为的",
  13296. "猫咪表情包梗图"
  13297. ],
  13298. "domains": [
  13299. 2,
  13300. 3
  13301. ],
  13302. "domains_str": "D2,D3",
  13303. "source_word_details": [
  13304. {
  13305. "domain_index": 2,
  13306. "segment_type": "修饰短语",
  13307. "segment_text": "反映人类双标行为的",
  13308. "words": [
  13309. {
  13310. "text": "反映",
  13311. "score": 0.024
  13312. },
  13313. {
  13314. "text": "人类",
  13315. "score": 0.024
  13316. },
  13317. {
  13318. "text": "双标",
  13319. "score": 0.024
  13320. }
  13321. ]
  13322. },
  13323. {
  13324. "domain_index": 3,
  13325. "segment_type": "中心名词",
  13326. "segment_text": "猫咪表情包梗图",
  13327. "words": [
  13328. {
  13329. "text": "梗图",
  13330. "score": 0.024
  13331. }
  13332. ]
  13333. }
  13334. ],
  13335. "source_scores": [
  13336. 0.024,
  13337. 0.024,
  13338. 0.024,
  13339. 0.024
  13340. ],
  13341. "is_above_sources": true,
  13342. "max_source_score": 0.024,
  13343. "scoreColor": "#22c55e"
  13344. },
  13345. "comb_反映人类双标猫咪表情包_r2_117": {
  13346. "type": "domain_combination",
  13347. "query": "反映人类双标猫咪表情包",
  13348. "level": 22,
  13349. "relevance_score": 0.28565279999999993,
  13350. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"反映人类双标猫咪表情包\"\n【评估对象】词条\"反映人类双标猫咪表情包\" vs 作用域词条\"反映人类双标行为的猫咪表情包梗图\"\n【核心动机】寻找/查看\n【动机维度 0.98】原始问题和词条都隐含了'寻找/查看'的动机,词条是原始问题动机的同义表达,动机完全一致。\n【品类维度 0.90】核心主体“人类双标行为的猫咪表情包”与“人类双标猫咪表情包”高度匹配,限定词“梗图”在词条中缺失,但语义上高度相关,因此评分较高。\n【最终得分 0.96】\n【规则说明】规则A:动机高分保护生效(动机0.98≥0.8),实际得分0.96已≥0.7\n【加权系数计算】\n0.29879999999999995\n 来源词总得分: 0.30\n 系数: 0.30【计算公式】base_score × 系数 = 0.96 × 0.30\n【最终得分(截断后)】0.29",
  13351. "strategy": "域内组合",
  13352. "iteration": 2,
  13353. "is_selected": true,
  13354. "type_label": "[修饰短语+中心名词]",
  13355. "source_words": [
  13356. [
  13357. "反映",
  13358. "人类",
  13359. "双标"
  13360. ],
  13361. [
  13362. "猫咪",
  13363. "表情包"
  13364. ]
  13365. ],
  13366. "from_segments": [
  13367. "反映人类双标行为的",
  13368. "猫咪表情包梗图"
  13369. ],
  13370. "domains": [
  13371. 2,
  13372. 3
  13373. ],
  13374. "domains_str": "D2,D3",
  13375. "source_word_details": [
  13376. {
  13377. "domain_index": 2,
  13378. "segment_type": "修饰短语",
  13379. "segment_text": "反映人类双标行为的",
  13380. "words": [
  13381. {
  13382. "text": "反映",
  13383. "score": 0.024
  13384. },
  13385. {
  13386. "text": "人类",
  13387. "score": 0.024
  13388. },
  13389. {
  13390. "text": "双标",
  13391. "score": 0.024
  13392. }
  13393. ]
  13394. },
  13395. {
  13396. "domain_index": 3,
  13397. "segment_type": "中心名词",
  13398. "segment_text": "猫咪表情包梗图",
  13399. "words": [
  13400. {
  13401. "text": "猫咪",
  13402. "score": 0.09
  13403. },
  13404. {
  13405. "text": "表情包",
  13406. "score": 0.15
  13407. }
  13408. ]
  13409. }
  13410. ],
  13411. "source_scores": [
  13412. 0.024,
  13413. 0.024,
  13414. 0.024,
  13415. 0.09,
  13416. 0.15
  13417. ],
  13418. "is_above_sources": true,
  13419. "max_source_score": 0.15,
  13420. "scoreColor": "#22c55e"
  13421. },
  13422. "comb_反映人类双标猫咪梗图_r2_118": {
  13423. "type": "domain_combination",
  13424. "query": "反映人类双标猫咪梗图",
  13425. "level": 22,
  13426. "relevance_score": 0.080676,
  13427. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"反映人类双标猫咪梗图\"\n【评估对象】词条\"反映人类双标猫咪梗图\" vs 作用域词条\"反映人类双标行为的猫咪表情包梗图\"\n【核心动机】寻找/了解\n【动机维度 0.00】原始问题和词条均无明确的动作意图,无法评估动机匹配度。\n【品类维度 0.90】核心主体“人类双标猫咪梗图”完全匹配,限定词“反映”匹配,但缺少“表情包”这一限定词,因此略有扣分。\n【最终得分 0.27】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.27已≤0.5\n【加权系数计算】\n0.29879999999999995\n 来源词总得分: 0.30\n 系数: 0.30【计算公式】base_score × 系数 = 0.27 × 0.30\n【最终得分(截断后)】0.08",
  13428. "strategy": "域内组合",
  13429. "iteration": 2,
  13430. "is_selected": true,
  13431. "type_label": "[修饰短语+中心名词]",
  13432. "source_words": [
  13433. [
  13434. "反映",
  13435. "人类",
  13436. "双标"
  13437. ],
  13438. [
  13439. "猫咪",
  13440. "梗图"
  13441. ]
  13442. ],
  13443. "from_segments": [
  13444. "反映人类双标行为的",
  13445. "猫咪表情包梗图"
  13446. ],
  13447. "domains": [
  13448. 2,
  13449. 3
  13450. ],
  13451. "domains_str": "D2,D3",
  13452. "source_word_details": [
  13453. {
  13454. "domain_index": 2,
  13455. "segment_type": "修饰短语",
  13456. "segment_text": "反映人类双标行为的",
  13457. "words": [
  13458. {
  13459. "text": "反映",
  13460. "score": 0.024
  13461. },
  13462. {
  13463. "text": "人类",
  13464. "score": 0.024
  13465. },
  13466. {
  13467. "text": "双标",
  13468. "score": 0.024
  13469. }
  13470. ]
  13471. },
  13472. {
  13473. "domain_index": 3,
  13474. "segment_type": "中心名词",
  13475. "segment_text": "猫咪表情包梗图",
  13476. "words": [
  13477. {
  13478. "text": "猫咪",
  13479. "score": 0.09
  13480. },
  13481. {
  13482. "text": "梗图",
  13483. "score": 0.024
  13484. }
  13485. ]
  13486. }
  13487. ],
  13488. "source_scores": [
  13489. 0.024,
  13490. 0.024,
  13491. 0.024,
  13492. 0.09,
  13493. 0.024
  13494. ],
  13495. "is_above_sources": false,
  13496. "max_source_score": 0.09,
  13497. "scoreColor": "#ef4444"
  13498. },
  13499. "comb_反映人类双标表情包梗图_r2_119": {
  13500. "type": "domain_combination",
  13501. "query": "反映人类双标表情包梗图",
  13502. "level": 22,
  13503. "relevance_score": 0.06170579999999999,
  13504. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"反映人类双标表情包梗图\"\n【评估对象】词条\"反映人类双标表情包梗图\" vs 作用域词条\"反映人类双标行为的猫咪表情包梗图\"\n【核心动机】寻找/查看\n【动机维度 0.00】原始问题和词条均无明确动作意图,无法评估动作匹配度。\n【品类维度 0.78】核心主体“反映人类双标表情包梗图”完全匹配,但限定词“猫咪”缺失,属于核心主体匹配但限定词部分缺失的情况。\n【最终得分 0.23】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.23已≤0.5\n【加权系数计算】\n0.2637\n 来源词总得分: 0.26\n 系数: 0.26【计算公式】base_score × 系数 = 0.23 × 0.26\n【最终得分(截断后)】0.06",
  13505. "strategy": "域内组合",
  13506. "iteration": 2,
  13507. "is_selected": true,
  13508. "type_label": "[修饰短语+中心名词]",
  13509. "source_words": [
  13510. [
  13511. "反映",
  13512. "人类",
  13513. "双标"
  13514. ],
  13515. [
  13516. "表情包",
  13517. "梗图"
  13518. ]
  13519. ],
  13520. "from_segments": [
  13521. "反映人类双标行为的",
  13522. "猫咪表情包梗图"
  13523. ],
  13524. "domains": [
  13525. 2,
  13526. 3
  13527. ],
  13528. "domains_str": "D2,D3",
  13529. "source_word_details": [
  13530. {
  13531. "domain_index": 2,
  13532. "segment_type": "修饰短语",
  13533. "segment_text": "反映人类双标行为的",
  13534. "words": [
  13535. {
  13536. "text": "反映",
  13537. "score": 0.024
  13538. },
  13539. {
  13540. "text": "人类",
  13541. "score": 0.024
  13542. },
  13543. {
  13544. "text": "双标",
  13545. "score": 0.024
  13546. }
  13547. ]
  13548. },
  13549. {
  13550. "domain_index": 3,
  13551. "segment_type": "中心名词",
  13552. "segment_text": "猫咪表情包梗图",
  13553. "words": [
  13554. {
  13555. "text": "表情包",
  13556. "score": 0.15
  13557. },
  13558. {
  13559. "text": "梗图",
  13560. "score": 0.024
  13561. }
  13562. ]
  13563. }
  13564. ],
  13565. "source_scores": [
  13566. 0.024,
  13567. 0.024,
  13568. 0.024,
  13569. 0.15,
  13570. 0.024
  13571. ],
  13572. "is_above_sources": false,
  13573. "max_source_score": 0.15,
  13574. "scoreColor": "#ef4444"
  13575. },
  13576. "comb_反映人类双标猫咪表情包梗图_r2_120": {
  13577. "type": "domain_combination",
  13578. "query": "反映人类双标猫咪表情包梗图",
  13579. "level": 22,
  13580. "relevance_score": 0.09472679999999999,
  13581. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"反映人类双标猫咪表情包梗图\"\n【评估对象】词条\"反映人类双标猫咪表情包梗图\" vs 作用域词条\"反映人类双标行为的猫咪表情包梗图\"\n【核心动机】寻找/查看\n【动机维度 0.00】原始问题和词条均无明确的动作意图,无法评估动机匹配度。\n【品类维度 0.98】核心主体和所有关键限定词(人类双标行为、猫咪表情包梗图)都完全匹配,仅在限定词'行为'上存在细微差异,但语义上高度一致。\n【最终得分 0.29】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.29已≤0.5\n【加权系数计算】\n0.3222\n 来源词总得分: 0.32\n 系数: 0.32【计算公式】base_score × 系数 = 0.29 × 0.32\n【最终得分(截断后)】0.09",
  13582. "strategy": "域内组合",
  13583. "iteration": 2,
  13584. "is_selected": true,
  13585. "type_label": "[修饰短语+中心名词]",
  13586. "source_words": [
  13587. [
  13588. "反映",
  13589. "人类",
  13590. "双标"
  13591. ],
  13592. [
  13593. "猫咪",
  13594. "表情包",
  13595. "梗图"
  13596. ]
  13597. ],
  13598. "from_segments": [
  13599. "反映人类双标行为的",
  13600. "猫咪表情包梗图"
  13601. ],
  13602. "domains": [
  13603. 2,
  13604. 3
  13605. ],
  13606. "domains_str": "D2,D3",
  13607. "source_word_details": [
  13608. {
  13609. "domain_index": 2,
  13610. "segment_type": "修饰短语",
  13611. "segment_text": "反映人类双标行为的",
  13612. "words": [
  13613. {
  13614. "text": "反映",
  13615. "score": 0.024
  13616. },
  13617. {
  13618. "text": "人类",
  13619. "score": 0.024
  13620. },
  13621. {
  13622. "text": "双标",
  13623. "score": 0.024
  13624. }
  13625. ]
  13626. },
  13627. {
  13628. "domain_index": 3,
  13629. "segment_type": "中心名词",
  13630. "segment_text": "猫咪表情包梗图",
  13631. "words": [
  13632. {
  13633. "text": "猫咪",
  13634. "score": 0.09
  13635. },
  13636. {
  13637. "text": "表情包",
  13638. "score": 0.15
  13639. },
  13640. {
  13641. "text": "梗图",
  13642. "score": 0.024
  13643. }
  13644. ]
  13645. }
  13646. ],
  13647. "source_scores": [
  13648. 0.024,
  13649. 0.024,
  13650. 0.024,
  13651. 0.09,
  13652. 0.15,
  13653. 0.024
  13654. ],
  13655. "is_above_sources": false,
  13656. "max_source_score": 0.15,
  13657. "scoreColor": "#ef4444"
  13658. },
  13659. "comb_反映人类行为猫咪_r2_121": {
  13660. "type": "domain_combination",
  13661. "query": "反映人类行为猫咪",
  13662. "level": 22,
  13663. "relevance_score": 0.0374868,
  13664. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"反映人类行为猫咪\"\n【评估对象】词条\"反映人类行为猫咪\" vs 作用域词条\"反映人类双标行为的猫咪表情包梗图\"\n【核心动机】无明确动作意图\n【动机维度 0.00】原始问题和词条均无明确动作意图,无法评估动作匹配度。\n【品类维度 0.78】核心主体'人类行为猫咪'与原始问题'人类双标行为的猫咪表情包梗图'中的'人类双标行为的猫咪'部分高度匹配,但缺少了'双标'和'表情包梗图'这两个限定词,因此给予较高但非满分。\n【最终得分 0.23】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.23已≤0.5\n【加权系数计算】\n0.1602\n 来源词总得分: 0.16\n 系数: 0.16【计算公式】base_score × 系数 = 0.23 × 0.16\n【最终得分(截断后)】0.04",
  13665. "strategy": "域内组合",
  13666. "iteration": 2,
  13667. "is_selected": true,
  13668. "type_label": "[修饰短语+中心名词]",
  13669. "source_words": [
  13670. [
  13671. "反映",
  13672. "人类",
  13673. "行为"
  13674. ],
  13675. [
  13676. "猫咪"
  13677. ]
  13678. ],
  13679. "from_segments": [
  13680. "反映人类双标行为的",
  13681. "猫咪表情包梗图"
  13682. ],
  13683. "domains": [
  13684. 2,
  13685. 3
  13686. ],
  13687. "domains_str": "D2,D3",
  13688. "source_word_details": [
  13689. {
  13690. "domain_index": 2,
  13691. "segment_type": "修饰短语",
  13692. "segment_text": "反映人类双标行为的",
  13693. "words": [
  13694. {
  13695. "text": "反映",
  13696. "score": 0.024
  13697. },
  13698. {
  13699. "text": "人类",
  13700. "score": 0.024
  13701. },
  13702. {
  13703. "text": "行为",
  13704. "score": 0.024
  13705. }
  13706. ]
  13707. },
  13708. {
  13709. "domain_index": 3,
  13710. "segment_type": "中心名词",
  13711. "segment_text": "猫咪表情包梗图",
  13712. "words": [
  13713. {
  13714. "text": "猫咪",
  13715. "score": 0.09
  13716. }
  13717. ]
  13718. }
  13719. ],
  13720. "source_scores": [
  13721. 0.024,
  13722. 0.024,
  13723. 0.024,
  13724. 0.09
  13725. ],
  13726. "is_above_sources": false,
  13727. "max_source_score": 0.09,
  13728. "scoreColor": "#ef4444"
  13729. },
  13730. "comb_反映人类行为表情包_r2_122": {
  13731. "type": "domain_combination",
  13732. "query": "反映人类行为表情包",
  13733. "level": 22,
  13734. "relevance_score": 0.0515268,
  13735. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"反映人类行为表情包\"\n【评估对象】词条\"反映人类行为表情包\" vs 作用域词条\"反映人类双标行为的猫咪表情包梗图\"\n【核心动机】原始问题无明确动作意图,主要描述一个主题或内容\n【动机维度 0.00】原始问题和词条均无明确的动作意图,无法评估动作匹配度。\n【品类维度 0.78】核心主体“表情包”和“人类行为”匹配,但限定词“双标行为”、“猫咪”、“梗图”未匹配,属于核心主体匹配,存在限定词匹配的情况。\n【最终得分 0.23】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.23已≤0.5\n【加权系数计算】\n0.2202\n 来源词总得分: 0.22\n 系数: 0.22【计算公式】base_score × 系数 = 0.23 × 0.22\n【最终得分(截断后)】0.05",
  13736. "strategy": "域内组合",
  13737. "iteration": 2,
  13738. "is_selected": true,
  13739. "type_label": "[修饰短语+中心名词]",
  13740. "source_words": [
  13741. [
  13742. "反映",
  13743. "人类",
  13744. "行为"
  13745. ],
  13746. [
  13747. "表情包"
  13748. ]
  13749. ],
  13750. "from_segments": [
  13751. "反映人类双标行为的",
  13752. "猫咪表情包梗图"
  13753. ],
  13754. "domains": [
  13755. 2,
  13756. 3
  13757. ],
  13758. "domains_str": "D2,D3",
  13759. "source_word_details": [
  13760. {
  13761. "domain_index": 2,
  13762. "segment_type": "修饰短语",
  13763. "segment_text": "反映人类双标行为的",
  13764. "words": [
  13765. {
  13766. "text": "反映",
  13767. "score": 0.024
  13768. },
  13769. {
  13770. "text": "人类",
  13771. "score": 0.024
  13772. },
  13773. {
  13774. "text": "行为",
  13775. "score": 0.024
  13776. }
  13777. ]
  13778. },
  13779. {
  13780. "domain_index": 3,
  13781. "segment_type": "中心名词",
  13782. "segment_text": "猫咪表情包梗图",
  13783. "words": [
  13784. {
  13785. "text": "表情包",
  13786. "score": 0.15
  13787. }
  13788. ]
  13789. }
  13790. ],
  13791. "source_scores": [
  13792. 0.024,
  13793. 0.024,
  13794. 0.024,
  13795. 0.15
  13796. ],
  13797. "is_above_sources": false,
  13798. "max_source_score": 0.15,
  13799. "scoreColor": "#ef4444"
  13800. },
  13801. "comb_反映人类行为梗图_r2_123": {
  13802. "type": "domain_combination",
  13803. "query": "反映人类行为梗图",
  13804. "level": 22,
  13805. "relevance_score": 0.01413,
  13806. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"反映人类行为梗图\"\n【评估对象】词条\"反映人类行为梗图\" vs 作用域词条\"反映人类双标行为的猫咪表情包梗图\"\n【核心动机】寻找/查看\n【动机维度 0.00】原始问题和词条均无明确的动作意图,无法评估动机匹配度。\n【品类维度 0.50】核心主体'人类行为梗图'匹配,但限定词'双标'和'猫咪表情包'缺失,导致匹配度中等。\n【最终得分 0.15】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.15已≤0.5\n【加权系数计算】\n0.0942\n 来源词总得分: 0.09\n 系数: 0.09【计算公式】base_score × 系数 = 0.15 × 0.09\n【最终得分(截断后)】0.01",
  13807. "strategy": "域内组合",
  13808. "iteration": 2,
  13809. "is_selected": true,
  13810. "type_label": "[修饰短语+中心名词]",
  13811. "source_words": [
  13812. [
  13813. "反映",
  13814. "人类",
  13815. "行为"
  13816. ],
  13817. [
  13818. "梗图"
  13819. ]
  13820. ],
  13821. "from_segments": [
  13822. "反映人类双标行为的",
  13823. "猫咪表情包梗图"
  13824. ],
  13825. "domains": [
  13826. 2,
  13827. 3
  13828. ],
  13829. "domains_str": "D2,D3",
  13830. "source_word_details": [
  13831. {
  13832. "domain_index": 2,
  13833. "segment_type": "修饰短语",
  13834. "segment_text": "反映人类双标行为的",
  13835. "words": [
  13836. {
  13837. "text": "反映",
  13838. "score": 0.024
  13839. },
  13840. {
  13841. "text": "人类",
  13842. "score": 0.024
  13843. },
  13844. {
  13845. "text": "行为",
  13846. "score": 0.024
  13847. }
  13848. ]
  13849. },
  13850. {
  13851. "domain_index": 3,
  13852. "segment_type": "中心名词",
  13853. "segment_text": "猫咪表情包梗图",
  13854. "words": [
  13855. {
  13856. "text": "梗图",
  13857. "score": 0.024
  13858. }
  13859. ]
  13860. }
  13861. ],
  13862. "source_scores": [
  13863. 0.024,
  13864. 0.024,
  13865. 0.024,
  13866. 0.024
  13867. ],
  13868. "is_above_sources": false,
  13869. "max_source_score": 0.024,
  13870. "scoreColor": "#ef4444"
  13871. },
  13872. "comb_反映人类行为猫咪表情包_r2_124": {
  13873. "type": "domain_combination",
  13874. "query": "反映人类行为猫咪表情包",
  13875. "level": 22,
  13876. "relevance_score": 0.071604,
  13877. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"反映人类行为猫咪表情包\"\n【评估对象】词条\"反映人类行为猫咪表情包\" vs 作用域词条\"反映人类双标行为的猫咪表情包梗图\"\n【核心动机】寻找/查看\n【动机维度 0.00】原始问题和词条均无明确的动作意图,无法评估动机匹配度。\n【品类维度 0.85】核心主体“人类行为猫咪表情包”完全匹配,限定词“双标”缺失,但整体品类高度相关。\n【最终得分 0.26】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.26已≤0.5\n【加权系数计算】\n0.2808\n 来源词总得分: 0.28\n 系数: 0.28【计算公式】base_score × 系数 = 0.26 × 0.28\n【最终得分(截断后)】0.07",
  13878. "strategy": "域内组合",
  13879. "iteration": 2,
  13880. "is_selected": true,
  13881. "type_label": "[修饰短语+中心名词]",
  13882. "source_words": [
  13883. [
  13884. "反映",
  13885. "人类",
  13886. "行为"
  13887. ],
  13888. [
  13889. "猫咪",
  13890. "表情包"
  13891. ]
  13892. ],
  13893. "from_segments": [
  13894. "反映人类双标行为的",
  13895. "猫咪表情包梗图"
  13896. ],
  13897. "domains": [
  13898. 2,
  13899. 3
  13900. ],
  13901. "domains_str": "D2,D3",
  13902. "source_word_details": [
  13903. {
  13904. "domain_index": 2,
  13905. "segment_type": "修饰短语",
  13906. "segment_text": "反映人类双标行为的",
  13907. "words": [
  13908. {
  13909. "text": "反映",
  13910. "score": 0.024
  13911. },
  13912. {
  13913. "text": "人类",
  13914. "score": 0.024
  13915. },
  13916. {
  13917. "text": "行为",
  13918. "score": 0.024
  13919. }
  13920. ]
  13921. },
  13922. {
  13923. "domain_index": 3,
  13924. "segment_type": "中心名词",
  13925. "segment_text": "猫咪表情包梗图",
  13926. "words": [
  13927. {
  13928. "text": "猫咪",
  13929. "score": 0.09
  13930. },
  13931. {
  13932. "text": "表情包",
  13933. "score": 0.15
  13934. }
  13935. ]
  13936. }
  13937. ],
  13938. "source_scores": [
  13939. 0.024,
  13940. 0.024,
  13941. 0.024,
  13942. 0.09,
  13943. 0.15
  13944. ],
  13945. "is_above_sources": false,
  13946. "max_source_score": 0.15,
  13947. "scoreColor": "#ef4444"
  13948. },
  13949. "comb_反映人类行为猫咪梗图_r2_125": {
  13950. "type": "domain_combination",
  13951. "query": "反映人类行为猫咪梗图",
  13952. "level": 22,
  13953. "relevance_score": 0.071604,
  13954. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"反映人类行为猫咪梗图\"\n【评估对象】词条\"反映人类行为猫咪梗图\" vs 作用域词条\"反映人类双标行为的猫咪表情包梗图\"\n【核心动机】寻找/查看\n【动机维度 0.00】原始问题和词条均无明确的动作意图,无法评估动机匹配度。\n【品类维度 0.85】核心主体“人类行为猫咪梗图”完全匹配,但缺失了限定词“双标”\n【最终得分 0.26】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.26已≤0.5\n【加权系数计算】\n0.2808\n 来源词总得分: 0.28\n 系数: 0.28【计算公式】base_score × 系数 = 0.26 × 0.28\n【最终得分(截断后)】0.07",
  13955. "strategy": "域内组合",
  13956. "iteration": 2,
  13957. "is_selected": true,
  13958. "type_label": "[修饰短语+中心名词]",
  13959. "source_words": [
  13960. [
  13961. "反映",
  13962. "人类",
  13963. "行为"
  13964. ],
  13965. [
  13966. "猫咪",
  13967. "梗图"
  13968. ]
  13969. ],
  13970. "from_segments": [
  13971. "反映人类双标行为的",
  13972. "猫咪表情包梗图"
  13973. ],
  13974. "domains": [
  13975. 2,
  13976. 3
  13977. ],
  13978. "domains_str": "D2,D3",
  13979. "source_word_details": [
  13980. {
  13981. "domain_index": 2,
  13982. "segment_type": "修饰短语",
  13983. "segment_text": "反映人类双标行为的",
  13984. "words": [
  13985. {
  13986. "text": "反映",
  13987. "score": 0.024
  13988. },
  13989. {
  13990. "text": "人类",
  13991. "score": 0.024
  13992. },
  13993. {
  13994. "text": "行为",
  13995. "score": 0.024
  13996. }
  13997. ]
  13998. },
  13999. {
  14000. "domain_index": 3,
  14001. "segment_type": "中心名词",
  14002. "segment_text": "猫咪表情包梗图",
  14003. "words": [
  14004. {
  14005. "text": "猫咪",
  14006. "score": 0.09
  14007. },
  14008. {
  14009. "text": "梗图",
  14010. "score": 0.024
  14011. }
  14012. ]
  14013. }
  14014. ],
  14015. "source_scores": [
  14016. 0.024,
  14017. 0.024,
  14018. 0.024,
  14019. 0.09,
  14020. 0.024
  14021. ],
  14022. "is_above_sources": false,
  14023. "max_source_score": 0.09,
  14024. "scoreColor": "#ef4444"
  14025. },
  14026. "comb_反映人类行为表情包梗图_r2_126": {
  14027. "type": "domain_combination",
  14028. "query": "反映人类行为表情包梗图",
  14029. "level": 22,
  14030. "relevance_score": 0.05749379999999999,
  14031. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"反映人类行为表情包梗图\"\n【评估对象】词条\"反映人类行为表情包梗图\" vs 作用域词条\"反映人类双标行为的猫咪表情包梗图\"\n【核心动机】寻找/查看\n【动机维度 0.00】原始问题和词条均无明确的动作意图,无法评估动机匹配度。\n【品类维度 0.78】核心主体“表情包梗图”匹配,限定词“人类行为”匹配,但缺失了“双标”和“猫咪”这两个限定词,属于核心主体匹配,存在限定词匹配的情况。\n【最终得分 0.23】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.23已≤0.5\n【加权系数计算】\n0.24569999999999997\n 来源词总得分: 0.25\n 系数: 0.25【计算公式】base_score × 系数 = 0.23 × 0.25\n【最终得分(截断后)】0.06",
  14032. "strategy": "域内组合",
  14033. "iteration": 2,
  14034. "is_selected": true,
  14035. "type_label": "[修饰短语+中心名词]",
  14036. "source_words": [
  14037. [
  14038. "反映",
  14039. "人类",
  14040. "行为"
  14041. ],
  14042. [
  14043. "表情包",
  14044. "梗图"
  14045. ]
  14046. ],
  14047. "from_segments": [
  14048. "反映人类双标行为的",
  14049. "猫咪表情包梗图"
  14050. ],
  14051. "domains": [
  14052. 2,
  14053. 3
  14054. ],
  14055. "domains_str": "D2,D3",
  14056. "source_word_details": [
  14057. {
  14058. "domain_index": 2,
  14059. "segment_type": "修饰短语",
  14060. "segment_text": "反映人类双标行为的",
  14061. "words": [
  14062. {
  14063. "text": "反映",
  14064. "score": 0.024
  14065. },
  14066. {
  14067. "text": "人类",
  14068. "score": 0.024
  14069. },
  14070. {
  14071. "text": "行为",
  14072. "score": 0.024
  14073. }
  14074. ]
  14075. },
  14076. {
  14077. "domain_index": 3,
  14078. "segment_type": "中心名词",
  14079. "segment_text": "猫咪表情包梗图",
  14080. "words": [
  14081. {
  14082. "text": "表情包",
  14083. "score": 0.15
  14084. },
  14085. {
  14086. "text": "梗图",
  14087. "score": 0.024
  14088. }
  14089. ]
  14090. }
  14091. ],
  14092. "source_scores": [
  14093. 0.024,
  14094. 0.024,
  14095. 0.024,
  14096. 0.15,
  14097. 0.024
  14098. ],
  14099. "is_above_sources": false,
  14100. "max_source_score": 0.15,
  14101. "scoreColor": "#ef4444"
  14102. },
  14103. "comb_反映人类行为猫咪表情包梗图_r2_127": {
  14104. "type": "domain_combination",
  14105. "query": "反映人类行为猫咪表情包梗图",
  14106. "level": 22,
  14107. "relevance_score": 0.07118279999999999,
  14108. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"反映人类行为猫咪表情包梗图\"\n【评估对象】词条\"反映人类行为猫咪表情包梗图\" vs 作用域词条\"反映人类双标行为的猫咪表情包梗图\"\n【核心动机】寻找/查看\n【动机维度 0.00】原始问题和词条均无明确动作意图,无法评估动作匹配度。\n【品类维度 0.78】核心主体“猫咪表情包梗图”和限定词“反映人类行为”完全匹配,但缺失了“双标”这一关键限定词,属于核心主体匹配,存在限定词匹配的情况。\n【最终得分 0.23】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.23已≤0.5\n【加权系数计算】\n0.30419999999999997\n 来源词总得分: 0.30\n 系数: 0.30【计算公式】base_score × 系数 = 0.23 × 0.30\n【最终得分(截断后)】0.07",
  14109. "strategy": "域内组合",
  14110. "iteration": 2,
  14111. "is_selected": true,
  14112. "type_label": "[修饰短语+中心名词]",
  14113. "source_words": [
  14114. [
  14115. "反映",
  14116. "人类",
  14117. "行为"
  14118. ],
  14119. [
  14120. "猫咪",
  14121. "表情包",
  14122. "梗图"
  14123. ]
  14124. ],
  14125. "from_segments": [
  14126. "反映人类双标行为的",
  14127. "猫咪表情包梗图"
  14128. ],
  14129. "domains": [
  14130. 2,
  14131. 3
  14132. ],
  14133. "domains_str": "D2,D3",
  14134. "source_word_details": [
  14135. {
  14136. "domain_index": 2,
  14137. "segment_type": "修饰短语",
  14138. "segment_text": "反映人类双标行为的",
  14139. "words": [
  14140. {
  14141. "text": "反映",
  14142. "score": 0.024
  14143. },
  14144. {
  14145. "text": "人类",
  14146. "score": 0.024
  14147. },
  14148. {
  14149. "text": "行为",
  14150. "score": 0.024
  14151. }
  14152. ]
  14153. },
  14154. {
  14155. "domain_index": 3,
  14156. "segment_type": "中心名词",
  14157. "segment_text": "猫咪表情包梗图",
  14158. "words": [
  14159. {
  14160. "text": "猫咪",
  14161. "score": 0.09
  14162. },
  14163. {
  14164. "text": "表情包",
  14165. "score": 0.15
  14166. },
  14167. {
  14168. "text": "梗图",
  14169. "score": 0.024
  14170. }
  14171. ]
  14172. }
  14173. ],
  14174. "source_scores": [
  14175. 0.024,
  14176. 0.024,
  14177. 0.024,
  14178. 0.09,
  14179. 0.15,
  14180. 0.024
  14181. ],
  14182. "is_above_sources": false,
  14183. "max_source_score": 0.15,
  14184. "scoreColor": "#ef4444"
  14185. },
  14186. "comb_反映双标行为猫咪_r2_128": {
  14187. "type": "domain_combination",
  14188. "query": "反映双标行为猫咪",
  14189. "level": 22,
  14190. "relevance_score": 0.042457499999999995,
  14191. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"反映双标行为猫咪\"\n【评估对象】词条\"反映双标行为猫咪\" vs 作用域词条\"反映人类双标行为的猫咪表情包梗图\"\n【核心动机】寻找/查看\n【动机维度 0.00】原始问题和词条均无明确的动作意图,无法评估动机匹配度。\n【品类维度 0.85】核心主体“双标行为猫咪”完全匹配,但缺失了“表情包梗图”这一限定词,属于核心主体匹配,存在限定词匹配的情况。\n【最终得分 0.26】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.26已≤0.5\n【加权系数计算】\n0.16649999999999998\n 来源词总得分: 0.17\n 系数: 0.17【计算公式】base_score × 系数 = 0.26 × 0.17\n【最终得分(截断后)】0.04",
  14192. "strategy": "域内组合",
  14193. "iteration": 2,
  14194. "is_selected": true,
  14195. "type_label": "[修饰短语+中心名词]",
  14196. "source_words": [
  14197. [
  14198. "反映",
  14199. "双标",
  14200. "行为"
  14201. ],
  14202. [
  14203. "猫咪"
  14204. ]
  14205. ],
  14206. "from_segments": [
  14207. "反映人类双标行为的",
  14208. "猫咪表情包梗图"
  14209. ],
  14210. "domains": [
  14211. 2,
  14212. 3
  14213. ],
  14214. "domains_str": "D2,D3",
  14215. "source_word_details": [
  14216. {
  14217. "domain_index": 2,
  14218. "segment_type": "修饰短语",
  14219. "segment_text": "反映人类双标行为的",
  14220. "words": [
  14221. {
  14222. "text": "反映",
  14223. "score": 0.024
  14224. },
  14225. {
  14226. "text": "双标",
  14227. "score": 0.024
  14228. },
  14229. {
  14230. "text": "行为",
  14231. "score": 0.024
  14232. }
  14233. ]
  14234. },
  14235. {
  14236. "domain_index": 3,
  14237. "segment_type": "中心名词",
  14238. "segment_text": "猫咪表情包梗图",
  14239. "words": [
  14240. {
  14241. "text": "猫咪",
  14242. "score": 0.09
  14243. }
  14244. ]
  14245. }
  14246. ],
  14247. "source_scores": [
  14248. 0.024,
  14249. 0.024,
  14250. 0.024,
  14251. 0.09
  14252. ],
  14253. "is_above_sources": false,
  14254. "max_source_score": 0.09,
  14255. "scoreColor": "#ef4444"
  14256. },
  14257. "comb_反映双标行为表情包_r2_129": {
  14258. "type": "domain_combination",
  14259. "query": "反映双标行为表情包",
  14260. "level": 22,
  14261. "relevance_score": 0.05300099999999999,
  14262. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"反映双标行为表情包\"\n【评估对象】词条\"反映双标行为表情包\" vs 作用域词条\"反映人类双标行为的猫咪表情包梗图\"\n【核心动机】寻找/获取\n【动机维度 0.00】原始问题和词条均无明确的动作意图,无法评估动机匹配度。\n【品类维度 0.78】核心主体“双标行为表情包”匹配,但缺失了“人类”和“猫咪”这两个重要的限定词,因此评分在0.75-0.95之间。\n【最终得分 0.23】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.23已≤0.5\n【加权系数计算】\n0.22649999999999998\n 来源词总得分: 0.23\n 系数: 0.23【计算公式】base_score × 系数 = 0.23 × 0.23\n【最终得分(截断后)】0.05",
  14263. "strategy": "域内组合",
  14264. "iteration": 2,
  14265. "is_selected": true,
  14266. "type_label": "[修饰短语+中心名词]",
  14267. "source_words": [
  14268. [
  14269. "反映",
  14270. "双标",
  14271. "行为"
  14272. ],
  14273. [
  14274. "表情包"
  14275. ]
  14276. ],
  14277. "from_segments": [
  14278. "反映人类双标行为的",
  14279. "猫咪表情包梗图"
  14280. ],
  14281. "domains": [
  14282. 2,
  14283. 3
  14284. ],
  14285. "domains_str": "D2,D3",
  14286. "source_word_details": [
  14287. {
  14288. "domain_index": 2,
  14289. "segment_type": "修饰短语",
  14290. "segment_text": "反映人类双标行为的",
  14291. "words": [
  14292. {
  14293. "text": "反映",
  14294. "score": 0.024
  14295. },
  14296. {
  14297. "text": "双标",
  14298. "score": 0.024
  14299. },
  14300. {
  14301. "text": "行为",
  14302. "score": 0.024
  14303. }
  14304. ]
  14305. },
  14306. {
  14307. "domain_index": 3,
  14308. "segment_type": "中心名词",
  14309. "segment_text": "猫咪表情包梗图",
  14310. "words": [
  14311. {
  14312. "text": "表情包",
  14313. "score": 0.15
  14314. }
  14315. ]
  14316. }
  14317. ],
  14318. "source_scores": [
  14319. 0.024,
  14320. 0.024,
  14321. 0.024,
  14322. 0.15
  14323. ],
  14324. "is_above_sources": false,
  14325. "max_source_score": 0.15,
  14326. "scoreColor": "#ef4444"
  14327. },
  14328. "comb_反映双标行为梗图_r2_130": {
  14329. "type": "domain_combination",
  14330. "query": "反映双标行为梗图",
  14331. "level": 22,
  14332. "relevance_score": 0.0226125,
  14333. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"反映双标行为梗图\"\n【评估对象】词条\"反映双标行为梗图\" vs 作用域词条\"反映人类双标行为的猫咪表情包梗图\"\n【核心动机】原始问题无明确动作意图,主要描述对象和属性\n【动机维度 0.00】原始问题和词条均无明确的动作意图,无法评估动机匹配度。\n【品类维度 0.75】核心主体“双标行为梗图”完全匹配,但缺失了限定词“人类”和“猫咪表情包”。\n【最终得分 0.22】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.22已≤0.5\n【加权系数计算】\n0.1005\n 来源词总得分: 0.10\n 系数: 0.10【计算公式】base_score × 系数 = 0.22 × 0.10\n【最终得分(截断后)】0.02",
  14334. "strategy": "域内组合",
  14335. "iteration": 2,
  14336. "is_selected": true,
  14337. "type_label": "[修饰短语+中心名词]",
  14338. "source_words": [
  14339. [
  14340. "反映",
  14341. "双标",
  14342. "行为"
  14343. ],
  14344. [
  14345. "梗图"
  14346. ]
  14347. ],
  14348. "from_segments": [
  14349. "反映人类双标行为的",
  14350. "猫咪表情包梗图"
  14351. ],
  14352. "domains": [
  14353. 2,
  14354. 3
  14355. ],
  14356. "domains_str": "D2,D3",
  14357. "source_word_details": [
  14358. {
  14359. "domain_index": 2,
  14360. "segment_type": "修饰短语",
  14361. "segment_text": "反映人类双标行为的",
  14362. "words": [
  14363. {
  14364. "text": "反映",
  14365. "score": 0.024
  14366. },
  14367. {
  14368. "text": "双标",
  14369. "score": 0.024
  14370. },
  14371. {
  14372. "text": "行为",
  14373. "score": 0.024
  14374. }
  14375. ]
  14376. },
  14377. {
  14378. "domain_index": 3,
  14379. "segment_type": "中心名词",
  14380. "segment_text": "猫咪表情包梗图",
  14381. "words": [
  14382. {
  14383. "text": "梗图",
  14384. "score": 0.024
  14385. }
  14386. ]
  14387. }
  14388. ],
  14389. "source_scores": [
  14390. 0.024,
  14391. 0.024,
  14392. 0.024,
  14393. 0.024
  14394. ],
  14395. "is_above_sources": false,
  14396. "max_source_score": 0.024,
  14397. "scoreColor": "#ef4444"
  14398. },
  14399. "comb_反映双标行为猫咪表情包_r2_131": {
  14400. "type": "domain_combination",
  14401. "query": "反映双标行为猫咪表情包",
  14402. "level": 22,
  14403. "relevance_score": 0.077517,
  14404. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"反映双标行为猫咪表情包\"\n【评估对象】词条\"反映双标行为猫咪表情包\" vs 作用域词条\"反映人类双标行为的猫咪表情包梗图\"\n【核心动机】寻找/查看\n【动机维度 0.00】原始问题和词条均无明确的动作意图,无法评估动机匹配度。\n【品类维度 0.90】核心主体“双标行为猫咪表情包”完全匹配,限定词“梗图”缺失,但语义上“表情包”和“梗图”高度相关,属于合理泛化。\n【最终得分 0.27】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.27已≤0.5\n【加权系数计算】\n0.28709999999999997\n 来源词总得分: 0.29\n 系数: 0.29【计算公式】base_score × 系数 = 0.27 × 0.29\n【最终得分(截断后)】0.08",
  14405. "strategy": "域内组合",
  14406. "iteration": 2,
  14407. "is_selected": true,
  14408. "type_label": "[修饰短语+中心名词]",
  14409. "source_words": [
  14410. [
  14411. "反映",
  14412. "双标",
  14413. "行为"
  14414. ],
  14415. [
  14416. "猫咪",
  14417. "表情包"
  14418. ]
  14419. ],
  14420. "from_segments": [
  14421. "反映人类双标行为的",
  14422. "猫咪表情包梗图"
  14423. ],
  14424. "domains": [
  14425. 2,
  14426. 3
  14427. ],
  14428. "domains_str": "D2,D3",
  14429. "source_word_details": [
  14430. {
  14431. "domain_index": 2,
  14432. "segment_type": "修饰短语",
  14433. "segment_text": "反映人类双标行为的",
  14434. "words": [
  14435. {
  14436. "text": "反映",
  14437. "score": 0.024
  14438. },
  14439. {
  14440. "text": "双标",
  14441. "score": 0.024
  14442. },
  14443. {
  14444. "text": "行为",
  14445. "score": 0.024
  14446. }
  14447. ]
  14448. },
  14449. {
  14450. "domain_index": 3,
  14451. "segment_type": "中心名词",
  14452. "segment_text": "猫咪表情包梗图",
  14453. "words": [
  14454. {
  14455. "text": "猫咪",
  14456. "score": 0.09
  14457. },
  14458. {
  14459. "text": "表情包",
  14460. "score": 0.15
  14461. }
  14462. ]
  14463. }
  14464. ],
  14465. "source_scores": [
  14466. 0.024,
  14467. 0.024,
  14468. 0.024,
  14469. 0.09,
  14470. 0.15
  14471. ],
  14472. "is_above_sources": false,
  14473. "max_source_score": 0.15,
  14474. "scoreColor": "#ef4444"
  14475. },
  14476. "comb_反映双标行为猫咪梗图_r2_132": {
  14477. "type": "domain_combination",
  14478. "query": "反映双标行为猫咪梗图",
  14479. "level": 22,
  14480. "relevance_score": 0.077517,
  14481. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"反映双标行为猫咪梗图\"\n【评估对象】词条\"反映双标行为猫咪梗图\" vs 作用域词条\"反映人类双标行为的猫咪表情包梗图\"\n【核心动机】寻找/查看\n【动机维度 0.00】原始问题和词条均无明确的动作意图,无法评估动机匹配度。\n【品类维度 0.90】核心主体“双标行为猫咪梗图”完全匹配,限定词“反映”也匹配,仅缺少“表情包”这一限定词,但“梗图”通常包含“表情包”的含义,因此匹配度很高。\n【最终得分 0.27】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.27已≤0.5\n【加权系数计算】\n0.28709999999999997\n 来源词总得分: 0.29\n 系数: 0.29【计算公式】base_score × 系数 = 0.27 × 0.29\n【最终得分(截断后)】0.08",
  14482. "strategy": "域内组合",
  14483. "iteration": 2,
  14484. "is_selected": true,
  14485. "type_label": "[修饰短语+中心名词]",
  14486. "source_words": [
  14487. [
  14488. "反映",
  14489. "双标",
  14490. "行为"
  14491. ],
  14492. [
  14493. "猫咪",
  14494. "梗图"
  14495. ]
  14496. ],
  14497. "from_segments": [
  14498. "反映人类双标行为的",
  14499. "猫咪表情包梗图"
  14500. ],
  14501. "domains": [
  14502. 2,
  14503. 3
  14504. ],
  14505. "domains_str": "D2,D3",
  14506. "source_word_details": [
  14507. {
  14508. "domain_index": 2,
  14509. "segment_type": "修饰短语",
  14510. "segment_text": "反映人类双标行为的",
  14511. "words": [
  14512. {
  14513. "text": "反映",
  14514. "score": 0.024
  14515. },
  14516. {
  14517. "text": "双标",
  14518. "score": 0.024
  14519. },
  14520. {
  14521. "text": "行为",
  14522. "score": 0.024
  14523. }
  14524. ]
  14525. },
  14526. {
  14527. "domain_index": 3,
  14528. "segment_type": "中心名词",
  14529. "segment_text": "猫咪表情包梗图",
  14530. "words": [
  14531. {
  14532. "text": "猫咪",
  14533. "score": 0.09
  14534. },
  14535. {
  14536. "text": "梗图",
  14537. "score": 0.024
  14538. }
  14539. ]
  14540. }
  14541. ],
  14542. "source_scores": [
  14543. 0.024,
  14544. 0.024,
  14545. 0.024,
  14546. 0.09,
  14547. 0.024
  14548. ],
  14549. "is_above_sources": false,
  14550. "max_source_score": 0.09,
  14551. "scoreColor": "#ef4444"
  14552. },
  14553. "comb_反映双标行为表情包梗图_r2_133": {
  14554. "type": "domain_combination",
  14555. "query": "反映双标行为表情包梗图",
  14556. "level": 22,
  14557. "relevance_score": 0.217728,
  14558. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"反映双标行为表情包梗图\"\n【评估对象】词条\"反映双标行为表情包梗图\" vs 作用域词条\"反映人类双标行为的猫咪表情包梗图\"\n【核心动机】寻找/查看\n【动机维度 0.90】原始问题和词条的动作意图都是寻找/查看表情包梗图,动作意图高度一致。\n【品类维度 0.78】核心主体“双标行为表情包梗图”完全匹配,但限定词“猫咪”缺失,属于核心主体匹配但限定词部分缺失的情况。\n【最终得分 0.86】\n【规则说明】规则A:动机高分保护生效(动机0.90≥0.8),实际得分0.86已≥0.7\n【加权系数计算】\n0.252\n 来源词总得分: 0.25\n 系数: 0.25【计算公式】base_score × 系数 = 0.86 × 0.25\n【最终得分(截断后)】0.22",
  14559. "strategy": "域内组合",
  14560. "iteration": 2,
  14561. "is_selected": true,
  14562. "type_label": "[修饰短语+中心名词]",
  14563. "source_words": [
  14564. [
  14565. "反映",
  14566. "双标",
  14567. "行为"
  14568. ],
  14569. [
  14570. "表情包",
  14571. "梗图"
  14572. ]
  14573. ],
  14574. "from_segments": [
  14575. "反映人类双标行为的",
  14576. "猫咪表情包梗图"
  14577. ],
  14578. "domains": [
  14579. 2,
  14580. 3
  14581. ],
  14582. "domains_str": "D2,D3",
  14583. "source_word_details": [
  14584. {
  14585. "domain_index": 2,
  14586. "segment_type": "修饰短语",
  14587. "segment_text": "反映人类双标行为的",
  14588. "words": [
  14589. {
  14590. "text": "反映",
  14591. "score": 0.024
  14592. },
  14593. {
  14594. "text": "双标",
  14595. "score": 0.024
  14596. },
  14597. {
  14598. "text": "行为",
  14599. "score": 0.024
  14600. }
  14601. ]
  14602. },
  14603. {
  14604. "domain_index": 3,
  14605. "segment_type": "中心名词",
  14606. "segment_text": "猫咪表情包梗图",
  14607. "words": [
  14608. {
  14609. "text": "表情包",
  14610. "score": 0.15
  14611. },
  14612. {
  14613. "text": "梗图",
  14614. "score": 0.024
  14615. }
  14616. ]
  14617. }
  14618. ],
  14619. "source_scores": [
  14620. 0.024,
  14621. 0.024,
  14622. 0.024,
  14623. 0.15,
  14624. 0.024
  14625. ],
  14626. "is_above_sources": true,
  14627. "max_source_score": 0.15,
  14628. "scoreColor": "#22c55e"
  14629. },
  14630. "comb_反映双标行为猫咪表情包梗图_r2_134": {
  14631. "type": "domain_combination",
  14632. "query": "反映双标行为猫咪表情包梗图",
  14633. "level": 22,
  14634. "relevance_score": 0.091287,
  14635. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"反映双标行为猫咪表情包梗图\"\n【评估对象】词条\"反映双标行为猫咪表情包梗图\" vs 作用域词条\"反映人类双标行为的猫咪表情包梗图\"\n【核心动机】无明确动作意图\n【动机维度 0.00】原始问题和词条均无明确动作意图,无法评估动作匹配度。\n【品类维度 0.98】核心主体“双标行为猫咪表情包梗图”完全匹配,限定词“反映”也完全匹配,仅缺少一个重复的“的”字,匹配度极高。\n【最终得分 0.29】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.29已≤0.5\n【加权系数计算】\n0.3105\n 来源词总得分: 0.31\n 系数: 0.31【计算公式】base_score × 系数 = 0.29 × 0.31\n【最终得分(截断后)】0.09",
  14636. "strategy": "域内组合",
  14637. "iteration": 2,
  14638. "is_selected": true,
  14639. "type_label": "[修饰短语+中心名词]",
  14640. "source_words": [
  14641. [
  14642. "反映",
  14643. "双标",
  14644. "行为"
  14645. ],
  14646. [
  14647. "猫咪",
  14648. "表情包",
  14649. "梗图"
  14650. ]
  14651. ],
  14652. "from_segments": [
  14653. "反映人类双标行为的",
  14654. "猫咪表情包梗图"
  14655. ],
  14656. "domains": [
  14657. 2,
  14658. 3
  14659. ],
  14660. "domains_str": "D2,D3",
  14661. "source_word_details": [
  14662. {
  14663. "domain_index": 2,
  14664. "segment_type": "修饰短语",
  14665. "segment_text": "反映人类双标行为的",
  14666. "words": [
  14667. {
  14668. "text": "反映",
  14669. "score": 0.024
  14670. },
  14671. {
  14672. "text": "双标",
  14673. "score": 0.024
  14674. },
  14675. {
  14676. "text": "行为",
  14677. "score": 0.024
  14678. }
  14679. ]
  14680. },
  14681. {
  14682. "domain_index": 3,
  14683. "segment_type": "中心名词",
  14684. "segment_text": "猫咪表情包梗图",
  14685. "words": [
  14686. {
  14687. "text": "猫咪",
  14688. "score": 0.09
  14689. },
  14690. {
  14691. "text": "表情包",
  14692. "score": 0.15
  14693. },
  14694. {
  14695. "text": "梗图",
  14696. "score": 0.024
  14697. }
  14698. ]
  14699. }
  14700. ],
  14701. "source_scores": [
  14702. 0.024,
  14703. 0.024,
  14704. 0.024,
  14705. 0.09,
  14706. 0.15,
  14707. 0.024
  14708. ],
  14709. "is_above_sources": false,
  14710. "max_source_score": 0.15,
  14711. "scoreColor": "#ef4444"
  14712. },
  14713. "comb_人类双标行为猫咪_r2_135": {
  14714. "type": "domain_combination",
  14715. "query": "人类双标行为猫咪",
  14716. "level": 22,
  14717. "relevance_score": 0.040013999999999994,
  14718. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"人类双标行为猫咪\"\n【评估对象】词条\"人类双标行为猫咪\" vs 作用域词条\"反映人类双标行为的猫咪表情包梗图\"\n【核心动机】寻找/获取\n【动机维度 0.00】词条无明确动作意图,无法评估动作匹配度\n【品类维度 0.78】核心主体“人类双标行为”和“猫咪”完全匹配,但限定词“表情包梗图”缺失,属于核心主体匹配,存在限定词缺失的情况。\n【最终得分 0.23】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.23已≤0.5\n【加权系数计算】\n0.17099999999999999\n 来源词总得分: 0.17\n 系数: 0.17【计算公式】base_score × 系数 = 0.23 × 0.17\n【最终得分(截断后)】0.04",
  14719. "strategy": "域内组合",
  14720. "iteration": 2,
  14721. "is_selected": true,
  14722. "type_label": "[修饰短语+中心名词]",
  14723. "source_words": [
  14724. [
  14725. "人类",
  14726. "双标",
  14727. "行为"
  14728. ],
  14729. [
  14730. "猫咪"
  14731. ]
  14732. ],
  14733. "from_segments": [
  14734. "反映人类双标行为的",
  14735. "猫咪表情包梗图"
  14736. ],
  14737. "domains": [
  14738. 2,
  14739. 3
  14740. ],
  14741. "domains_str": "D2,D3",
  14742. "source_word_details": [
  14743. {
  14744. "domain_index": 2,
  14745. "segment_type": "修饰短语",
  14746. "segment_text": "反映人类双标行为的",
  14747. "words": [
  14748. {
  14749. "text": "人类",
  14750. "score": 0.024
  14751. },
  14752. {
  14753. "text": "双标",
  14754. "score": 0.024
  14755. },
  14756. {
  14757. "text": "行为",
  14758. "score": 0.024
  14759. }
  14760. ]
  14761. },
  14762. {
  14763. "domain_index": 3,
  14764. "segment_type": "中心名词",
  14765. "segment_text": "猫咪表情包梗图",
  14766. "words": [
  14767. {
  14768. "text": "猫咪",
  14769. "score": 0.09
  14770. }
  14771. ]
  14772. }
  14773. ],
  14774. "source_scores": [
  14775. 0.024,
  14776. 0.024,
  14777. 0.024,
  14778. 0.09
  14779. ],
  14780. "is_above_sources": false,
  14781. "max_source_score": 0.09,
  14782. "scoreColor": "#ef4444"
  14783. },
  14784. "comb_人类双标行为表情包_r2_136": {
  14785. "type": "domain_combination",
  14786. "query": "人类双标行为表情包",
  14787. "level": 22,
  14788. "relevance_score": 0.05405399999999999,
  14789. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"人类双标行为表情包\"\n【评估对象】词条\"人类双标行为表情包\" vs 作用域词条\"反映人类双标行为的猫咪表情包梗图\"\n【核心动机】原始问题无明确动作意图,主要描述一个主题\n【动机维度 0.00】原始问题和词条均无明确的动作意图,无法评估动机匹配度。\n【品类维度 0.78】核心主体“人类双标行为”完全匹配,限定词“表情包”也匹配。但缺少了“猫咪”和“梗图”这两个限定词,因此未能达到满分。\n【最终得分 0.23】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.23已≤0.5\n【加权系数计算】\n0.23099999999999998\n 来源词总得分: 0.23\n 系数: 0.23【计算公式】base_score × 系数 = 0.23 × 0.23\n【最终得分(截断后)】0.05",
  14790. "strategy": "域内组合",
  14791. "iteration": 2,
  14792. "is_selected": true,
  14793. "type_label": "[修饰短语+中心名词]",
  14794. "source_words": [
  14795. [
  14796. "人类",
  14797. "双标",
  14798. "行为"
  14799. ],
  14800. [
  14801. "表情包"
  14802. ]
  14803. ],
  14804. "from_segments": [
  14805. "反映人类双标行为的",
  14806. "猫咪表情包梗图"
  14807. ],
  14808. "domains": [
  14809. 2,
  14810. 3
  14811. ],
  14812. "domains_str": "D2,D3",
  14813. "source_word_details": [
  14814. {
  14815. "domain_index": 2,
  14816. "segment_type": "修饰短语",
  14817. "segment_text": "反映人类双标行为的",
  14818. "words": [
  14819. {
  14820. "text": "人类",
  14821. "score": 0.024
  14822. },
  14823. {
  14824. "text": "双标",
  14825. "score": 0.024
  14826. },
  14827. {
  14828. "text": "行为",
  14829. "score": 0.024
  14830. }
  14831. ]
  14832. },
  14833. {
  14834. "domain_index": 3,
  14835. "segment_type": "中心名词",
  14836. "segment_text": "猫咪表情包梗图",
  14837. "words": [
  14838. {
  14839. "text": "表情包",
  14840. "score": 0.15
  14841. }
  14842. ]
  14843. }
  14844. ],
  14845. "source_scores": [
  14846. 0.024,
  14847. 0.024,
  14848. 0.024,
  14849. 0.15
  14850. ],
  14851. "is_above_sources": false,
  14852. "max_source_score": 0.15,
  14853. "scoreColor": "#ef4444"
  14854. },
  14855. "comb_人类双标行为梗图_r2_137": {
  14856. "type": "domain_combination",
  14857. "query": "人类双标行为梗图",
  14858. "level": 22,
  14859. "relevance_score": 0.02457,
  14860. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"人类双标行为梗图\"\n【评估对象】词条\"人类双标行为梗图\" vs 作用域词条\"反映人类双标行为的猫咪表情包梗图\"\n【核心动机】原始问题无明确动作意图,主要为“反映”或“寻找”\n【动机维度 0.00】原始问题和词条均无明确的动作意图,无法评估动机匹配度。\n【品类维度 0.78】核心主体“人类双标行为梗图”完全匹配,但缺失了限定词“猫咪表情包”,因此给予较高但非满分评分。\n【最终得分 0.23】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.23已≤0.5\n【加权系数计算】\n0.10500000000000001\n 来源词总得分: 0.11\n 系数: 0.11【计算公式】base_score × 系数 = 0.23 × 0.11\n【最终得分(截断后)】0.02",
  14861. "strategy": "域内组合",
  14862. "iteration": 2,
  14863. "is_selected": true,
  14864. "type_label": "[修饰短语+中心名词]",
  14865. "source_words": [
  14866. [
  14867. "人类",
  14868. "双标",
  14869. "行为"
  14870. ],
  14871. [
  14872. "梗图"
  14873. ]
  14874. ],
  14875. "from_segments": [
  14876. "反映人类双标行为的",
  14877. "猫咪表情包梗图"
  14878. ],
  14879. "domains": [
  14880. 2,
  14881. 3
  14882. ],
  14883. "domains_str": "D2,D3",
  14884. "source_word_details": [
  14885. {
  14886. "domain_index": 2,
  14887. "segment_type": "修饰短语",
  14888. "segment_text": "反映人类双标行为的",
  14889. "words": [
  14890. {
  14891. "text": "人类",
  14892. "score": 0.024
  14893. },
  14894. {
  14895. "text": "双标",
  14896. "score": 0.024
  14897. },
  14898. {
  14899. "text": "行为",
  14900. "score": 0.024
  14901. }
  14902. ]
  14903. },
  14904. {
  14905. "domain_index": 3,
  14906. "segment_type": "中心名词",
  14907. "segment_text": "猫咪表情包梗图",
  14908. "words": [
  14909. {
  14910. "text": "梗图",
  14911. "score": 0.024
  14912. }
  14913. ]
  14914. }
  14915. ],
  14916. "source_scores": [
  14917. 0.024,
  14918. 0.024,
  14919. 0.024,
  14920. 0.024
  14921. ],
  14922. "is_above_sources": true,
  14923. "max_source_score": 0.024,
  14924. "scoreColor": "#22c55e"
  14925. },
  14926. "comb_人类双标行为猫咪表情包_r2_138": {
  14927. "type": "domain_combination",
  14928. "query": "人类双标行为猫咪表情包",
  14929. "level": 22,
  14930. "relevance_score": 0.08310599999999999,
  14931. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"人类双标行为猫咪表情包\"\n【评估对象】词条\"人类双标行为猫咪表情包\" vs 作用域词条\"反映人类双标行为的猫咪表情包梗图\"\n【核心动机】寻找/获取\n【动机维度 0.00】原始问题和词条均无明确的动作意图,无法评估动机匹配度。\n【品类维度 0.95】核心主体“人类双标行为”、“猫咪表情包”完全匹配,限定词“梗图”在词条中被省略,但语义上高度一致,属于合理泛化。\n【最终得分 0.28】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.28已≤0.5\n【加权系数计算】\n0.29159999999999997\n 来源词总得分: 0.29\n 系数: 0.29【计算公式】base_score × 系数 = 0.28 × 0.29\n【最终得分(截断后)】0.08",
  14932. "strategy": "域内组合",
  14933. "iteration": 2,
  14934. "is_selected": true,
  14935. "type_label": "[修饰短语+中心名词]",
  14936. "source_words": [
  14937. [
  14938. "人类",
  14939. "双标",
  14940. "行为"
  14941. ],
  14942. [
  14943. "猫咪",
  14944. "表情包"
  14945. ]
  14946. ],
  14947. "from_segments": [
  14948. "反映人类双标行为的",
  14949. "猫咪表情包梗图"
  14950. ],
  14951. "domains": [
  14952. 2,
  14953. 3
  14954. ],
  14955. "domains_str": "D2,D3",
  14956. "source_word_details": [
  14957. {
  14958. "domain_index": 2,
  14959. "segment_type": "修饰短语",
  14960. "segment_text": "反映人类双标行为的",
  14961. "words": [
  14962. {
  14963. "text": "人类",
  14964. "score": 0.024
  14965. },
  14966. {
  14967. "text": "双标",
  14968. "score": 0.024
  14969. },
  14970. {
  14971. "text": "行为",
  14972. "score": 0.024
  14973. }
  14974. ]
  14975. },
  14976. {
  14977. "domain_index": 3,
  14978. "segment_type": "中心名词",
  14979. "segment_text": "猫咪表情包梗图",
  14980. "words": [
  14981. {
  14982. "text": "猫咪",
  14983. "score": 0.09
  14984. },
  14985. {
  14986. "text": "表情包",
  14987. "score": 0.15
  14988. }
  14989. ]
  14990. }
  14991. ],
  14992. "source_scores": [
  14993. 0.024,
  14994. 0.024,
  14995. 0.024,
  14996. 0.09,
  14997. 0.15
  14998. ],
  14999. "is_above_sources": false,
  15000. "max_source_score": 0.15,
  15001. "scoreColor": "#ef4444"
  15002. },
  15003. "comb_人类双标行为猫咪梗图_r2_139": {
  15004. "type": "domain_combination",
  15005. "query": "人类双标行为猫咪梗图",
  15006. "level": 22,
  15007. "relevance_score": 0.08573039999999998,
  15008. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"人类双标行为猫咪梗图\"\n【评估对象】词条\"人类双标行为猫咪梗图\" vs 作用域词条\"反映人类双标行为的猫咪表情包梗图\"\n【核心动机】无明确动作意图\n【动机维度 0.00】原始问题和词条均无明确的动作意图,无法评估动机匹配度。\n【品类维度 0.98】核心主体“人类双标行为猫咪梗图”完全匹配,限定词“表情包”在词条中被省略,但语义上高度一致,属于可接受的微小差异。\n【最终得分 0.29】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.29已≤0.5\n【加权系数计算】\n0.29159999999999997\n 来源词总得分: 0.29\n 系数: 0.29【计算公式】base_score × 系数 = 0.29 × 0.29\n【最终得分(截断后)】0.09",
  15009. "strategy": "域内组合",
  15010. "iteration": 2,
  15011. "is_selected": true,
  15012. "type_label": "[修饰短语+中心名词]",
  15013. "source_words": [
  15014. [
  15015. "人类",
  15016. "双标",
  15017. "行为"
  15018. ],
  15019. [
  15020. "猫咪",
  15021. "梗图"
  15022. ]
  15023. ],
  15024. "from_segments": [
  15025. "反映人类双标行为的",
  15026. "猫咪表情包梗图"
  15027. ],
  15028. "domains": [
  15029. 2,
  15030. 3
  15031. ],
  15032. "domains_str": "D2,D3",
  15033. "source_word_details": [
  15034. {
  15035. "domain_index": 2,
  15036. "segment_type": "修饰短语",
  15037. "segment_text": "反映人类双标行为的",
  15038. "words": [
  15039. {
  15040. "text": "人类",
  15041. "score": 0.024
  15042. },
  15043. {
  15044. "text": "双标",
  15045. "score": 0.024
  15046. },
  15047. {
  15048. "text": "行为",
  15049. "score": 0.024
  15050. }
  15051. ]
  15052. },
  15053. {
  15054. "domain_index": 3,
  15055. "segment_type": "中心名词",
  15056. "segment_text": "猫咪表情包梗图",
  15057. "words": [
  15058. {
  15059. "text": "猫咪",
  15060. "score": 0.09
  15061. },
  15062. {
  15063. "text": "梗图",
  15064. "score": 0.024
  15065. }
  15066. ]
  15067. }
  15068. ],
  15069. "source_scores": [
  15070. 0.024,
  15071. 0.024,
  15072. 0.024,
  15073. 0.09,
  15074. 0.024
  15075. ],
  15076. "is_above_sources": false,
  15077. "max_source_score": 0.09,
  15078. "scoreColor": "#ef4444"
  15079. },
  15080. "comb_人类双标行为表情包梗图_r2_140": {
  15081. "type": "domain_combination",
  15082. "query": "人类双标行为表情包梗图",
  15083. "level": 22,
  15084. "relevance_score": 0.060021,
  15085. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"人类双标行为表情包梗图\"\n【评估对象】词条\"人类双标行为表情包梗图\" vs 作用域词条\"反映人类双标行为的猫咪表情包梗图\"\n【核心动机】寻找/查看\n【动机维度 0.00】原始问题和词条均无明确的动作意图,无法评估动机匹配度。\n【品类维度 0.78】核心主体“人类双标行为表情包梗图”完全匹配,但限定词“猫咪”缺失,导致匹配度略有下降。\n【最终得分 0.23】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.23已≤0.5\n【加权系数计算】\n0.2565\n 来源词总得分: 0.26\n 系数: 0.26【计算公式】base_score × 系数 = 0.23 × 0.26\n【最终得分(截断后)】0.06",
  15086. "strategy": "域内组合",
  15087. "iteration": 2,
  15088. "is_selected": true,
  15089. "type_label": "[修饰短语+中心名词]",
  15090. "source_words": [
  15091. [
  15092. "人类",
  15093. "双标",
  15094. "行为"
  15095. ],
  15096. [
  15097. "表情包",
  15098. "梗图"
  15099. ]
  15100. ],
  15101. "from_segments": [
  15102. "反映人类双标行为的",
  15103. "猫咪表情包梗图"
  15104. ],
  15105. "domains": [
  15106. 2,
  15107. 3
  15108. ],
  15109. "domains_str": "D2,D3",
  15110. "source_word_details": [
  15111. {
  15112. "domain_index": 2,
  15113. "segment_type": "修饰短语",
  15114. "segment_text": "反映人类双标行为的",
  15115. "words": [
  15116. {
  15117. "text": "人类",
  15118. "score": 0.024
  15119. },
  15120. {
  15121. "text": "双标",
  15122. "score": 0.024
  15123. },
  15124. {
  15125. "text": "行为",
  15126. "score": 0.024
  15127. }
  15128. ]
  15129. },
  15130. {
  15131. "domain_index": 3,
  15132. "segment_type": "中心名词",
  15133. "segment_text": "猫咪表情包梗图",
  15134. "words": [
  15135. {
  15136. "text": "表情包",
  15137. "score": 0.15
  15138. },
  15139. {
  15140. "text": "梗图",
  15141. "score": 0.024
  15142. }
  15143. ]
  15144. }
  15145. ],
  15146. "source_scores": [
  15147. 0.024,
  15148. 0.024,
  15149. 0.024,
  15150. 0.15,
  15151. 0.024
  15152. ],
  15153. "is_above_sources": false,
  15154. "max_source_score": 0.15,
  15155. "scoreColor": "#ef4444"
  15156. },
  15157. "comb_人类双标行为猫咪表情包梗图_r2_141": {
  15158. "type": "domain_combination",
  15159. "query": "人类双标行为猫咪表情包梗图",
  15160. "level": 22,
  15161. "relevance_score": 0.0945,
  15162. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"人类双标行为猫咪表情包梗图\"\n【评估对象】词条\"人类双标行为猫咪表情包梗图\" vs 作用域词条\"反映人类双标行为的猫咪表情包梗图\"\n【核心动机】原始问题无明确动作意图,主要为描述性词语,意图是“了解/寻找”关于“反映人类双标行为的猫咪表情包梗图”\n【动机维度 0.00】原始问题和词条均无明确的动作意图,无法评估动机维度匹配度。\n【品类维度 1.00】核心主体“人类双标行为猫咪表情包梗图”与限定词“反映”完全匹配,语义一致,只是省略了动词,不影响品类匹配度。\n【最终得分 0.30】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.30已≤0.5\n【加权系数计算】\n0.315\n 来源词总得分: 0.32\n 系数: 0.32【计算公式】base_score × 系数 = 0.30 × 0.32\n【最终得分(截断后)】0.09",
  15163. "strategy": "域内组合",
  15164. "iteration": 2,
  15165. "is_selected": true,
  15166. "type_label": "[修饰短语+中心名词]",
  15167. "source_words": [
  15168. [
  15169. "人类",
  15170. "双标",
  15171. "行为"
  15172. ],
  15173. [
  15174. "猫咪",
  15175. "表情包",
  15176. "梗图"
  15177. ]
  15178. ],
  15179. "from_segments": [
  15180. "反映人类双标行为的",
  15181. "猫咪表情包梗图"
  15182. ],
  15183. "domains": [
  15184. 2,
  15185. 3
  15186. ],
  15187. "domains_str": "D2,D3",
  15188. "source_word_details": [
  15189. {
  15190. "domain_index": 2,
  15191. "segment_type": "修饰短语",
  15192. "segment_text": "反映人类双标行为的",
  15193. "words": [
  15194. {
  15195. "text": "人类",
  15196. "score": 0.024
  15197. },
  15198. {
  15199. "text": "双标",
  15200. "score": 0.024
  15201. },
  15202. {
  15203. "text": "行为",
  15204. "score": 0.024
  15205. }
  15206. ]
  15207. },
  15208. {
  15209. "domain_index": 3,
  15210. "segment_type": "中心名词",
  15211. "segment_text": "猫咪表情包梗图",
  15212. "words": [
  15213. {
  15214. "text": "猫咪",
  15215. "score": 0.09
  15216. },
  15217. {
  15218. "text": "表情包",
  15219. "score": 0.15
  15220. },
  15221. {
  15222. "text": "梗图",
  15223. "score": 0.024
  15224. }
  15225. ]
  15226. }
  15227. ],
  15228. "source_scores": [
  15229. 0.024,
  15230. 0.024,
  15231. 0.024,
  15232. 0.09,
  15233. 0.15,
  15234. 0.024
  15235. ],
  15236. "is_above_sources": false,
  15237. "max_source_score": 0.15,
  15238. "scoreColor": "#ef4444"
  15239. },
  15240. "comb_反映人类双标行为猫咪_r2_142": {
  15241. "type": "domain_combination",
  15242. "query": "反映人类双标行为猫咪",
  15243. "level": 22,
  15244. "relevance_score": 0.045441,
  15245. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"反映人类双标行为猫咪\"\n【评估对象】词条\"反映人类双标行为猫咪\" vs 作用域词条\"反映人类双标行为的猫咪表情包梗图\"\n【核心动机】寻找/获取\n【动机维度 0.00】词条无明确动作意图,无法评估动作匹配度\n【品类维度 0.85】核心主体“人类双标行为猫咪”完全匹配,但缺少了“表情包梗图”这一限定词,属于核心主体匹配但限定词不完全匹配的情况。\n【最终得分 0.26】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.26已≤0.5\n【加权系数计算】\n0.1782\n 来源词总得分: 0.18\n 系数: 0.18【计算公式】base_score × 系数 = 0.26 × 0.18\n【最终得分(截断后)】0.05",
  15246. "strategy": "域内组合",
  15247. "iteration": 2,
  15248. "is_selected": true,
  15249. "type_label": "[修饰短语+中心名词]",
  15250. "source_words": [
  15251. [
  15252. "反映",
  15253. "人类",
  15254. "双标",
  15255. "行为"
  15256. ],
  15257. [
  15258. "猫咪"
  15259. ]
  15260. ],
  15261. "from_segments": [
  15262. "反映人类双标行为的",
  15263. "猫咪表情包梗图"
  15264. ],
  15265. "domains": [
  15266. 2,
  15267. 3
  15268. ],
  15269. "domains_str": "D2,D3",
  15270. "source_word_details": [
  15271. {
  15272. "domain_index": 2,
  15273. "segment_type": "修饰短语",
  15274. "segment_text": "反映人类双标行为的",
  15275. "words": [
  15276. {
  15277. "text": "反映",
  15278. "score": 0.024
  15279. },
  15280. {
  15281. "text": "人类",
  15282. "score": 0.024
  15283. },
  15284. {
  15285. "text": "双标",
  15286. "score": 0.024
  15287. },
  15288. {
  15289. "text": "行为",
  15290. "score": 0.024
  15291. }
  15292. ]
  15293. },
  15294. {
  15295. "domain_index": 3,
  15296. "segment_type": "中心名词",
  15297. "segment_text": "猫咪表情包梗图",
  15298. "words": [
  15299. {
  15300. "text": "猫咪",
  15301. "score": 0.09
  15302. }
  15303. ]
  15304. }
  15305. ],
  15306. "source_scores": [
  15307. 0.024,
  15308. 0.024,
  15309. 0.024,
  15310. 0.024,
  15311. 0.09
  15312. ],
  15313. "is_above_sources": false,
  15314. "max_source_score": 0.09,
  15315. "scoreColor": "#ef4444"
  15316. },
  15317. "comb_反映人类双标行为表情包_r2_143": {
  15318. "type": "domain_combination",
  15319. "query": "反映人类双标行为表情包",
  15320. "level": 22,
  15321. "relevance_score": 0.0557388,
  15322. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"反映人类双标行为表情包\"\n【评估对象】词条\"反映人类双标行为表情包\" vs 作用域词条\"反映人类双标行为的猫咪表情包梗图\"\n【核心动机】寻找/获取\n【动机维度 0.00】原始问题和词条均无明确的动作意图,无法评估动机匹配度。\n【品类维度 0.78】核心主体“人类双标行为表情包”匹配,但缺失了限定词“猫咪”和“梗图”。\n【最终得分 0.23】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.23已≤0.5\n【加权系数计算】\n0.2382\n 来源词总得分: 0.24\n 系数: 0.24【计算公式】base_score × 系数 = 0.23 × 0.24\n【最终得分(截断后)】0.06",
  15323. "strategy": "域内组合",
  15324. "iteration": 2,
  15325. "is_selected": true,
  15326. "type_label": "[修饰短语+中心名词]",
  15327. "source_words": [
  15328. [
  15329. "反映",
  15330. "人类",
  15331. "双标",
  15332. "行为"
  15333. ],
  15334. [
  15335. "表情包"
  15336. ]
  15337. ],
  15338. "from_segments": [
  15339. "反映人类双标行为的",
  15340. "猫咪表情包梗图"
  15341. ],
  15342. "domains": [
  15343. 2,
  15344. 3
  15345. ],
  15346. "domains_str": "D2,D3",
  15347. "source_word_details": [
  15348. {
  15349. "domain_index": 2,
  15350. "segment_type": "修饰短语",
  15351. "segment_text": "反映人类双标行为的",
  15352. "words": [
  15353. {
  15354. "text": "反映",
  15355. "score": 0.024
  15356. },
  15357. {
  15358. "text": "人类",
  15359. "score": 0.024
  15360. },
  15361. {
  15362. "text": "双标",
  15363. "score": 0.024
  15364. },
  15365. {
  15366. "text": "行为",
  15367. "score": 0.024
  15368. }
  15369. ]
  15370. },
  15371. {
  15372. "domain_index": 3,
  15373. "segment_type": "中心名词",
  15374. "segment_text": "猫咪表情包梗图",
  15375. "words": [
  15376. {
  15377. "text": "表情包",
  15378. "score": 0.15
  15379. }
  15380. ]
  15381. }
  15382. ],
  15383. "source_scores": [
  15384. 0.024,
  15385. 0.024,
  15386. 0.024,
  15387. 0.024,
  15388. 0.15
  15389. ],
  15390. "is_above_sources": false,
  15391. "max_source_score": 0.15,
  15392. "scoreColor": "#ef4444"
  15393. },
  15394. "comb_反映人类双标行为梗图_r2_144": {
  15395. "type": "domain_combination",
  15396. "query": "反映人类双标行为梗图",
  15397. "level": 22,
  15398. "relevance_score": 0.0262548,
  15399. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"反映人类双标行为梗图\"\n【评估对象】词条\"反映人类双标行为梗图\" vs 作用域词条\"反映人类双标行为的猫咪表情包梗图\"\n【核心动机】寻找/查看\n【动机维度 0.00】原始问题和词条均无明确动作意图,无法评估动作匹配度。\n【品类维度 0.78】核心主体'反映人类双标行为梗图'完全匹配,但缺失了限定词'猫咪表情包',属于核心主体匹配但限定词不完全匹配的情况。\n【最终得分 0.23】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.23已≤0.5\n【加权系数计算】\n0.1122\n 来源词总得分: 0.11\n 系数: 0.11【计算公式】base_score × 系数 = 0.23 × 0.11\n【最终得分(截断后)】0.03",
  15400. "strategy": "域内组合",
  15401. "iteration": 2,
  15402. "is_selected": true,
  15403. "type_label": "[修饰短语+中心名词]",
  15404. "source_words": [
  15405. [
  15406. "反映",
  15407. "人类",
  15408. "双标",
  15409. "行为"
  15410. ],
  15411. [
  15412. "梗图"
  15413. ]
  15414. ],
  15415. "from_segments": [
  15416. "反映人类双标行为的",
  15417. "猫咪表情包梗图"
  15418. ],
  15419. "domains": [
  15420. 2,
  15421. 3
  15422. ],
  15423. "domains_str": "D2,D3",
  15424. "source_word_details": [
  15425. {
  15426. "domain_index": 2,
  15427. "segment_type": "修饰短语",
  15428. "segment_text": "反映人类双标行为的",
  15429. "words": [
  15430. {
  15431. "text": "反映",
  15432. "score": 0.024
  15433. },
  15434. {
  15435. "text": "人类",
  15436. "score": 0.024
  15437. },
  15438. {
  15439. "text": "双标",
  15440. "score": 0.024
  15441. },
  15442. {
  15443. "text": "行为",
  15444. "score": 0.024
  15445. }
  15446. ]
  15447. },
  15448. {
  15449. "domain_index": 3,
  15450. "segment_type": "中心名词",
  15451. "segment_text": "猫咪表情包梗图",
  15452. "words": [
  15453. {
  15454. "text": "梗图",
  15455. "score": 0.024
  15456. }
  15457. ]
  15458. }
  15459. ],
  15460. "source_scores": [
  15461. 0.024,
  15462. 0.024,
  15463. 0.024,
  15464. 0.024,
  15465. 0.024
  15466. ],
  15467. "is_above_sources": true,
  15468. "max_source_score": 0.024,
  15469. "scoreColor": "#22c55e"
  15470. },
  15471. "comb_反映人类双标行为猫咪表情包_r2_145": {
  15472. "type": "domain_combination",
  15473. "query": "反映人类双标行为猫咪表情包",
  15474. "level": 22,
  15475. "relevance_score": 0.08784719999999999,
  15476. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"反映人类双标行为猫咪表情包\"\n【评估对象】词条\"反映人类双标行为猫咪表情包\" vs 作用域词条\"反映人类双标行为的猫咪表情包梗图\"\n【核心动机】寻找/了解\n【动机维度 0.00】原始问题和词条均无明确的动作意图,无法评估动机匹配度。\n【品类维度 0.98】核心主体“人类双标行为猫咪表情包”完全匹配,限定词“梗图”在词条中被省略,但语义上高度相关,属于近义词或包含关系,因此匹配度极高。\n【最终得分 0.29】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.29已≤0.5\n【加权系数计算】\n0.29879999999999995\n 来源词总得分: 0.30\n 系数: 0.30【计算公式】base_score × 系数 = 0.29 × 0.30\n【最终得分(截断后)】0.09",
  15477. "strategy": "域内组合",
  15478. "iteration": 2,
  15479. "is_selected": true,
  15480. "type_label": "[修饰短语+中心名词]",
  15481. "source_words": [
  15482. [
  15483. "反映",
  15484. "人类",
  15485. "双标",
  15486. "行为"
  15487. ],
  15488. [
  15489. "猫咪",
  15490. "表情包"
  15491. ]
  15492. ],
  15493. "from_segments": [
  15494. "反映人类双标行为的",
  15495. "猫咪表情包梗图"
  15496. ],
  15497. "domains": [
  15498. 2,
  15499. 3
  15500. ],
  15501. "domains_str": "D2,D3",
  15502. "source_word_details": [
  15503. {
  15504. "domain_index": 2,
  15505. "segment_type": "修饰短语",
  15506. "segment_text": "反映人类双标行为的",
  15507. "words": [
  15508. {
  15509. "text": "反映",
  15510. "score": 0.024
  15511. },
  15512. {
  15513. "text": "人类",
  15514. "score": 0.024
  15515. },
  15516. {
  15517. "text": "双标",
  15518. "score": 0.024
  15519. },
  15520. {
  15521. "text": "行为",
  15522. "score": 0.024
  15523. }
  15524. ]
  15525. },
  15526. {
  15527. "domain_index": 3,
  15528. "segment_type": "中心名词",
  15529. "segment_text": "猫咪表情包梗图",
  15530. "words": [
  15531. {
  15532. "text": "猫咪",
  15533. "score": 0.09
  15534. },
  15535. {
  15536. "text": "表情包",
  15537. "score": 0.15
  15538. }
  15539. ]
  15540. }
  15541. ],
  15542. "source_scores": [
  15543. 0.024,
  15544. 0.024,
  15545. 0.024,
  15546. 0.024,
  15547. 0.09,
  15548. 0.15
  15549. ],
  15550. "is_above_sources": false,
  15551. "max_source_score": 0.15,
  15552. "scoreColor": "#ef4444"
  15553. },
  15554. "comb_反映人类双标行为猫咪梗图_r2_146": {
  15555. "type": "domain_combination",
  15556. "query": "反映人类双标行为猫咪梗图",
  15557. "level": 22,
  15558. "relevance_score": 0.08784719999999999,
  15559. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"反映人类双标行为猫咪梗图\"\n【评估对象】词条\"反映人类双标行为猫咪梗图\" vs 作用域词条\"反映人类双标行为的猫咪表情包梗图\"\n【核心动机】无明确动作意图\n【动机维度 0.00】原始问题无明确动作意图,无法评估动作匹配度\n【品类维度 0.98】核心主体“人类双标行为猫咪梗图”完全匹配,限定词“表情包”在词条中被省略,但语义上高度相关,属于合理泛化或省略,因此匹配度极高。\n【最终得分 0.29】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.29已≤0.5\n【加权系数计算】\n0.29879999999999995\n 来源词总得分: 0.30\n 系数: 0.30【计算公式】base_score × 系数 = 0.29 × 0.30\n【最终得分(截断后)】0.09",
  15560. "strategy": "域内组合",
  15561. "iteration": 2,
  15562. "is_selected": true,
  15563. "type_label": "[修饰短语+中心名词]",
  15564. "source_words": [
  15565. [
  15566. "反映",
  15567. "人类",
  15568. "双标",
  15569. "行为"
  15570. ],
  15571. [
  15572. "猫咪",
  15573. "梗图"
  15574. ]
  15575. ],
  15576. "from_segments": [
  15577. "反映人类双标行为的",
  15578. "猫咪表情包梗图"
  15579. ],
  15580. "domains": [
  15581. 2,
  15582. 3
  15583. ],
  15584. "domains_str": "D2,D3",
  15585. "source_word_details": [
  15586. {
  15587. "domain_index": 2,
  15588. "segment_type": "修饰短语",
  15589. "segment_text": "反映人类双标行为的",
  15590. "words": [
  15591. {
  15592. "text": "反映",
  15593. "score": 0.024
  15594. },
  15595. {
  15596. "text": "人类",
  15597. "score": 0.024
  15598. },
  15599. {
  15600. "text": "双标",
  15601. "score": 0.024
  15602. },
  15603. {
  15604. "text": "行为",
  15605. "score": 0.024
  15606. }
  15607. ]
  15608. },
  15609. {
  15610. "domain_index": 3,
  15611. "segment_type": "中心名词",
  15612. "segment_text": "猫咪表情包梗图",
  15613. "words": [
  15614. {
  15615. "text": "猫咪",
  15616. "score": 0.09
  15617. },
  15618. {
  15619. "text": "梗图",
  15620. "score": 0.024
  15621. }
  15622. ]
  15623. }
  15624. ],
  15625. "source_scores": [
  15626. 0.024,
  15627. 0.024,
  15628. 0.024,
  15629. 0.024,
  15630. 0.09,
  15631. 0.024
  15632. ],
  15633. "is_above_sources": false,
  15634. "max_source_score": 0.09,
  15635. "scoreColor": "#ef4444"
  15636. },
  15637. "comb_反映人类双标行为表情包梗图_r2_147": {
  15638. "type": "domain_combination",
  15639. "query": "反映人类双标行为表情包梗图",
  15640. "level": 22,
  15641. "relevance_score": 0.22783679999999998,
  15642. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"反映人类双标行为表情包梗图\"\n【评估对象】词条\"反映人类双标行为表情包梗图\" vs 作用域词条\"反映人类双标行为的猫咪表情包梗图\"\n【核心动机】寻找/查看\n【动机维度 0.90】原始问题和词条的动作意图都是“寻找/查看”表情包梗图,动作意图高度一致。\n【品类维度 0.78】核心主体'反映人类双标行为表情包梗图'完全匹配,但限定词'猫咪'缺失,属于核心主体匹配,存在限定词匹配的情况。\n【最终得分 0.86】\n【规则说明】规则A:动机高分保护生效(动机0.90≥0.8),实际得分0.86已≥0.7\n【加权系数计算】\n0.2637\n 来源词总得分: 0.26\n 系数: 0.26【计算公式】base_score × 系数 = 0.86 × 0.26\n【最终得分(截断后)】0.23",
  15643. "strategy": "域内组合",
  15644. "iteration": 2,
  15645. "is_selected": true,
  15646. "type_label": "[修饰短语+中心名词]",
  15647. "source_words": [
  15648. [
  15649. "反映",
  15650. "人类",
  15651. "双标",
  15652. "行为"
  15653. ],
  15654. [
  15655. "表情包",
  15656. "梗图"
  15657. ]
  15658. ],
  15659. "from_segments": [
  15660. "反映人类双标行为的",
  15661. "猫咪表情包梗图"
  15662. ],
  15663. "domains": [
  15664. 2,
  15665. 3
  15666. ],
  15667. "domains_str": "D2,D3",
  15668. "source_word_details": [
  15669. {
  15670. "domain_index": 2,
  15671. "segment_type": "修饰短语",
  15672. "segment_text": "反映人类双标行为的",
  15673. "words": [
  15674. {
  15675. "text": "反映",
  15676. "score": 0.024
  15677. },
  15678. {
  15679. "text": "人类",
  15680. "score": 0.024
  15681. },
  15682. {
  15683. "text": "双标",
  15684. "score": 0.024
  15685. },
  15686. {
  15687. "text": "行为",
  15688. "score": 0.024
  15689. }
  15690. ]
  15691. },
  15692. {
  15693. "domain_index": 3,
  15694. "segment_type": "中心名词",
  15695. "segment_text": "猫咪表情包梗图",
  15696. "words": [
  15697. {
  15698. "text": "表情包",
  15699. "score": 0.15
  15700. },
  15701. {
  15702. "text": "梗图",
  15703. "score": 0.024
  15704. }
  15705. ]
  15706. }
  15707. ],
  15708. "source_scores": [
  15709. 0.024,
  15710. 0.024,
  15711. 0.024,
  15712. 0.024,
  15713. 0.15,
  15714. 0.024
  15715. ],
  15716. "is_above_sources": true,
  15717. "max_source_score": 0.15,
  15718. "scoreColor": "#22c55e"
  15719. },
  15720. "comb_反映人类双标行为猫咪表情包梗图_r2_148": {
  15721. "type": "domain_combination",
  15722. "query": "反映人类双标行为猫咪表情包梗图",
  15723. "level": 22,
  15724. "relevance_score": 0.09666,
  15725. "evaluationReason": "【Round 2+ 域间评估】\n【评估对象】组合\"反映人类双标行为猫咪表情包梗图\"\n【评估对象】词条\"反映人类双标行为猫咪表情包梗图\" vs 作用域词条\"反映人类双标行为的猫咪表情包梗图\"\n【核心动机】寻找/查看\n【动机维度 0.00】原始问题和词条都无明确的动作意图,无法评估动作匹配度。\n【品类维度 1.00】核心主体和所有关键限定词完全匹配,仅缺少一个不影响语义的标点符号。\n【最终得分 0.30】\n【规则说明】规则B:动机低分限制生效(动机0.00≤0.2),实际得分0.30已≤0.5\n【加权系数计算】\n0.3222\n 来源词总得分: 0.32\n 系数: 0.32【计算公式】base_score × 系数 = 0.30 × 0.32\n【最终得分(截断后)】0.10",
  15726. "strategy": "域内组合",
  15727. "iteration": 2,
  15728. "is_selected": true,
  15729. "type_label": "[修饰短语+中心名词]",
  15730. "source_words": [
  15731. [
  15732. "反映",
  15733. "人类",
  15734. "双标",
  15735. "行为"
  15736. ],
  15737. [
  15738. "猫咪",
  15739. "表情包",
  15740. "梗图"
  15741. ]
  15742. ],
  15743. "from_segments": [
  15744. "反映人类双标行为的",
  15745. "猫咪表情包梗图"
  15746. ],
  15747. "domains": [
  15748. 2,
  15749. 3
  15750. ],
  15751. "domains_str": "D2,D3",
  15752. "source_word_details": [
  15753. {
  15754. "domain_index": 2,
  15755. "segment_type": "修饰短语",
  15756. "segment_text": "反映人类双标行为的",
  15757. "words": [
  15758. {
  15759. "text": "反映",
  15760. "score": 0.024
  15761. },
  15762. {
  15763. "text": "人类",
  15764. "score": 0.024
  15765. },
  15766. {
  15767. "text": "双标",
  15768. "score": 0.024
  15769. },
  15770. {
  15771. "text": "行为",
  15772. "score": 0.024
  15773. }
  15774. ]
  15775. },
  15776. {
  15777. "domain_index": 3,
  15778. "segment_type": "中心名词",
  15779. "segment_text": "猫咪表情包梗图",
  15780. "words": [
  15781. {
  15782. "text": "猫咪",
  15783. "score": 0.09
  15784. },
  15785. {
  15786. "text": "表情包",
  15787. "score": 0.15
  15788. },
  15789. {
  15790. "text": "梗图",
  15791. "score": 0.024
  15792. }
  15793. ]
  15794. }
  15795. ],
  15796. "source_scores": [
  15797. 0.024,
  15798. 0.024,
  15799. 0.024,
  15800. 0.024,
  15801. 0.09,
  15802. 0.15,
  15803. 0.024
  15804. ],
  15805. "is_above_sources": false,
  15806. "max_source_score": 0.15,
  15807. "scoreColor": "#ef4444"
  15808. },
  15809. "step_search_r2": {
  15810. "type": "step",
  15811. "query": "步骤3: 筛选并执行搜索 (筛选7个高分词,搜索7次,undefined个帖子)",
  15812. "level": 21,
  15813. "relevance_score": 0,
  15814. "strategy": "筛选并执行搜索",
  15815. "iteration": 2,
  15816. "is_selected": true
  15817. },
  15818. "search_制作表情包教程_r2_0": {
  15819. "type": "search_word",
  15820. "query": "[SEARCH] 制作表情包教程",
  15821. "level": 22,
  15822. "relevance_score": 0.6799999999999999,
  15823. "strategy": "搜索词",
  15824. "iteration": 2,
  15825. "is_selected": true
  15826. },
  15827. "post_67dc1a58000000001d0232da_0_2": {
  15828. "type": "post",
  15829. "query": "[R] 制作表情包教程3.0",
  15830. "level": 23,
  15831. "relevance_score": 0,
  15832. "strategy": "帖子",
  15833. "iteration": 2,
  15834. "is_selected": true,
  15835. "note_id": "67dc1a58000000001d0232da",
  15836. "note_url": "https://www.xiaohongshu.com/explore/67dc1a58000000001d0232da",
  15837. "body_text": "感谢大家的喜欢!顺便广广我的表情包双描边图源会 适合开会的宝宝使用 还有视频上跟我同款的预览框模板会 都是非常🥬哒!想",
  15838. "images": [
  15839. "https://ci.xiaohongshu.com/1040g00831f8kdc165s505pt1o5hi2v0apnm0fv8?imageView2/2/w/1080/format/webp"
  15840. ],
  15841. "image_list": [
  15842. {
  15843. "image_url": "https://ci.xiaohongshu.com/1040g00831f8kdc165s505pt1o5hi2v0apnm0fv8?imageView2/2/w/1080/format/webp"
  15844. }
  15845. ],
  15846. "interact_info": {
  15847. "liked_count": 4899,
  15848. "collected_count": 2371,
  15849. "comment_count": 224,
  15850. "shared_count": 214
  15851. },
  15852. "extraction": null,
  15853. "is_knowledge": true,
  15854. "knowledge_reason": "帖子标题明确指出是“表情包教程”,正文提及“双描边图源”和“预览框模板”,这些都属于表情包制作的工具或技巧,可复用。",
  15855. "post_relevance_score": 0.55,
  15856. "relevance_level": "中度相关",
  15857. "relevance_reason": "帖子提供了表情包制作的教程和相关素材/工具线索,与原始问题“如何制作表情包”的创作方法论有中度相关性。但帖子未涉及“猫咪”和“双标行为”这些具体内容主题,因此相关性不是高度直接。"
  15858. },
  15859. "post_68282bbd000000002001f349_0_3": {
  15860. "type": "post",
  15861. "query": "[R] 表情包P图素材抠图用",
  15862. "level": 23,
  15863. "relevance_score": 0,
  15864. "strategy": "帖子",
  15865. "iteration": 2,
  15866. "is_selected": true,
  15867. "note_id": "68282bbd000000002001f349",
  15868. "note_url": "https://www.xiaohongshu.com/explore/68282bbd000000002001f349",
  15869. "body_text": "1️⃣醒图导入以上表情图,放大截图就行没水印 2️⃣再导入一张自己的图片,把五官抠图下来放进表情图 3️⃣调节: 亮度",
  15870. "images": [
  15871. "https://ci.xiaohongshu.com/1040g2sg31hitil85jie05oni2p56dljo632j3dg?imageView2/2/w/1080/format/webp",
  15872. "https://ci.xiaohongshu.com/1040g2sg31hitil85jieg5oni2p56dljof6v1da8?imageView2/2/w/1080/format/webp",
  15873. "https://ci.xiaohongshu.com/1040g2sg31hitil85jif05oni2p56dljoj488ivg?imageView2/2/w/1080/format/webp",
  15874. "https://ci.xiaohongshu.com/1040g2sg31hitil85jifg5oni2p56dljo7r8c1s8?imageView2/2/w/1080/format/webp",
  15875. "https://ci.xiaohongshu.com/1040g2sg31hitil85jig05oni2p56dljokvtrd08?imageView2/2/w/1080/format/webp",
  15876. "https://ci.xiaohongshu.com/1040g2sg31hitil85jigg5oni2p56dljocns0amo?imageView2/2/w/1080/format/webp",
  15877. "https://ci.xiaohongshu.com/1040g2sg31hitil85jih05oni2p56dljo6mdks3g?imageView2/2/w/1080/format/webp",
  15878. "https://ci.xiaohongshu.com/1040g2sg31hitil85jihg5oni2p56dljo0nmkpg8?imageView2/2/w/1080/format/webp",
  15879. "https://ci.xiaohongshu.com/1040g2sg31hitil85jii05oni2p56dljoj4dqga0?imageView2/2/w/1080/format/webp",
  15880. "https://ci.xiaohongshu.com/1040g2sg31hitil85jiig5oni2p56dljo0a13c88?imageView2/2/w/1080/format/webp"
  15881. ],
  15882. "image_list": [
  15883. {
  15884. "image_url": "https://ci.xiaohongshu.com/1040g2sg31hitil85jie05oni2p56dljo632j3dg?imageView2/2/w/1080/format/webp"
  15885. },
  15886. {
  15887. "image_url": "https://ci.xiaohongshu.com/1040g2sg31hitil85jieg5oni2p56dljof6v1da8?imageView2/2/w/1080/format/webp"
  15888. },
  15889. {
  15890. "image_url": "https://ci.xiaohongshu.com/1040g2sg31hitil85jif05oni2p56dljoj488ivg?imageView2/2/w/1080/format/webp"
  15891. },
  15892. {
  15893. "image_url": "https://ci.xiaohongshu.com/1040g2sg31hitil85jifg5oni2p56dljo7r8c1s8?imageView2/2/w/1080/format/webp"
  15894. },
  15895. {
  15896. "image_url": "https://ci.xiaohongshu.com/1040g2sg31hitil85jig05oni2p56dljokvtrd08?imageView2/2/w/1080/format/webp"
  15897. },
  15898. {
  15899. "image_url": "https://ci.xiaohongshu.com/1040g2sg31hitil85jigg5oni2p56dljocns0amo?imageView2/2/w/1080/format/webp"
  15900. },
  15901. {
  15902. "image_url": "https://ci.xiaohongshu.com/1040g2sg31hitil85jih05oni2p56dljo6mdks3g?imageView2/2/w/1080/format/webp"
  15903. },
  15904. {
  15905. "image_url": "https://ci.xiaohongshu.com/1040g2sg31hitil85jihg5oni2p56dljo0nmkpg8?imageView2/2/w/1080/format/webp"
  15906. },
  15907. {
  15908. "image_url": "https://ci.xiaohongshu.com/1040g2sg31hitil85jii05oni2p56dljoj4dqga0?imageView2/2/w/1080/format/webp"
  15909. },
  15910. {
  15911. "image_url": "https://ci.xiaohongshu.com/1040g2sg31hitil85jiig5oni2p56dljo0a13c88?imageView2/2/w/1080/format/webp"
  15912. }
  15913. ],
  15914. "interact_info": {
  15915. "liked_count": 3070,
  15916. "collected_count": 1581,
  15917. "comment_count": 67,
  15918. "shared_count": 314
  15919. },
  15920. "extraction": null,
  15921. "is_knowledge": true,
  15922. "knowledge_reason": "帖子提供了利用“醒图”App进行表情包P图的具体步骤和技巧,包括导入、截图、抠图、调整等,是可复用的工具使用和创作方法指导。",
  15923. "post_relevance_score": 0.4,
  15924. "relevance_level": "中度相关",
  15925. "relevance_reason": "帖子提供了制作表情包的基础P图方法,但未涉及如何将猫咪形象与人类双标行为结合来表达特定主题,缺乏创意层面的指导,仅提供了工具性知识,与原始问题的核心目标(反映人类双标行为)相关性弱。"
  15926. },
  15927. "post_66ea4e30000000001e01964b_0_4": {
  15928. "type": "post",
  15929. "query": "[R] 教你DIY宝宝表情包~",
  15930. "level": 23,
  15931. "relevance_score": 0,
  15932. "strategy": "帖子",
  15933. "iteration": 2,
  15934. "is_selected": true,
  15935. "note_id": "66ea4e30000000001e01964b",
  15936. "note_url": "https://www.xiaohongshu.com/explore/66ea4e30000000001e01964b",
  15937. "body_text": "亲妈会做的有趣小事儿之一 拍很多宝宝的小表情,做成微信表情包😊 三步教你完成✅ 🉑美图秀秀,选择“图片美化",
  15938. "images": [
  15939. "https://ci.xiaohongshu.com/1040g008317sg969u3u705o4jptig9f90d1cgkpo?imageView2/2/w/1080/format/webp",
  15940. "https://ci.xiaohongshu.com/1040g008317sg969uju005o4jptig9f90779odk0?imageView2/2/w/1080/format/webp",
  15941. "https://ci.xiaohongshu.com/1040g008317sg969uju0g5o4jptig9f90dr2v328?imageView2/2/w/1080/format/webp",
  15942. "https://ci.xiaohongshu.com/1040g008317sg969uju105o4jptig9f90dm7ka6o?imageView2/2/w/1080/format/webp",
  15943. "https://ci.xiaohongshu.com/1040g008317sg969uju1g5o4jptig9f90sn9d1d8?imageView2/2/w/1080/format/webp",
  15944. "https://ci.xiaohongshu.com/1040g008317sg969uju205o4jptig9f90o1h9l0o?imageView2/2/w/1080/format/webp",
  15945. "https://ci.xiaohongshu.com/1040g008317sg969uju2g5o4jptig9f90juhvb88?imageView2/2/w/1080/format/webp"
  15946. ],
  15947. "image_list": [
  15948. {
  15949. "image_url": "https://ci.xiaohongshu.com/1040g008317sg969u3u705o4jptig9f90d1cgkpo?imageView2/2/w/1080/format/webp"
  15950. },
  15951. {
  15952. "image_url": "https://ci.xiaohongshu.com/1040g008317sg969uju005o4jptig9f90779odk0?imageView2/2/w/1080/format/webp"
  15953. },
  15954. {
  15955. "image_url": "https://ci.xiaohongshu.com/1040g008317sg969uju0g5o4jptig9f90dr2v328?imageView2/2/w/1080/format/webp"
  15956. },
  15957. {
  15958. "image_url": "https://ci.xiaohongshu.com/1040g008317sg969uju105o4jptig9f90dm7ka6o?imageView2/2/w/1080/format/webp"
  15959. },
  15960. {
  15961. "image_url": "https://ci.xiaohongshu.com/1040g008317sg969uju1g5o4jptig9f90sn9d1d8?imageView2/2/w/1080/format/webp"
  15962. },
  15963. {
  15964. "image_url": "https://ci.xiaohongshu.com/1040g008317sg969uju205o4jptig9f90o1h9l0o?imageView2/2/w/1080/format/webp"
  15965. },
  15966. {
  15967. "image_url": "https://ci.xiaohongshu.com/1040g008317sg969uju2g5o4jptig9f90juhvb88?imageView2/2/w/1080/format/webp"
  15968. }
  15969. ],
  15970. "interact_info": {
  15971. "liked_count": 2802,
  15972. "collected_count": 1506,
  15973. "comment_count": 66,
  15974. "shared_count": 1137
  15975. },
  15976. "extraction": null,
  15977. "is_knowledge": true,
  15978. "knowledge_reason": "帖子提供了制作表情包的具体步骤、使用的工具(美图秀秀)和操作流程(编辑、文字、添加),是可复用的创作方法和教程。",
  15979. "post_relevance_score": 0.5,
  15980. "relevance_level": "中度相关",
  15981. "relevance_reason": "帖子提供了制作表情包的方法,这与原始问题“如何制作表情包梗图”这一通用需求有部分重叠。然而,它专注于宝宝表情包,且未涉及“猫咪”、“双标行为”等主题,因此相关性中等偏低。"
  15982. },
  15983. "post_6690ebe500000000250153e5_0_5": {
  15984. "type": "post",
  15985. "query": "[R] 微信自制个性表情包,太有意思了!",
  15986. "level": 23,
  15987. "relevance_score": 0,
  15988. "strategy": "帖子",
  15989. "iteration": 2,
  15990. "is_selected": true,
  15991. "note_id": "6690ebe500000000250153e5",
  15992. "note_url": "https://www.xiaohongshu.com/explore/6690ebe500000000250153e5",
  15993. "body_text": "#微信自制表情包    #微信小技巧    #微信设置    #微信表情    #手机技巧",
  15994. "images": [
  15995. "https://ci.xiaohongshu.com/spectrum/1040g0k0315571792gk105o4pqf008buj0d7qq30?imageView2/2/w/1080/format/webp"
  15996. ],
  15997. "image_list": [
  15998. {
  15999. "image_url": "https://ci.xiaohongshu.com/spectrum/1040g0k0315571792gk105o4pqf008buj0d7qq30?imageView2/2/w/1080/format/webp"
  16000. }
  16001. ],
  16002. "interact_info": {
  16003. "liked_count": 1598,
  16004. "collected_count": 1201,
  16005. "comment_count": 30,
  16006. "shared_count": 172
  16007. },
  16008. "extraction": null,
  16009. "is_knowledge": true,
  16010. "knowledge_reason": "帖子标题和标签表明内容是关于“微信自制表情包”的方法或技巧,可能包含工具使用和操作步骤的指导。虽然没有看到具体内容,但其定位符合知识内容。",
  16011. "post_relevance_score": 0.4,
  16012. "relevance_level": "中度相关",
  16013. "relevance_reason": "该帖子与原始问题“如何制作反映人类双标行为的猫咪表情包梗图”仅在“表情包制作”这一宽泛概念上相关。帖子可能提供了表情包制作的通用方法,但未涉及“猫咪表情包”、“双标行为”或“梗图”的具体创作知识,参考价值有限。"
  16014. },
  16015. "post_671d9a72000000001402e50f_0_6": {
  16016. "type": "post",
  16017. "query": "[R] 小红书自制表情包!",
  16018. "level": 23,
  16019. "relevance_score": 0,
  16020. "strategy": "帖子",
  16021. "iteration": 2,
  16022. "is_selected": true,
  16023. "note_id": "671d9a72000000001402e50f",
  16024. "note_url": "https://www.xiaohongshu.com/explore/671d9a72000000001402e50f",
  16025. "body_text": "[飞吻R][飞吻R][飞吻R]#表情包制作 #小表情包 #表情包教程 #来更新了 [飞吻R][飞吻R][飞吻R",
  16026. "images": [
  16027. "https://ci.xiaohongshu.com/1040g008319ejb3iv6a005nho0ea09dlcbau3dkg?imageView2/2/w/1080/format/webp",
  16028. "https://ci.xiaohongshu.com/1040g008319ejb3iv6a0g5nho0ea09dlcifm9qng?imageView2/2/w/1080/format/webp",
  16029. "https://ci.xiaohongshu.com/1040g008319ejb3iv6a105nho0ea09dlcnmflne8?imageView2/2/w/1080/format/webp",
  16030. "https://ci.xiaohongshu.com/1040g008319ejb3iv6a1g5nho0ea09dlciseqgb8?imageView2/2/w/1080/format/webp",
  16031. "https://ci.xiaohongshu.com/1040g008319ejb3iv6a205nho0ea09dlcspj4d9o?imageView2/2/w/1080/format/webp",
  16032. "https://ci.xiaohongshu.com/1040g008319ejb3iv6a2g5nho0ea09dlcu4ac7dg?imageView2/2/w/1080/format/webp",
  16033. "https://ci.xiaohongshu.com/1040g008319ejb3iv6a305nho0ea09dlcr70th0g?imageView2/2/w/1080/format/webp"
  16034. ],
  16035. "image_list": [
  16036. {
  16037. "image_url": "https://ci.xiaohongshu.com/1040g008319ejb3iv6a005nho0ea09dlcbau3dkg?imageView2/2/w/1080/format/webp"
  16038. },
  16039. {
  16040. "image_url": "https://ci.xiaohongshu.com/1040g008319ejb3iv6a0g5nho0ea09dlcifm9qng?imageView2/2/w/1080/format/webp"
  16041. },
  16042. {
  16043. "image_url": "https://ci.xiaohongshu.com/1040g008319ejb3iv6a105nho0ea09dlcnmflne8?imageView2/2/w/1080/format/webp"
  16044. },
  16045. {
  16046. "image_url": "https://ci.xiaohongshu.com/1040g008319ejb3iv6a1g5nho0ea09dlciseqgb8?imageView2/2/w/1080/format/webp"
  16047. },
  16048. {
  16049. "image_url": "https://ci.xiaohongshu.com/1040g008319ejb3iv6a205nho0ea09dlcspj4d9o?imageView2/2/w/1080/format/webp"
  16050. },
  16051. {
  16052. "image_url": "https://ci.xiaohongshu.com/1040g008319ejb3iv6a2g5nho0ea09dlcu4ac7dg?imageView2/2/w/1080/format/webp"
  16053. },
  16054. {
  16055. "image_url": "https://ci.xiaohongshu.com/1040g008319ejb3iv6a305nho0ea09dlcr70th0g?imageView2/2/w/1080/format/webp"
  16056. }
  16057. ],
  16058. "interact_info": {
  16059. "liked_count": 653,
  16060. "collected_count": 403,
  16061. "comment_count": 1919,
  16062. "shared_count": 104
  16063. },
  16064. "extraction": null,
  16065. "is_knowledge": true,
  16066. "knowledge_reason": "该帖子通过图文结合的形式,清晰展示了在小红书平台内制作和添加自定义表情包的步骤和方法,属于可复用的工具使用教程。",
  16067. "post_relevance_score": 0.4,
  16068. "relevance_level": "中度相关",
  16069. "relevance_reason": "帖子提供了制作表情包的通用方法,但未涉及如何将表情包内容设计成反映“人类双标行为”的主题,也与“猫咪”元素无关。它仅解决了表情包制作的平台操作层面问题,而非具体的创作内容层面问题。"
  16070. },
  16071. "post_668f5479000000000d00ebc2_0_7": {
  16072. "type": "post",
  16073. "query": "[R] 绝了!让人爆羡慕的技能(0成本💰无痛变厉害",
  16074. "level": 23,
  16075. "relevance_score": 0,
  16076. "strategy": "帖子",
  16077. "iteration": 2,
  16078. "is_selected": true,
  16079. "note_id": "668f5479000000000d00ebc2",
  16080. "note_url": "https://www.xiaohongshu.com/explore/668f5479000000000d00ebc2",
  16081. "body_text": "在此感谢我那个上架了好几系列表情包的闺蜜👯‍♀️她画的表情包系列有几百人使用!(而且半小时就把我教会了[哭惹R",
  16082. "images": [
  16083. "https://ci.xiaohongshu.com/1040g2sg3153l9q6t1c7049ldg1no2qji4k25ge0?imageView2/2/w/1080/format/webp"
  16084. ],
  16085. "image_list": [
  16086. {
  16087. "image_url": "https://ci.xiaohongshu.com/1040g2sg3153l9q6t1c7049ldg1no2qji4k25ge0?imageView2/2/w/1080/format/webp"
  16088. }
  16089. ],
  16090. "interact_info": {
  16091. "liked_count": 77406,
  16092. "collected_count": 54710,
  16093. "comment_count": 770,
  16094. "shared_count": 3516
  16095. },
  16096. "extraction": null,
  16097. "is_knowledge": true,
  16098. "knowledge_reason": "帖子标题和图片明确提及“自制表情包”、“手把手教程”,正文也提到“半小时就把我教会了”,暗示发布者将分享表情包制作的方法或流程,是可复用的创作知识。",
  16099. "post_relevance_score": 0.5,
  16100. "relevance_level": "中度相关",
  16101. "relevance_reason": "帖子内容与“制作表情包”相关,但未明确提及如何制作“反映人类双标行为的猫咪表情包梗图”。它可能提供制作表情包的通用方法,但缺乏针对特定主题(人类双标行为)和特定形象(猫咪)的指导,因此是中度相关。"
  16102. },
  16103. "post_680054bc000000001d014b19_0_8": {
  16104. "type": "post",
  16105. "query": "[R] 手把手教你用AI制作表情包‼️超详细教程",
  16106. "level": 23,
  16107. "relevance_score": 0,
  16108. "strategy": "帖子",
  16109. "iteration": 2,
  16110. "is_selected": true,
  16111. "note_id": "680054bc000000001d014b19",
  16112. "note_url": "https://www.xiaohongshu.com/explore/680054bc000000001d014b19",
  16113. "body_text": "① DeepSeek生成提示语 打开DeepSeek,输入要求,生成表情包【动作】及【对应文字】提示语。 如:生成20个",
  16114. "images": [
  16115. "https://ci.xiaohongshu.com/1040g00831gc0ipb9ju705ne46t8g87jmvvg7dh8?imageView2/2/w/1080/format/webp",
  16116. "https://ci.xiaohongshu.com/1040g00831gc0ipb9ju7g5ne46t8g87jm12ha9g0?imageView2/2/w/1080/format/webp",
  16117. "https://ci.xiaohongshu.com/1040g00831gc0ipb9ju805ne46t8g87jmt09d8j8?imageView2/2/w/1080/format/webp",
  16118. "https://ci.xiaohongshu.com/1040g00831gc0ipb9ju8g5ne46t8g87jmko2jnu0?imageView2/2/w/1080/format/webp",
  16119. "https://ci.xiaohongshu.com/1040g00831gc0ipb9ju905ne46t8g87jmq8u02d8?imageView2/2/w/1080/format/webp",
  16120. "https://ci.xiaohongshu.com/1040g00831gc0ipb9ju9g5ne46t8g87jmiik9eg0?imageView2/2/w/1080/format/webp",
  16121. "https://ci.xiaohongshu.com/1040g00831gc0ipb9jua05ne46t8g87jmca5io40?imageView2/2/w/1080/format/webp"
  16122. ],
  16123. "image_list": [
  16124. {
  16125. "image_url": "https://ci.xiaohongshu.com/1040g00831gc0ipb9ju705ne46t8g87jmvvg7dh8?imageView2/2/w/1080/format/webp"
  16126. },
  16127. {
  16128. "image_url": "https://ci.xiaohongshu.com/1040g00831gc0ipb9ju7g5ne46t8g87jm12ha9g0?imageView2/2/w/1080/format/webp"
  16129. },
  16130. {
  16131. "image_url": "https://ci.xiaohongshu.com/1040g00831gc0ipb9ju805ne46t8g87jmt09d8j8?imageView2/2/w/1080/format/webp"
  16132. },
  16133. {
  16134. "image_url": "https://ci.xiaohongshu.com/1040g00831gc0ipb9ju8g5ne46t8g87jmko2jnu0?imageView2/2/w/1080/format/webp"
  16135. },
  16136. {
  16137. "image_url": "https://ci.xiaohongshu.com/1040g00831gc0ipb9ju905ne46t8g87jmq8u02d8?imageView2/2/w/1080/format/webp"
  16138. },
  16139. {
  16140. "image_url": "https://ci.xiaohongshu.com/1040g00831gc0ipb9ju9g5ne46t8g87jmiik9eg0?imageView2/2/w/1080/format/webp"
  16141. },
  16142. {
  16143. "image_url": "https://ci.xiaohongshu.com/1040g00831gc0ipb9jua05ne46t8g87jmca5io40?imageView2/2/w/1080/format/webp"
  16144. }
  16145. ],
  16146. "interact_info": {
  16147. "liked_count": 3166,
  16148. "collected_count": 3355,
  16149. "comment_count": 42,
  16150. "shared_count": 363
  16151. },
  16152. "extraction": null,
  16153. "is_knowledge": true,
  16154. "knowledge_reason": "帖子提供了一套使用AI工具(DeepSeek、即梦)和PS制作表情包的详细教程,包括生成提示语、图片制作、导出及后期处理的完整流程,是可复用的创作知识。",
  16155. "post_relevance_score": 0.5,
  16156. "relevance_level": "中度相关",
  16157. "relevance_reason": "帖子提供了AI制作猫咪表情包的通用方法和工具,但原始问题特指“反映人类双标行为”,这个帖子没有提供如何将“双标行为”这一具体创意融入表情包设计的指导,因此相关性中等。"
  16158. },
  16159. "post_690818e70000000003011fa5_0_9": {
  16160. "type": "post",
  16161. "query": "[R] deepseek+即梦AI,人人都能制作表情包!",
  16162. "level": 23,
  16163. "relevance_score": 0,
  16164. "strategy": "帖子",
  16165. "iteration": 2,
  16166. "is_selected": true,
  16167. "note_id": "690818e70000000003011fa5",
  16168. "note_url": "https://www.xiaohongshu.com/explore/690818e70000000003011fa5",
  16169. "body_text": "用AI做表情包,不需要插画基础,只需几分钟,就能生成搞笑、有趣、个性化的表情包内容,快去试试。 #表情包制作 #AI",
  16170. "images": [
  16171. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031odj8oc8l8005q7mur3dt625mvr33t0?imageView2/2/w/1080/format/webp",
  16172. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031odj8ooo6g005q7mur3dt625ivd643o?imageView2/2/w/1080/format/webp",
  16173. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031odhtusu5m2g5q7mur3dt625g3tc7s0?imageView2/2/w/1080/format/webp",
  16174. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031odj8pcrmg005q7mur3dt625nnq2fn0?imageView2/2/w/1080/format/webp",
  16175. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031odj8p5jl8005q7mur3dt6256beo5j8?imageView2/2/w/1080/format/webp",
  16176. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031odj8oukg6005q7mur3dt625d59fpu8?imageView2/2/w/1080/format/webp"
  16177. ],
  16178. "image_list": [
  16179. {
  16180. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031odj8oc8l8005q7mur3dt625mvr33t0?imageView2/2/w/1080/format/webp"
  16181. },
  16182. {
  16183. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031odj8ooo6g005q7mur3dt625ivd643o?imageView2/2/w/1080/format/webp"
  16184. },
  16185. {
  16186. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031odhtusu5m2g5q7mur3dt625g3tc7s0?imageView2/2/w/1080/format/webp"
  16187. },
  16188. {
  16189. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031odj8pcrmg005q7mur3dt625nnq2fn0?imageView2/2/w/1080/format/webp"
  16190. },
  16191. {
  16192. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031odj8p5jl8005q7mur3dt6256beo5j8?imageView2/2/w/1080/format/webp"
  16193. },
  16194. {
  16195. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031odj8oukg6005q7mur3dt625d59fpu8?imageView2/2/w/1080/format/webp"
  16196. }
  16197. ],
  16198. "interact_info": {
  16199. "liked_count": 18,
  16200. "collected_count": 19,
  16201. "comment_count": 0,
  16202. "shared_count": 2
  16203. },
  16204. "extraction": null,
  16205. "is_knowledge": true,
  16206. "knowledge_reason": "帖子提供了详细的AI工具使用流程和步骤,包括提示词生成、图片生成、编辑导出等,属于可复用的创作方法和教程指导。",
  16207. "post_relevance_score": 0.55,
  16208. "relevance_level": "中度相关",
  16209. "relevance_reason": "帖子提供了使用AI制作表情包的方法和工具,这与原始问题中“制作”表情包的需求相关。然而,它未直接解决如何反映“人类双标行为”这一具体创意主题,也未提供这方面的提示或技巧,因此属于中度相关,有一定参考价值但不够针对性。"
  16210. },
  16211. "search_怼双标的人表情包_r2_1": {
  16212. "type": "search_word",
  16213. "query": "[SEARCH] 怼双标的人表情包",
  16214. "level": 22,
  16215. "relevance_score": 0.655,
  16216. "strategy": "搜索词",
  16217. "iteration": 2,
  16218. "is_selected": true
  16219. },
  16220. "post_66af92ad0000000005038228_1_0": {
  16221. "type": "post",
  16222. "query": "[R] 来存怼人阴阳怪气的表情包了",
  16223. "level": 23,
  16224. "relevance_score": 0,
  16225. "strategy": "帖子",
  16226. "iteration": 2,
  16227. "is_selected": true,
  16228. "note_id": "66af92ad0000000005038228",
  16229. "note_url": "https://www.xiaohongshu.com/explore/66af92ad0000000005038228",
  16230. "body_text": "#发疯表情包 #道歉表情包 #斗图表情包 #每日表情包分享 #表情包 #聊天 #最爱的表情包 #阴阳怪气表",
  16231. "images": [
  16232. "https://ci.xiaohongshu.com/1040g2sg31634rlb3had05ok8midoc9atv1jvlag?imageView2/2/w/1080/format/webp",
  16233. "https://ci.xiaohongshu.com/1040g2sg31634rlb3ha805ok8midoc9ath15l07o?imageView2/2/w/1080/format/webp",
  16234. "https://ci.xiaohongshu.com/1040g2sg31634rlb3ha9g5ok8midoc9ath4tmtkg?imageView2/2/w/1080/format/webp",
  16235. "https://ci.xiaohongshu.com/1040g2sg31634rlb3ha7g5ok8midoc9atjbvqqr0?imageView2/2/w/1080/format/webp",
  16236. "https://ci.xiaohongshu.com/1040g2sg31634rlb3ha705ok8midoc9atpslav5g?imageView2/2/w/1080/format/webp",
  16237. "https://ci.xiaohongshu.com/1040g2sg31634rlb3haa05ok8midoc9atc65dg4o?imageView2/2/w/1080/format/webp",
  16238. "https://ci.xiaohongshu.com/1040g2sg31634rlb3ha8g5ok8midoc9at8fgjc30?imageView2/2/w/1080/format/webp",
  16239. "https://ci.xiaohongshu.com/1040g2sg31634rlb3hac05ok8midoc9atfsetv3o?imageView2/2/w/1080/format/webp",
  16240. "https://ci.xiaohongshu.com/1040g2sg31634rlb3hab05ok8midoc9at9m1s7q8?imageView2/2/w/1080/format/webp",
  16241. "https://ci.xiaohongshu.com/1040g2sg31634soan1adg5ok8midoc9atotm2p18?imageView2/2/w/1080/format/webp",
  16242. "https://ci.xiaohongshu.com/1040g2sg31634soan1ad05ok8midoc9atq6f5jr0?imageView2/2/w/1080/format/webp",
  16243. "https://ci.xiaohongshu.com/1040g2sg31634soan1abg5ok8midoc9atkjd6fj0?imageView2/2/w/1080/format/webp",
  16244. "https://ci.xiaohongshu.com/1040g2sg31634soan1aa05ok8midoc9atrk5i0do?imageView2/2/w/1080/format/webp",
  16245. "https://ci.xiaohongshu.com/1040g2sg31634soan1aag5ok8midoc9atmshdusg?imageView2/2/w/1080/format/webp",
  16246. "https://ci.xiaohongshu.com/1040g2sg31634soan1a9g5ok8midoc9at9kerqi8?imageView2/2/w/1080/format/webp",
  16247. "https://ci.xiaohongshu.com/1040g2sg31634soan1acg5ok8midoc9atlgsmilg?imageView2/2/w/1080/format/webp",
  16248. "https://ci.xiaohongshu.com/1040g2sg31634soan1a705ok8midoc9atc342vgg?imageView2/2/w/1080/format/webp",
  16249. "https://ci.xiaohongshu.com/1040g2sg31634soan1a905ok8midoc9at4dnrujg?imageView2/2/w/1080/format/webp"
  16250. ],
  16251. "image_list": [
  16252. {
  16253. "image_url": "https://ci.xiaohongshu.com/1040g2sg31634rlb3had05ok8midoc9atv1jvlag?imageView2/2/w/1080/format/webp"
  16254. },
  16255. {
  16256. "image_url": "https://ci.xiaohongshu.com/1040g2sg31634rlb3ha805ok8midoc9ath15l07o?imageView2/2/w/1080/format/webp"
  16257. },
  16258. {
  16259. "image_url": "https://ci.xiaohongshu.com/1040g2sg31634rlb3ha9g5ok8midoc9ath4tmtkg?imageView2/2/w/1080/format/webp"
  16260. },
  16261. {
  16262. "image_url": "https://ci.xiaohongshu.com/1040g2sg31634rlb3ha7g5ok8midoc9atjbvqqr0?imageView2/2/w/1080/format/webp"
  16263. },
  16264. {
  16265. "image_url": "https://ci.xiaohongshu.com/1040g2sg31634rlb3ha705ok8midoc9atpslav5g?imageView2/2/w/1080/format/webp"
  16266. },
  16267. {
  16268. "image_url": "https://ci.xiaohongshu.com/1040g2sg31634rlb3haa05ok8midoc9atc65dg4o?imageView2/2/w/1080/format/webp"
  16269. },
  16270. {
  16271. "image_url": "https://ci.xiaohongshu.com/1040g2sg31634rlb3ha8g5ok8midoc9at8fgjc30?imageView2/2/w/1080/format/webp"
  16272. },
  16273. {
  16274. "image_url": "https://ci.xiaohongshu.com/1040g2sg31634rlb3hac05ok8midoc9atfsetv3o?imageView2/2/w/1080/format/webp"
  16275. },
  16276. {
  16277. "image_url": "https://ci.xiaohongshu.com/1040g2sg31634rlb3hab05ok8midoc9at9m1s7q8?imageView2/2/w/1080/format/webp"
  16278. },
  16279. {
  16280. "image_url": "https://ci.xiaohongshu.com/1040g2sg31634soan1adg5ok8midoc9atotm2p18?imageView2/2/w/1080/format/webp"
  16281. },
  16282. {
  16283. "image_url": "https://ci.xiaohongshu.com/1040g2sg31634soan1ad05ok8midoc9atq6f5jr0?imageView2/2/w/1080/format/webp"
  16284. },
  16285. {
  16286. "image_url": "https://ci.xiaohongshu.com/1040g2sg31634soan1abg5ok8midoc9atkjd6fj0?imageView2/2/w/1080/format/webp"
  16287. },
  16288. {
  16289. "image_url": "https://ci.xiaohongshu.com/1040g2sg31634soan1aa05ok8midoc9atrk5i0do?imageView2/2/w/1080/format/webp"
  16290. },
  16291. {
  16292. "image_url": "https://ci.xiaohongshu.com/1040g2sg31634soan1aag5ok8midoc9atmshdusg?imageView2/2/w/1080/format/webp"
  16293. },
  16294. {
  16295. "image_url": "https://ci.xiaohongshu.com/1040g2sg31634soan1a9g5ok8midoc9at9kerqi8?imageView2/2/w/1080/format/webp"
  16296. },
  16297. {
  16298. "image_url": "https://ci.xiaohongshu.com/1040g2sg31634soan1acg5ok8midoc9atlgsmilg?imageView2/2/w/1080/format/webp"
  16299. },
  16300. {
  16301. "image_url": "https://ci.xiaohongshu.com/1040g2sg31634soan1a705ok8midoc9atc342vgg?imageView2/2/w/1080/format/webp"
  16302. },
  16303. {
  16304. "image_url": "https://ci.xiaohongshu.com/1040g2sg31634soan1a905ok8midoc9at4dnrujg?imageView2/2/w/1080/format/webp"
  16305. }
  16306. ],
  16307. "interact_info": {
  16308. "liked_count": 4491,
  16309. "collected_count": 1159,
  16310. "comment_count": 138,
  16311. "shared_count": 310
  16312. },
  16313. "extraction": null,
  16314. "is_knowledge": false,
  16315. "knowledge_reason": "该帖子仅分享了一系列表情包图片,标题和正文均为标签,没有提供任何关于表情包制作的方法、技巧、工具或教程指导,不包含可复用的创作知识。",
  16316. "post_relevance_score": 0.1,
  16317. "relevance_level": "低度相关",
  16318. "relevance_reason": "该帖子展示的是阴阳怪气风格的表情包,但原始问题是关于“如何制作反映人类双标行为的猫咪表情包梗图”。帖子内容与问题中的“猫咪表情包”及“制作方法”无关,仅在“表情包”这一宽泛概念上有些许联系,参考价值非常有限。"
  16319. },
  16320. "post_68597fed000000001202d443_1_1": {
  16321. "type": "post",
  16322. "query": "[R] 🔥聊天怼人很好用的嘴替表情包 ​​​",
  16323. "level": 23,
  16324. "relevance_score": 0,
  16325. "strategy": "帖子",
  16326. "iteration": 2,
  16327. "is_selected": true,
  16328. "note_id": "68597fed000000001202d443",
  16329. "note_url": "https://www.xiaohongshu.com/explore/68597fed000000001202d443",
  16330. "body_text": "#表情包 #发疯表情包 #斗图表情包 #分享表情包 #搞笑表情包 #最爱的表情包 #奇奇怪怪表情包 #超适",
  16331. "images": [
  16332. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031j33322hhe6g4bc9gkosi9ikvkniovg?imageView2/2/w/1080/format/webp",
  16333. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031j33322hhe604bc9gkosi9ikjnc8id0?imageView2/2/w/1080/format/webp",
  16334. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831j3333pjh4004bc9gkosi9ik9kl13u8?imageView2/2/w/1080/format/webp",
  16335. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031j33322hhe2g4bc9gkosi9ikit03vjo?imageView2/2/w/1080/format/webp",
  16336. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831j3333gche004bc9gkosi9ikgpinseg?imageView2/2/w/1080/format/webp",
  16337. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031j33322hhe204bc9gkosi9ik4i79pbg?imageView2/2/w/1080/format/webp",
  16338. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031j33322hhe304bc9gkosi9ikecl7kmo?imageView2/2/w/1080/format/webp",
  16339. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031j33322hhe4g4bc9gkosi9ik4mtp5a0?imageView2/2/w/1080/format/webp",
  16340. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031j33322hhe404bc9gkosi9ik0t275q8?imageView2/2/w/1080/format/webp",
  16341. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031j33322hhe504bc9gkosi9ikl28oaa0?imageView2/2/w/1080/format/webp",
  16342. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831j3332jnhg004bc9gkosi9ik3hmb9k0?imageView2/2/w/1080/format/webp",
  16343. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031j33322hhe5g4bc9gkosi9ikipu5mv0?imageView2/2/w/1080/format/webp",
  16344. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831j3332eqha704bc9gkosi9ik5kl5od0?imageView2/2/w/1080/format/webp",
  16345. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831j33329314004bc9gkosi9ik5oa1l60?imageView2/2/w/1080/format/webp"
  16346. ],
  16347. "image_list": [
  16348. {
  16349. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031j33322hhe6g4bc9gkosi9ikvkniovg?imageView2/2/w/1080/format/webp"
  16350. },
  16351. {
  16352. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031j33322hhe604bc9gkosi9ikjnc8id0?imageView2/2/w/1080/format/webp"
  16353. },
  16354. {
  16355. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831j3333pjh4004bc9gkosi9ik9kl13u8?imageView2/2/w/1080/format/webp"
  16356. },
  16357. {
  16358. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031j33322hhe2g4bc9gkosi9ikit03vjo?imageView2/2/w/1080/format/webp"
  16359. },
  16360. {
  16361. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831j3333gche004bc9gkosi9ikgpinseg?imageView2/2/w/1080/format/webp"
  16362. },
  16363. {
  16364. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031j33322hhe204bc9gkosi9ik4i79pbg?imageView2/2/w/1080/format/webp"
  16365. },
  16366. {
  16367. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031j33322hhe304bc9gkosi9ikecl7kmo?imageView2/2/w/1080/format/webp"
  16368. },
  16369. {
  16370. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031j33322hhe4g4bc9gkosi9ik4mtp5a0?imageView2/2/w/1080/format/webp"
  16371. },
  16372. {
  16373. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031j33322hhe404bc9gkosi9ik0t275q8?imageView2/2/w/1080/format/webp"
  16374. },
  16375. {
  16376. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031j33322hhe504bc9gkosi9ikl28oaa0?imageView2/2/w/1080/format/webp"
  16377. },
  16378. {
  16379. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831j3332jnhg004bc9gkosi9ik3hmb9k0?imageView2/2/w/1080/format/webp"
  16380. },
  16381. {
  16382. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031j33322hhe5g4bc9gkosi9ikipu5mv0?imageView2/2/w/1080/format/webp"
  16383. },
  16384. {
  16385. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831j3332eqha704bc9gkosi9ik5kl5od0?imageView2/2/w/1080/format/webp"
  16386. },
  16387. {
  16388. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831j33329314004bc9gkosi9ik5oa1l60?imageView2/2/w/1080/format/webp"
  16389. }
  16390. ],
  16391. "interact_info": {
  16392. "liked_count": 93,
  16393. "collected_count": 23,
  16394. "comment_count": 2,
  16395. "shared_count": 4
  16396. },
  16397. "extraction": null,
  16398. "is_knowledge": false,
  16399. "knowledge_reason": "该帖子仅分享了已制作好的表情包图片,不包含任何关于表情包制作的步骤、技巧或工具使用指南等可复用的创作知识。",
  16400. "post_relevance_score": 0.05,
  16401. "relevance_level": "低度相关",
  16402. "relevance_reason": "原始问题是关于“如何制作”反映人类双标行为的猫咪表情包梗图。该帖子虽然涉及表情包,但内容是现成表情包的分享,且没有猫咪表情包,更没有体现制作过程和双标行为,因此相关性极低,无法解决原始问题。"
  16403. },
  16404. "post_6541e7fb000000002303bfea_1_2": {
  16405. "type": "post",
  16406. "query": "[R] 真的很讨厌两面三刀的人,有事就当面说怂包",
  16407. "level": 23,
  16408. "relevance_score": 0,
  16409. "strategy": "帖子",
  16410. "iteration": 2,
  16411. "is_selected": true,
  16412. "note_id": "6541e7fb000000002303bfea",
  16413. "note_url": "https://www.xiaohongshu.com/explore/6541e7fb000000002303bfea",
  16414. "body_text": "#发疯日常",
  16415. "images": [
  16416. "https://ci.xiaohongshu.com/1040g2sg30qu1pvp7h4eg5nh61ghg8g8l0d7fv20?imageView2/2/w/1080/format/webp",
  16417. "https://ci.xiaohongshu.com/1040g2sg30qu1pvp7h4hg5nh61ghg8g8lf0oqnng?imageView2/2/w/1080/format/webp",
  16418. "https://ci.xiaohongshu.com/1040g2sg30qu1pvp7h4g05nh61ghg8g8losgl9r0?imageView2/2/w/1080/format/webp"
  16419. ],
  16420. "image_list": [
  16421. {
  16422. "image_url": "https://ci.xiaohongshu.com/1040g2sg30qu1pvp7h4eg5nh61ghg8g8l0d7fv20?imageView2/2/w/1080/format/webp"
  16423. },
  16424. {
  16425. "image_url": "https://ci.xiaohongshu.com/1040g2sg30qu1pvp7h4hg5nh61ghg8g8lf0oqnng?imageView2/2/w/1080/format/webp"
  16426. },
  16427. {
  16428. "image_url": "https://ci.xiaohongshu.com/1040g2sg30qu1pvp7h4g05nh61ghg8g8losgl9r0?imageView2/2/w/1080/format/webp"
  16429. }
  16430. ],
  16431. "interact_info": {
  16432. "liked_count": 1977,
  16433. "collected_count": 590,
  16434. "comment_count": 29,
  16435. "shared_count": 132
  16436. },
  16437. "extraction": null,
  16438. "is_knowledge": false,
  16439. "knowledge_reason": "该帖子是纯粹的情感表达和个人吐槽,虽然使用了梗图形式,但未提供任何关于如何制作梗图、图片处理软件使用、表情包创作思路等可复用的创作方法或技巧。",
  16440. "post_relevance_score": 0.4,
  16441. "relevance_level": "中度相关",
  16442. "relevance_reason": "帖子内容与原始问题“如何制作反映人类双标行为的猫咪表情包梗图”具有一定的概念相关性,因为帖子本身就在通过梗图表达对“两面三刀”(即双标行为)的厌恶,间接触及了双标这一主题。然而,帖子并未提供制作猫咪表情包的具体方法或创作指导,图片也不是猫咪表情包,因此参考价值有限,属于中度偏低相关。"
  16443. },
  16444. "post_67bb4d7d000000002903d2fb_1_3": {
  16445. "type": "post",
  16446. "query": "[R] 一些攻击力不是很强的怼人骂人表情包 ​​",
  16447. "level": 23,
  16448. "relevance_score": 0,
  16449. "strategy": "帖子",
  16450. "iteration": 2,
  16451. "is_selected": true,
  16452. "note_id": "67bb4d7d000000002903d2fb",
  16453. "note_url": "https://www.xiaohongshu.com/explore/67bb4d7d000000002903d2fb",
  16454. "body_text": "#我d图集 #表情包 #表情包分享 #发疯表情包 #聊天表情包 #实用表情包 #分享表情包 #搞笑表情包分",
  16455. "images": [
  16456. "https://ci.xiaohongshu.com/1040g2sg31e8e5t780md05pin9e82ue9b6o9cr60?imageView2/2/w/1080/format/webp",
  16457. "https://ci.xiaohongshu.com/1040g2sg31e8e5t780mc05pin9e82ue9bqt4rnu8?imageView2/2/w/1080/format/webp",
  16458. "https://ci.xiaohongshu.com/1040g2sg31e8e5t780ma05pin9e82ue9bra82in8?imageView2/2/w/1080/format/webp",
  16459. "https://ci.xiaohongshu.com/1040g2sg31e8e5t780m8g5pin9e82ue9bucua3c8?imageView2/2/w/1080/format/webp",
  16460. "https://ci.xiaohongshu.com/1040g2sg31e8e5t780m805pin9e82ue9b8g026b8?imageView2/2/w/1080/format/webp",
  16461. "https://ci.xiaohongshu.com/1040g2sg31e8e5t780m705pin9e82ue9btkpkad0?imageView2/2/w/1080/format/webp",
  16462. "https://ci.xiaohongshu.com/1040g2sg31e8e5t780mcg5pin9e82ue9bns5mcgo?imageView2/2/w/1080/format/webp",
  16463. "https://ci.xiaohongshu.com/1040g2sg31e8e5t780m905pin9e82ue9b9teefdo?imageView2/2/w/1080/format/webp",
  16464. "https://ci.xiaohongshu.com/1040g2sg31e8e5t780m9g5pin9e82ue9bbasi8mo?imageView2/2/w/1080/format/webp",
  16465. "https://ci.xiaohongshu.com/1040g2sg31e8e5t780mag5pin9e82ue9bdk5d6fo?imageView2/2/w/1080/format/webp",
  16466. "https://ci.xiaohongshu.com/1040g2sg31e8e5t780mb05pin9e82ue9b4ba47mg?imageView2/2/w/1080/format/webp"
  16467. ],
  16468. "image_list": [
  16469. {
  16470. "image_url": "https://ci.xiaohongshu.com/1040g2sg31e8e5t780md05pin9e82ue9b6o9cr60?imageView2/2/w/1080/format/webp"
  16471. },
  16472. {
  16473. "image_url": "https://ci.xiaohongshu.com/1040g2sg31e8e5t780mc05pin9e82ue9bqt4rnu8?imageView2/2/w/1080/format/webp"
  16474. },
  16475. {
  16476. "image_url": "https://ci.xiaohongshu.com/1040g2sg31e8e5t780ma05pin9e82ue9bra82in8?imageView2/2/w/1080/format/webp"
  16477. },
  16478. {
  16479. "image_url": "https://ci.xiaohongshu.com/1040g2sg31e8e5t780m8g5pin9e82ue9bucua3c8?imageView2/2/w/1080/format/webp"
  16480. },
  16481. {
  16482. "image_url": "https://ci.xiaohongshu.com/1040g2sg31e8e5t780m805pin9e82ue9b8g026b8?imageView2/2/w/1080/format/webp"
  16483. },
  16484. {
  16485. "image_url": "https://ci.xiaohongshu.com/1040g2sg31e8e5t780m705pin9e82ue9btkpkad0?imageView2/2/w/1080/format/webp"
  16486. },
  16487. {
  16488. "image_url": "https://ci.xiaohongshu.com/1040g2sg31e8e5t780mcg5pin9e82ue9bns5mcgo?imageView2/2/w/1080/format/webp"
  16489. },
  16490. {
  16491. "image_url": "https://ci.xiaohongshu.com/1040g2sg31e8e5t780m905pin9e82ue9b9teefdo?imageView2/2/w/1080/format/webp"
  16492. },
  16493. {
  16494. "image_url": "https://ci.xiaohongshu.com/1040g2sg31e8e5t780m9g5pin9e82ue9bbasi8mo?imageView2/2/w/1080/format/webp"
  16495. },
  16496. {
  16497. "image_url": "https://ci.xiaohongshu.com/1040g2sg31e8e5t780mag5pin9e82ue9bdk5d6fo?imageView2/2/w/1080/format/webp"
  16498. },
  16499. {
  16500. "image_url": "https://ci.xiaohongshu.com/1040g2sg31e8e5t780mb05pin9e82ue9b4ba47mg?imageView2/2/w/1080/format/webp"
  16501. }
  16502. ],
  16503. "interact_info": {
  16504. "liked_count": 5008,
  16505. "collected_count": 1252,
  16506. "comment_count": 401,
  16507. "shared_count": 407
  16508. },
  16509. "extraction": null,
  16510. "is_knowledge": false,
  16511. "knowledge_reason": "该帖子是一组表情包分享,不包含任何关于表情包制作的具体方法、技巧、工具使用或教程指导等可复用的创作知识。内容属于纯个人分享。",
  16512. "post_relevance_score": 0.1,
  16513. "relevance_level": "低度相关",
  16514. "relevance_reason": "该帖子与原始问题“如何制作反映人类双标行为的猫咪表情包梗图”相关性极低。帖子内容为怼人骂人表情包的分享,与猫咪主题和制作方法均不符。虽然都与表情包相关,但方向、主题和目的完全不同,无法提供任何有效参考。"
  16515. },
  16516. "post_6791c3e600000000170392b9_1_4": {
  16517. "type": "post",
  16518. "query": "[R] 回旋镖来得太快鸟!!!!",
  16519. "level": 23,
  16520. "relevance_score": 0,
  16521. "strategy": "帖子",
  16522. "iteration": 2,
  16523. "is_selected": true,
  16524. "note_id": "6791c3e600000000170392b9",
  16525. "note_url": "https://www.xiaohongshu.com/explore/6791c3e600000000170392b9",
  16526. "body_text": "才说光姐双标,马上轮到自家就说不出话了呢!! #光与夜之恋 #马蓝星表情包 ———— 🍊x",
  16527. "images": [
  16528. "https://ci.xiaohongshu.com/1040g2sg31d01d147gkd05pkmf370u3ke98fc56g?imageView2/2/w/1080/format/webp",
  16529. "https://ci.xiaohongshu.com/1040g00831d01d14m0k6g5pkmf370u3ke7pl05rg?imageView2/2/w/1080/format/webp",
  16530. "https://ci.xiaohongshu.com/1040g2sg31d01d14mgmd05pkmf370u3keji6l8pg?imageView2/2/w/1080/format/webp",
  16531. "https://ci.xiaohongshu.com/1040g00831d01d14hgm6g5pkmf370u3kens0kfqo?imageView2/2/w/1080/format/webp",
  16532. "https://ci.xiaohongshu.com/1040g00831d01d14h106g5pkmf370u3keptu90no?imageView2/2/w/1080/format/webp"
  16533. ],
  16534. "image_list": [
  16535. {
  16536. "image_url": "https://ci.xiaohongshu.com/1040g2sg31d01d147gkd05pkmf370u3ke98fc56g?imageView2/2/w/1080/format/webp"
  16537. },
  16538. {
  16539. "image_url": "https://ci.xiaohongshu.com/1040g00831d01d14m0k6g5pkmf370u3ke7pl05rg?imageView2/2/w/1080/format/webp"
  16540. },
  16541. {
  16542. "image_url": "https://ci.xiaohongshu.com/1040g2sg31d01d14mgmd05pkmf370u3keji6l8pg?imageView2/2/w/1080/format/webp"
  16543. },
  16544. {
  16545. "image_url": "https://ci.xiaohongshu.com/1040g00831d01d14hgm6g5pkmf370u3kens0kfqo?imageView2/2/w/1080/format/webp"
  16546. },
  16547. {
  16548. "image_url": "https://ci.xiaohongshu.com/1040g00831d01d14h106g5pkmf370u3keptu90no?imageView2/2/w/1080/format/webp"
  16549. }
  16550. ],
  16551. "interact_info": {
  16552. "liked_count": 499,
  16553. "collected_count": 7,
  16554. "comment_count": 63,
  16555. "shared_count": 12
  16556. },
  16557. "extraction": null,
  16558. "is_knowledge": false,
  16559. "knowledge_reason": "该帖子主要是一个个人分享的双标梗图,内容为博主对游戏角色的吐槽和自我调侃。帖子仅展示了梗图成品,并未提供任何关于如何制作梗图的方法、技巧、工具使用或详细步骤,不包含可复用的创作知识。",
  16560. "post_relevance_score": 0.5,
  16561. "relevance_level": "中度相关",
  16562. "relevance_reason": "帖子中包含“双标”主题的可爱猫咪(或类似动物)表情包梗图,与原始问题中的“人类双标行为的猫咪表情包梗图”有一定内容上的契合。但帖子本身并未解答如何制作这类梗图,不包含创作方法或工具,因此无法直接解决原始问题,仅提供了一个示例或灵感,属于中度相关。"
  16563. },
  16564. "post_69080c43000000000402bb4b_1_5": {
  16565. "type": "post",
  16566. "query": "[R] 企鹅表情包 第二弹(素质怼人篇)",
  16567. "level": 23,
  16568. "relevance_score": 0,
  16569. "strategy": "帖子",
  16570. "iteration": 2,
  16571. "is_selected": true,
  16572. "note_id": "69080c43000000000402bb4b",
  16573. "note_url": "https://www.xiaohongshu.com/explore/69080c43000000000402bb4b",
  16574. "body_text": "小企鹅你咋这么全能 下次怼人就用这个攻击力很强的表情包[doge]#表情包演我精神状态 #有趣的表情包 #趣味表情包",
  16575. "images": [
  16576. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031odec5pj065g5q794i6do35sh2bjcso?imageView2/2/w/1080/format/webp",
  16577. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031odhnnhi6m605q794i6do35sb38fhdg?imageView2/2/w/1080/format/webp",
  16578. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831odhnnkolm005q794i6do35sdrgij08?imageView2/2/w/1080/format/webp",
  16579. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831odhnnhkmg105q794i6do35sm9j3j48?imageView2/2/w/1080/format/webp",
  16580. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031odhnnhi6m6g5q794i6do35s5jgbsmo?imageView2/2/w/1080/format/webp",
  16581. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031odhnng86m6g5q794i6do35sdlau8u8?imageView2/2/w/1080/format/webp",
  16582. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031odec5pj06005q794i6do35s8do921g?imageView2/2/w/1080/format/webp",
  16583. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031odec5pj06505q794i6do35sv8a5qvo?imageView2/2/w/1080/format/webp",
  16584. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031odec5pj060g5q794i6do35s8diish0?imageView2/2/w/1080/format/webp",
  16585. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031odec5pj06205q794i6do35summv4m0?imageView2/2/w/1080/format/webp",
  16586. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031odec5pj062g5q794i6do35sd4r8r8g?imageView2/2/w/1080/format/webp",
  16587. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031odec5pj06305q794i6do35sq97gmqg?imageView2/2/w/1080/format/webp",
  16588. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031odec5pj06105q794i6do35sb1rlk7g?imageView2/2/w/1080/format/webp",
  16589. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031odec5pj06405q794i6do35s6lndoo0?imageView2/2/w/1080/format/webp",
  16590. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031odec5pj063g5q794i6do35str0a7hg?imageView2/2/w/1080/format/webp",
  16591. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031odec5pj064g5q794i6do35s0l1i45o?imageView2/2/w/1080/format/webp",
  16592. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031odec5pj061g5q794i6do35s0cbohvo?imageView2/2/w/1080/format/webp",
  16593. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031odec5pj06605q794i6do35sf4vcpo0?imageView2/2/w/1080/format/webp"
  16594. ],
  16595. "image_list": [
  16596. {
  16597. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031odec5pj065g5q794i6do35sh2bjcso?imageView2/2/w/1080/format/webp"
  16598. },
  16599. {
  16600. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031odhnnhi6m605q794i6do35sb38fhdg?imageView2/2/w/1080/format/webp"
  16601. },
  16602. {
  16603. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831odhnnkolm005q794i6do35sdrgij08?imageView2/2/w/1080/format/webp"
  16604. },
  16605. {
  16606. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831odhnnhkmg105q794i6do35sm9j3j48?imageView2/2/w/1080/format/webp"
  16607. },
  16608. {
  16609. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031odhnnhi6m6g5q794i6do35s5jgbsmo?imageView2/2/w/1080/format/webp"
  16610. },
  16611. {
  16612. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031odhnng86m6g5q794i6do35sdlau8u8?imageView2/2/w/1080/format/webp"
  16613. },
  16614. {
  16615. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031odec5pj06005q794i6do35s8do921g?imageView2/2/w/1080/format/webp"
  16616. },
  16617. {
  16618. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031odec5pj06505q794i6do35sv8a5qvo?imageView2/2/w/1080/format/webp"
  16619. },
  16620. {
  16621. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031odec5pj060g5q794i6do35s8diish0?imageView2/2/w/1080/format/webp"
  16622. },
  16623. {
  16624. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031odec5pj06205q794i6do35summv4m0?imageView2/2/w/1080/format/webp"
  16625. },
  16626. {
  16627. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031odec5pj062g5q794i6do35sd4r8r8g?imageView2/2/w/1080/format/webp"
  16628. },
  16629. {
  16630. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031odec5pj06305q794i6do35sq97gmqg?imageView2/2/w/1080/format/webp"
  16631. },
  16632. {
  16633. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031odec5pj06105q794i6do35sb1rlk7g?imageView2/2/w/1080/format/webp"
  16634. },
  16635. {
  16636. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031odec5pj06405q794i6do35s6lndoo0?imageView2/2/w/1080/format/webp"
  16637. },
  16638. {
  16639. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031odec5pj063g5q794i6do35str0a7hg?imageView2/2/w/1080/format/webp"
  16640. },
  16641. {
  16642. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031odec5pj064g5q794i6do35s0l1i45o?imageView2/2/w/1080/format/webp"
  16643. },
  16644. {
  16645. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031odec5pj061g5q794i6do35s0cbohvo?imageView2/2/w/1080/format/webp"
  16646. },
  16647. {
  16648. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031odec5pj06605q794i6do35sf4vcpo0?imageView2/2/w/1080/format/webp"
  16649. }
  16650. ],
  16651. "interact_info": {
  16652. "liked_count": 2410,
  16653. "collected_count": 727,
  16654. "comment_count": 45,
  16655. "shared_count": 480
  16656. },
  16657. "extraction": null,
  16658. "is_knowledge": false,
  16659. "knowledge_reason": "该帖子主要分享了一组企鹅表情包,属于纯内容分享和情感表达,不包含表情包的创作方法、技巧、工具使用或制作流程等知识内容。",
  16660. "post_relevance_score": 0.1,
  16661. "relevance_level": "低度相关",
  16662. "relevance_reason": "原始问题是关于制作“反映人类双标行为的猫咪表情包梗图”的知识指导。该帖子提供的是企鹅表情包而非猫咪表情包,内容主题是“素质怼人”而非“双标行为”,且仅为表情包分享,不含任何制作方法,因此相关性极低。"
  16663. },
  16664. "post_66791a5f000000001c027fab_1_6": {
  16665. "type": "post",
  16666. "query": "[R] 反pua表情包合集",
  16667. "level": 23,
  16668. "relevance_score": 0,
  16669. "strategy": "帖子",
  16670. "iteration": 2,
  16671. "is_selected": true,
  16672. "note_id": "66791a5f000000001c027fab",
  16673. "note_url": "https://www.xiaohongshu.com/explore/66791a5f000000001c027fab",
  16674. "body_text": "",
  16675. "images": [
  16676. "https://ci.xiaohongshu.com/1040g008314duls6g6g505n36gpa4ded8mv77e10?imageView2/2/w/1080/format/webp",
  16677. "https://ci.xiaohongshu.com/1040g008314duls6g6g5g5n36gpa4ded8lhoou5g?imageView2/2/w/1080/format/webp",
  16678. "https://ci.xiaohongshu.com/1040g008314duls6g6g605n36gpa4ded8bek9fk8?imageView2/2/w/1080/format/webp",
  16679. "https://ci.xiaohongshu.com/1040g008314duls6g6g6g5n36gpa4ded8e88j43g?imageView2/2/w/1080/format/webp",
  16680. "https://ci.xiaohongshu.com/1040g2sg314dumpg8mg005n36gpa4ded8kmu654g?imageView2/2/w/1080/format/webp",
  16681. "https://ci.xiaohongshu.com/1040g2sg314dumpg8mg0g5n36gpa4ded8q80gn20?imageView2/2/w/1080/format/webp",
  16682. "https://ci.xiaohongshu.com/1040g2sg314dumpg8mg105n36gpa4ded8g72pb9o?imageView2/2/w/1080/format/webp",
  16683. "https://ci.xiaohongshu.com/1040g2sg314dumpg8mg1g5n36gpa4ded8vpeih98?imageView2/2/w/1080/format/webp",
  16684. "https://ci.xiaohongshu.com/1040g2sg314dumpg8mg205n36gpa4ded8e5nujoo?imageView2/2/w/1080/format/webp",
  16685. "https://ci.xiaohongshu.com/1040g2sg314dumpg8mg2g5n36gpa4ded8acjit88?imageView2/2/w/1080/format/webp",
  16686. "https://ci.xiaohongshu.com/1040g2sg314dumpg8mg305n36gpa4ded8eq9r6qo?imageView2/2/w/1080/format/webp",
  16687. "https://ci.xiaohongshu.com/1040g2sg314dumpg8mg3g5n36gpa4ded861tb2j8?imageView2/2/w/1080/format/webp",
  16688. "https://ci.xiaohongshu.com/1040g2sg314dumpg8mg405n36gpa4ded8ul5iuro?imageView2/2/w/1080/format/webp",
  16689. "https://ci.xiaohongshu.com/1040g2sg314dumpg8mg4g5n36gpa4ded8v43q950?imageView2/2/w/1080/format/webp",
  16690. "https://ci.xiaohongshu.com/1040g2sg314dumpg8mg505n36gpa4ded808uo3f8?imageView2/2/w/1080/format/webp",
  16691. "https://ci.xiaohongshu.com/1040g2sg314dumpg8mg5g5n36gpa4ded85gmhaj0?imageView2/2/w/1080/format/webp",
  16692. "https://ci.xiaohongshu.com/1040g2sg314dumpg8mg605n36gpa4ded84lhc9c0?imageView2/2/w/1080/format/webp",
  16693. "https://ci.xiaohongshu.com/1040g2sg314dumpg8mg6g5n36gpa4ded81dmga58?imageView2/2/w/1080/format/webp"
  16694. ],
  16695. "image_list": [
  16696. {
  16697. "image_url": "https://ci.xiaohongshu.com/1040g008314duls6g6g505n36gpa4ded8mv77e10?imageView2/2/w/1080/format/webp"
  16698. },
  16699. {
  16700. "image_url": "https://ci.xiaohongshu.com/1040g008314duls6g6g5g5n36gpa4ded8lhoou5g?imageView2/2/w/1080/format/webp"
  16701. },
  16702. {
  16703. "image_url": "https://ci.xiaohongshu.com/1040g008314duls6g6g605n36gpa4ded8bek9fk8?imageView2/2/w/1080/format/webp"
  16704. },
  16705. {
  16706. "image_url": "https://ci.xiaohongshu.com/1040g008314duls6g6g6g5n36gpa4ded8e88j43g?imageView2/2/w/1080/format/webp"
  16707. },
  16708. {
  16709. "image_url": "https://ci.xiaohongshu.com/1040g2sg314dumpg8mg005n36gpa4ded8kmu654g?imageView2/2/w/1080/format/webp"
  16710. },
  16711. {
  16712. "image_url": "https://ci.xiaohongshu.com/1040g2sg314dumpg8mg0g5n36gpa4ded8q80gn20?imageView2/2/w/1080/format/webp"
  16713. },
  16714. {
  16715. "image_url": "https://ci.xiaohongshu.com/1040g2sg314dumpg8mg105n36gpa4ded8g72pb9o?imageView2/2/w/1080/format/webp"
  16716. },
  16717. {
  16718. "image_url": "https://ci.xiaohongshu.com/1040g2sg314dumpg8mg1g5n36gpa4ded8vpeih98?imageView2/2/w/1080/format/webp"
  16719. },
  16720. {
  16721. "image_url": "https://ci.xiaohongshu.com/1040g2sg314dumpg8mg205n36gpa4ded8e5nujoo?imageView2/2/w/1080/format/webp"
  16722. },
  16723. {
  16724. "image_url": "https://ci.xiaohongshu.com/1040g2sg314dumpg8mg2g5n36gpa4ded8acjit88?imageView2/2/w/1080/format/webp"
  16725. },
  16726. {
  16727. "image_url": "https://ci.xiaohongshu.com/1040g2sg314dumpg8mg305n36gpa4ded8eq9r6qo?imageView2/2/w/1080/format/webp"
  16728. },
  16729. {
  16730. "image_url": "https://ci.xiaohongshu.com/1040g2sg314dumpg8mg3g5n36gpa4ded861tb2j8?imageView2/2/w/1080/format/webp"
  16731. },
  16732. {
  16733. "image_url": "https://ci.xiaohongshu.com/1040g2sg314dumpg8mg405n36gpa4ded8ul5iuro?imageView2/2/w/1080/format/webp"
  16734. },
  16735. {
  16736. "image_url": "https://ci.xiaohongshu.com/1040g2sg314dumpg8mg4g5n36gpa4ded8v43q950?imageView2/2/w/1080/format/webp"
  16737. },
  16738. {
  16739. "image_url": "https://ci.xiaohongshu.com/1040g2sg314dumpg8mg505n36gpa4ded808uo3f8?imageView2/2/w/1080/format/webp"
  16740. },
  16741. {
  16742. "image_url": "https://ci.xiaohongshu.com/1040g2sg314dumpg8mg5g5n36gpa4ded85gmhaj0?imageView2/2/w/1080/format/webp"
  16743. },
  16744. {
  16745. "image_url": "https://ci.xiaohongshu.com/1040g2sg314dumpg8mg605n36gpa4ded84lhc9c0?imageView2/2/w/1080/format/webp"
  16746. },
  16747. {
  16748. "image_url": "https://ci.xiaohongshu.com/1040g2sg314dumpg8mg6g5n36gpa4ded81dmga58?imageView2/2/w/1080/format/webp"
  16749. }
  16750. ],
  16751. "interact_info": {
  16752. "liked_count": 1624,
  16753. "collected_count": 528,
  16754. "comment_count": 94,
  16755. "shared_count": 202
  16756. },
  16757. "extraction": null,
  16758. "is_knowledge": false,
  16759. "knowledge_reason": "该帖子是纯粹的表情包分享合集,没有提供任何关于表情包制作的教程、方法、工具使用或设计理念等可复用的创作知识。内容属于成果展示而非知识传授。",
  16760. "post_relevance_score": 0.4,
  16761. "relevance_level": "中度相关",
  16762. "relevance_reason": "帖子内容是表情包合集,其中最后一张图是猫咪表情包,且文字内容具有一定的双标或反讽意味,这与原始问题中“反映人类双标行为的猫咪表情包梗图”有间接关联。但帖子仅提供成品而非制作方法,不能直接解决问题,参考价值有限。"
  16763. },
  16764. "post_66e0e9b900000000270026f2_1_7": {
  16765. "type": "post",
  16766. "query": "[R] 阴阳怪气的怼人表情包!!!",
  16767. "level": 23,
  16768. "relevance_score": 0,
  16769. "strategy": "帖子",
  16770. "iteration": 2,
  16771. "is_selected": true,
  16772. "note_id": "66e0e9b900000000270026f2",
  16773. "note_url": "https://www.xiaohongshu.com/explore/66e0e9b900000000270026f2",
  16774. "body_text": "#斗图表情包 #奇奇怪怪的表情包又增加了 #奇奇怪怪表情包 #搞笑表情包 #可可爱爱表情包 #表情包 #表情",
  16775. "images": [
  16776. "https://ci.xiaohongshu.com/1040g008317jaoplj460049jsaattabjetlgtf20?imageView2/2/w/1080/format/webp",
  16777. "https://ci.xiaohongshu.com/1040g008317jaoplj460g49jsaattabjebad4ccg?imageView2/2/w/1080/format/webp",
  16778. "https://ci.xiaohongshu.com/1040g008317jaoplj461049jsaattabjeq7jauh8?imageView2/2/w/1080/format/webp",
  16779. "https://ci.xiaohongshu.com/1040g008317jaoplj461g49jsaattabje6f7sfe8?imageView2/2/w/1080/format/webp",
  16780. "https://ci.xiaohongshu.com/1040g008317jaoplj462049jsaattabje91eebu0?imageView2/2/w/1080/format/webp",
  16781. "https://ci.xiaohongshu.com/1040g008317jaoplj462g49jsaattabje6tj4gp8?imageView2/2/w/1080/format/webp",
  16782. "https://ci.xiaohongshu.com/1040g008317jaoplj463049jsaattabjehkf7pjg?imageView2/2/w/1080/format/webp",
  16783. "https://ci.xiaohongshu.com/1040g008317jaoplj463g49jsaattabjeudun83o?imageView2/2/w/1080/format/webp",
  16784. "https://ci.xiaohongshu.com/1040g008317jaoplj464049jsaattabje7mc5j00?imageView2/2/w/1080/format/webp"
  16785. ],
  16786. "image_list": [
  16787. {
  16788. "image_url": "https://ci.xiaohongshu.com/1040g008317jaoplj460049jsaattabjetlgtf20?imageView2/2/w/1080/format/webp"
  16789. },
  16790. {
  16791. "image_url": "https://ci.xiaohongshu.com/1040g008317jaoplj460g49jsaattabjebad4ccg?imageView2/2/w/1080/format/webp"
  16792. },
  16793. {
  16794. "image_url": "https://ci.xiaohongshu.com/1040g008317jaoplj461049jsaattabjeq7jauh8?imageView2/2/w/1080/format/webp"
  16795. },
  16796. {
  16797. "image_url": "https://ci.xiaohongshu.com/1040g008317jaoplj461g49jsaattabje6f7sfe8?imageView2/2/w/1080/format/webp"
  16798. },
  16799. {
  16800. "image_url": "https://ci.xiaohongshu.com/1040g008317jaoplj462049jsaattabje91eebu0?imageView2/2/w/1080/format/webp"
  16801. },
  16802. {
  16803. "image_url": "https://ci.xiaohongshu.com/1040g008317jaoplj462g49jsaattabje6tj4gp8?imageView2/2/w/1080/format/webp"
  16804. },
  16805. {
  16806. "image_url": "https://ci.xiaohongshu.com/1040g008317jaoplj463049jsaattabjehkf7pjg?imageView2/2/w/1080/format/webp"
  16807. },
  16808. {
  16809. "image_url": "https://ci.xiaohongshu.com/1040g008317jaoplj463g49jsaattabjeudun83o?imageView2/2/w/1080/format/webp"
  16810. },
  16811. {
  16812. "image_url": "https://ci.xiaohongshu.com/1040g008317jaoplj464049jsaattabje7mc5j00?imageView2/2/w/1080/format/webp"
  16813. }
  16814. ],
  16815. "interact_info": {
  16816. "liked_count": 7738,
  16817. "collected_count": 3331,
  16818. "comment_count": 179,
  16819. "shared_count": 2082
  16820. },
  16821. "extraction": null,
  16822. "is_knowledge": false,
  16823. "knowledge_reason": "帖子属于纯粹的表情包分享,展示制作好的图片,不包含任何关于如何制作表情包梗图的方法、技巧或工具使用教程。",
  16824. "post_relevance_score": 0.45,
  16825. "relevance_level": "中度相关",
  16826. "relevance_reason": "帖子展示的表情包梗图中有两张猫咪表情包内容间接涉及了“双标行为”(例如“从今天起,我要用圣人的标准要求别人,用贱人的标准来要求自己”),与原始问题的主题有轻微关联。但帖子主要聚焦展示现有表情包,而非教授制作方法,因此参考价值有限。"
  16827. },
  16828. "post_67db7618000000001c008ddb_1_8": {
  16829. "type": "post",
  16830. "query": "[R] 超实用哑口无言无语表情包(内附怼人金句)",
  16831. "level": 23,
  16832. "relevance_score": 0,
  16833. "strategy": "帖子",
  16834. "iteration": 2,
  16835. "is_selected": true,
  16836. "note_id": "67db7618000000001c008ddb",
  16837. "note_url": "https://www.xiaohongshu.com/explore/67db7618000000001c008ddb",
  16838. "body_text": "🌶“脑子是个日用品,不是装饰品,多用用吧。” 🌶“你家是开养殖场的吗?这么爱抬杠。” 🌶“我有密集恐惧症,不能接近",
  16839. "images": [
  16840. "https://ci.xiaohongshu.com/1040g00831f7vprhl5u605olp88f6svjcri9rtg8?imageView2/2/w/1080/format/webp",
  16841. "https://ci.xiaohongshu.com/1040g2sg31f80d1ai6md05olp88f6svjc0n4bc0g?imageView2/2/w/1080/format/webp",
  16842. "https://ci.xiaohongshu.com/1040g2sg31f80d1ag6m6g5olp88f6svjckvd90a8?imageView2/2/w/1080/format/webp",
  16843. "https://ci.xiaohongshu.com/1040g2sg31f80d1ad5sdg5olp88f6svjc6518r28?imageView2/2/w/1080/format/webp",
  16844. "https://ci.xiaohongshu.com/1040g00831f80d1abms6g5olp88f6svjc8hit79o?imageView2/2/w/1080/format/webp",
  16845. "https://ci.xiaohongshu.com/1040g00831f7vprhl5u2g5olp88f6svjcic8ftio?imageView2/2/w/1080/format/webp",
  16846. "https://ci.xiaohongshu.com/1040g00831f7vprhl5u4g5olp88f6svjc89rc9qg?imageView2/2/w/1080/format/webp",
  16847. "https://ci.xiaohongshu.com/1040g00831f7vprhl5u0g5olp88f6svjcsupldng?imageView2/2/w/1080/format/webp",
  16848. "https://ci.xiaohongshu.com/1040g00831f7vprhl5u305olp88f6svjcg9lvgso?imageView2/2/w/1080/format/webp",
  16849. "https://ci.xiaohongshu.com/1040g00831f7vprhl5u005olp88f6svjcfhl97j8?imageView2/2/w/1080/format/webp",
  16850. "https://ci.xiaohongshu.com/1040g00831f7vprhl5u105olp88f6svjc4d9vsrg?imageView2/2/w/1080/format/webp",
  16851. "https://ci.xiaohongshu.com/1040g00831f7vprhl5u205olp88f6svjc4ooinbo?imageView2/2/w/1080/format/webp",
  16852. "https://ci.xiaohongshu.com/1040g00831f7vprhl5u1g5olp88f6svjcur3kjp8?imageView2/2/w/1080/format/webp",
  16853. "https://ci.xiaohongshu.com/1040g00831f7vprhl5u505olp88f6svjc31e0of8?imageView2/2/w/1080/format/webp",
  16854. "https://ci.xiaohongshu.com/1040g00831f7vprhl5u3g5olp88f6svjc1rlt5mg?imageView2/2/w/1080/format/webp",
  16855. "https://ci.xiaohongshu.com/1040g00831f7vprhl5u6g5olp88f6svjc5gca0b8?imageView2/2/w/1080/format/webp",
  16856. "https://ci.xiaohongshu.com/1040g00831f7vprhl5u405olp88f6svjc5i0t4i0?imageView2/2/w/1080/format/webp",
  16857. "https://ci.xiaohongshu.com/1040g00831f7vprhl5u5g5olp88f6svjcsaef308?imageView2/2/w/1080/format/webp"
  16858. ],
  16859. "image_list": [
  16860. {
  16861. "image_url": "https://ci.xiaohongshu.com/1040g00831f7vprhl5u605olp88f6svjcri9rtg8?imageView2/2/w/1080/format/webp"
  16862. },
  16863. {
  16864. "image_url": "https://ci.xiaohongshu.com/1040g2sg31f80d1ai6md05olp88f6svjc0n4bc0g?imageView2/2/w/1080/format/webp"
  16865. },
  16866. {
  16867. "image_url": "https://ci.xiaohongshu.com/1040g2sg31f80d1ag6m6g5olp88f6svjckvd90a8?imageView2/2/w/1080/format/webp"
  16868. },
  16869. {
  16870. "image_url": "https://ci.xiaohongshu.com/1040g2sg31f80d1ad5sdg5olp88f6svjc6518r28?imageView2/2/w/1080/format/webp"
  16871. },
  16872. {
  16873. "image_url": "https://ci.xiaohongshu.com/1040g00831f80d1abms6g5olp88f6svjc8hit79o?imageView2/2/w/1080/format/webp"
  16874. },
  16875. {
  16876. "image_url": "https://ci.xiaohongshu.com/1040g00831f7vprhl5u2g5olp88f6svjcic8ftio?imageView2/2/w/1080/format/webp"
  16877. },
  16878. {
  16879. "image_url": "https://ci.xiaohongshu.com/1040g00831f7vprhl5u4g5olp88f6svjc89rc9qg?imageView2/2/w/1080/format/webp"
  16880. },
  16881. {
  16882. "image_url": "https://ci.xiaohongshu.com/1040g00831f7vprhl5u0g5olp88f6svjcsupldng?imageView2/2/w/1080/format/webp"
  16883. },
  16884. {
  16885. "image_url": "https://ci.xiaohongshu.com/1040g00831f7vprhl5u305olp88f6svjcg9lvgso?imageView2/2/w/1080/format/webp"
  16886. },
  16887. {
  16888. "image_url": "https://ci.xiaohongshu.com/1040g00831f7vprhl5u005olp88f6svjcfhl97j8?imageView2/2/w/1080/format/webp"
  16889. },
  16890. {
  16891. "image_url": "https://ci.xiaohongshu.com/1040g00831f7vprhl5u105olp88f6svjc4d9vsrg?imageView2/2/w/1080/format/webp"
  16892. },
  16893. {
  16894. "image_url": "https://ci.xiaohongshu.com/1040g00831f7vprhl5u205olp88f6svjc4ooinbo?imageView2/2/w/1080/format/webp"
  16895. },
  16896. {
  16897. "image_url": "https://ci.xiaohongshu.com/1040g00831f7vprhl5u1g5olp88f6svjcur3kjp8?imageView2/2/w/1080/format/webp"
  16898. },
  16899. {
  16900. "image_url": "https://ci.xiaohongshu.com/1040g00831f7vprhl5u505olp88f6svjc31e0of8?imageView2/2/w/1080/format/webp"
  16901. },
  16902. {
  16903. "image_url": "https://ci.xiaohongshu.com/1040g00831f7vprhl5u3g5olp88f6svjc1rlt5mg?imageView2/2/w/1080/format/webp"
  16904. },
  16905. {
  16906. "image_url": "https://ci.xiaohongshu.com/1040g00831f7vprhl5u6g5olp88f6svjc5gca0b8?imageView2/2/w/1080/format/webp"
  16907. },
  16908. {
  16909. "image_url": "https://ci.xiaohongshu.com/1040g00831f7vprhl5u405olp88f6svjc5i0t4i0?imageView2/2/w/1080/format/webp"
  16910. },
  16911. {
  16912. "image_url": "https://ci.xiaohongshu.com/1040g00831f7vprhl5u5g5olp88f6svjcsaef308?imageView2/2/w/1080/format/webp"
  16913. }
  16914. ],
  16915. "interact_info": {
  16916. "liked_count": 493,
  16917. "collected_count": 207,
  16918. "comment_count": 7,
  16919. "shared_count": 49
  16920. },
  16921. "extraction": null,
  16922. "is_knowledge": null,
  16923. "knowledge_reason": "",
  16924. "post_relevance_score": null,
  16925. "relevance_level": "",
  16926. "relevance_reason": ""
  16927. },
  16928. "post_66caccf2000000001f03bcee_1_9": {
  16929. "type": "post",
  16930. "query": "[R] 存 阴阳怪气表情包",
  16931. "level": 23,
  16932. "relevance_score": 0,
  16933. "strategy": "帖子",
  16934. "iteration": 2,
  16935. "is_selected": true,
  16936. "note_id": "66caccf2000000001f03bcee",
  16937. "note_url": "https://www.xiaohongshu.com/explore/66caccf2000000001f03bcee",
  16938. "body_text": "#发疯表情包 #搞笑表情包分享 #斗图表情包 #每日表情包分享 #可可爱爱表情包 阴阳怪气我是第一名",
  16939. "images": [
  16940. "https://ci.xiaohongshu.com/1040g2sg316tnochl44704a6l35cu4nfhtfa8t60?imageView2/2/w/1080/format/webp",
  16941. "https://ci.xiaohongshu.com/1040g2sg316tnochl447g4a6l35cu4nfhkao4tpg?imageView2/2/w/1080/format/webp",
  16942. "https://ci.xiaohongshu.com/1040g2sg316tnochl44804a6l35cu4nfh2to3f20?imageView2/2/w/1080/format/webp",
  16943. "https://ci.xiaohongshu.com/1040g2sg316tnochl448g4a6l35cu4nfh3c1vb98?imageView2/2/w/1080/format/webp",
  16944. "https://ci.xiaohongshu.com/1040g2sg316tnochl44904a6l35cu4nfhmltnqvo?imageView2/2/w/1080/format/webp",
  16945. "https://ci.xiaohongshu.com/1040g2sg316tnochl449g4a6l35cu4nfhka5f9u0?imageView2/2/w/1080/format/webp",
  16946. "https://ci.xiaohongshu.com/1040g2sg316tnochl44a04a6l35cu4nfhecc5ja0?imageView2/2/w/1080/format/webp",
  16947. "https://ci.xiaohongshu.com/1040g2sg316tnochl44ag4a6l35cu4nfho2o2qc0?imageView2/2/w/1080/format/webp",
  16948. "https://ci.xiaohongshu.com/1040g2sg316tnochl44b04a6l35cu4nfhgo9so30?imageView2/2/w/1080/format/webp",
  16949. "https://ci.xiaohongshu.com/1040g2sg316tnochl44bg4a6l35cu4nfhvco27vo?imageView2/2/w/1080/format/webp",
  16950. "https://ci.xiaohongshu.com/1040g2sg316tnochl44c04a6l35cu4nfhdrlagio?imageView2/2/w/1080/format/webp",
  16951. "https://ci.xiaohongshu.com/1040g2sg316tnochl44cg4a6l35cu4nfh6njfg0o?imageView2/2/w/1080/format/webp",
  16952. "https://ci.xiaohongshu.com/1040g2sg316tnochl44d04a6l35cu4nfhhugc0i0?imageView2/2/w/1080/format/webp",
  16953. "https://ci.xiaohongshu.com/1040g2sg316tnochl44dg4a6l35cu4nfhq8noeno?imageView2/2/w/1080/format/webp",
  16954. "https://ci.xiaohongshu.com/1040g2sg316tnoci73m004a6l35cu4nfhpff9jg8?imageView2/2/w/1080/format/webp",
  16955. "https://ci.xiaohongshu.com/1040g2sg316tnoci73m0g4a6l35cu4nfhd289h78?imageView2/2/w/1080/format/webp",
  16956. "https://ci.xiaohongshu.com/1040g2sg316tnoci73m104a6l35cu4nfhpldc610?imageView2/2/w/1080/format/webp"
  16957. ],
  16958. "image_list": [
  16959. {
  16960. "image_url": "https://ci.xiaohongshu.com/1040g2sg316tnochl44704a6l35cu4nfhtfa8t60?imageView2/2/w/1080/format/webp"
  16961. },
  16962. {
  16963. "image_url": "https://ci.xiaohongshu.com/1040g2sg316tnochl447g4a6l35cu4nfhkao4tpg?imageView2/2/w/1080/format/webp"
  16964. },
  16965. {
  16966. "image_url": "https://ci.xiaohongshu.com/1040g2sg316tnochl44804a6l35cu4nfh2to3f20?imageView2/2/w/1080/format/webp"
  16967. },
  16968. {
  16969. "image_url": "https://ci.xiaohongshu.com/1040g2sg316tnochl448g4a6l35cu4nfh3c1vb98?imageView2/2/w/1080/format/webp"
  16970. },
  16971. {
  16972. "image_url": "https://ci.xiaohongshu.com/1040g2sg316tnochl44904a6l35cu4nfhmltnqvo?imageView2/2/w/1080/format/webp"
  16973. },
  16974. {
  16975. "image_url": "https://ci.xiaohongshu.com/1040g2sg316tnochl449g4a6l35cu4nfhka5f9u0?imageView2/2/w/1080/format/webp"
  16976. },
  16977. {
  16978. "image_url": "https://ci.xiaohongshu.com/1040g2sg316tnochl44a04a6l35cu4nfhecc5ja0?imageView2/2/w/1080/format/webp"
  16979. },
  16980. {
  16981. "image_url": "https://ci.xiaohongshu.com/1040g2sg316tnochl44ag4a6l35cu4nfho2o2qc0?imageView2/2/w/1080/format/webp"
  16982. },
  16983. {
  16984. "image_url": "https://ci.xiaohongshu.com/1040g2sg316tnochl44b04a6l35cu4nfhgo9so30?imageView2/2/w/1080/format/webp"
  16985. },
  16986. {
  16987. "image_url": "https://ci.xiaohongshu.com/1040g2sg316tnochl44bg4a6l35cu4nfhvco27vo?imageView2/2/w/1080/format/webp"
  16988. },
  16989. {
  16990. "image_url": "https://ci.xiaohongshu.com/1040g2sg316tnochl44c04a6l35cu4nfhdrlagio?imageView2/2/w/1080/format/webp"
  16991. },
  16992. {
  16993. "image_url": "https://ci.xiaohongshu.com/1040g2sg316tnochl44cg4a6l35cu4nfh6njfg0o?imageView2/2/w/1080/format/webp"
  16994. },
  16995. {
  16996. "image_url": "https://ci.xiaohongshu.com/1040g2sg316tnochl44d04a6l35cu4nfhhugc0i0?imageView2/2/w/1080/format/webp"
  16997. },
  16998. {
  16999. "image_url": "https://ci.xiaohongshu.com/1040g2sg316tnochl44dg4a6l35cu4nfhq8noeno?imageView2/2/w/1080/format/webp"
  17000. },
  17001. {
  17002. "image_url": "https://ci.xiaohongshu.com/1040g2sg316tnoci73m004a6l35cu4nfhpff9jg8?imageView2/2/w/1080/format/webp"
  17003. },
  17004. {
  17005. "image_url": "https://ci.xiaohongshu.com/1040g2sg316tnoci73m0g4a6l35cu4nfhd289h78?imageView2/2/w/1080/format/webp"
  17006. },
  17007. {
  17008. "image_url": "https://ci.xiaohongshu.com/1040g2sg316tnoci73m104a6l35cu4nfhpldc610?imageView2/2/w/1080/format/webp"
  17009. }
  17010. ],
  17011. "interact_info": {
  17012. "liked_count": 12043,
  17013. "collected_count": 3022,
  17014. "comment_count": 232,
  17015. "shared_count": 953
  17016. },
  17017. "extraction": null,
  17018. "is_knowledge": false,
  17019. "knowledge_reason": "该帖子仅分享了一组“阴阳怪气”主题的表情包,不包含任何关于表情包制作的方法、技巧、工具使用或教程指导等可复用的创作知识。",
  17020. "post_relevance_score": 0.2,
  17021. "relevance_level": "低度相关",
  17022. "relevance_reason": "该帖子提供了“阴阳怪气”主题的表情包,但原始问题是关于“制作反映人类双标行为的猫咪表情包梗图”。帖子内容尽管有“阴阳怪气”的共性,但没有猫咪元素,更未提供如何制作的知识/方法,也无法直接解决原始问题。"
  17023. },
  17024. "search_可爱又双标的表情包_r2_2": {
  17025. "type": "search_word",
  17026. "query": "[SEARCH] 可爱又双标的表情包",
  17027. "level": 22,
  17028. "relevance_score": 0.68,
  17029. "strategy": "搜索词",
  17030. "iteration": 2,
  17031. "is_selected": true
  17032. },
  17033. "post_690ec7070000000004022819_2_0": {
  17034. "type": "post",
  17035. "query": "[R] 小鸡毛双标时刻~专一的小鸡毛",
  17036. "level": 23,
  17037. "relevance_score": 0,
  17038. "strategy": "帖子",
  17039. "iteration": 2,
  17040. "is_selected": true,
  17041. "note_id": "690ec7070000000004022819",
  17042. "note_url": "https://www.xiaohongshu.com/explore/690ec7070000000004022819",
  17043. "body_text": "#线条小狗 #发给对象看 #小狗会永远爱你 #情侣表情包 #地球没有小狗不能转 #发给对象表情包 #小鸡毛",
  17044. "images": [
  17045. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831ok3vu6h6m705noss4h098t1ph5mlv8?imageView2/2/w/1080/format/webp",
  17046. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831ok3vu6h6m7g5noss4h098t1upr9bkg?imageView2/2/w/1080/format/webp",
  17047. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831ok3vu6h6m805noss4h098t18iosfjg?imageView2/2/w/1080/format/webp",
  17048. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831ok3vu6h6m8g5noss4h098t1g6scm40?imageView2/2/w/1080/format/webp",
  17049. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831ok3vu6h6m905noss4h098t133cppgo?imageView2/2/w/1080/format/webp",
  17050. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831ok3vu6h6m9g5noss4h098t15iplhh8?imageView2/2/w/1080/format/webp",
  17051. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831ok3vu6h6ma05noss4h098t1i1d2ai8?imageView2/2/w/1080/format/webp",
  17052. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831ok3vu6h6mag5noss4h098t1cn69a6o?imageView2/2/w/1080/format/webp"
  17053. ],
  17054. "image_list": [
  17055. {
  17056. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831ok3vu6h6m705noss4h098t1ph5mlv8?imageView2/2/w/1080/format/webp"
  17057. },
  17058. {
  17059. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831ok3vu6h6m7g5noss4h098t1upr9bkg?imageView2/2/w/1080/format/webp"
  17060. },
  17061. {
  17062. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831ok3vu6h6m805noss4h098t18iosfjg?imageView2/2/w/1080/format/webp"
  17063. },
  17064. {
  17065. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831ok3vu6h6m8g5noss4h098t1g6scm40?imageView2/2/w/1080/format/webp"
  17066. },
  17067. {
  17068. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831ok3vu6h6m905noss4h098t133cppgo?imageView2/2/w/1080/format/webp"
  17069. },
  17070. {
  17071. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831ok3vu6h6m9g5noss4h098t15iplhh8?imageView2/2/w/1080/format/webp"
  17072. },
  17073. {
  17074. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831ok3vu6h6ma05noss4h098t1i1d2ai8?imageView2/2/w/1080/format/webp"
  17075. },
  17076. {
  17077. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831ok3vu6h6mag5noss4h098t1cn69a6o?imageView2/2/w/1080/format/webp"
  17078. }
  17079. ],
  17080. "interact_info": {
  17081. "liked_count": 1760,
  17082. "collected_count": 361,
  17083. "comment_count": 385,
  17084. "shared_count": 3367
  17085. },
  17086. "extraction": null,
  17087. "is_knowledge": false,
  17088. "knowledge_reason": "该帖子是一组卡通小狗表情包,内容是纯粹的情感表达和娱乐分享,不包含任何关于表情包制作的方法、技巧、工具使用或教程指导等创作知识。",
  17089. "post_relevance_score": 0.4,
  17090. "relevance_level": "中度相关",
  17091. "relevance_reason": "帖子内容是关于“双标”主题的表情包,与原始问题“如何制作反映人类双标行为的猫咪表情包梗图”在主题概念上有所关联。然而,帖子展示的是“小狗”表情包,而非“猫咪”,且未提供任何制作方法或创作指导,因此参考价值有限,属于中度偏低相关。"
  17092. },
  17093. "post_66877a00000000000a0073d7_2_1": {
  17094. "type": "post",
  17095. "query": "[R] 我的双标时刻表情包",
  17096. "level": 23,
  17097. "relevance_score": 0,
  17098. "strategy": "帖子",
  17099. "iteration": 2,
  17100. "is_selected": true,
  17101. "note_id": "66877a00000000000a0073d7",
  17102. "note_url": "https://www.xiaohongshu.com/explore/66877a00000000000a0073d7",
  17103. "body_text": "薛定谔的挑食[萌萌哒R] #吃货 #吃货薯看这里 #表情包 #可爱表情包 #搞笑 #梗图 #芒果 #薯条",
  17104. "images": [
  17105. "https://ci.xiaohongshu.com/1040g2sg314rvsagl1edg5noui3c08sqi5fgd8j0?imageView2/2/w/1080/format/webp",
  17106. "https://ci.xiaohongshu.com/1040g2sg314rvsagl1ec05noui3c08sqinpaljcg?imageView2/2/w/1080/format/webp",
  17107. "https://ci.xiaohongshu.com/1040g2sg314rvsagl1ebg5noui3c08sqi9rjq7d0?imageView2/2/w/1080/format/webp",
  17108. "https://ci.xiaohongshu.com/1040g2sg314rvsagl1ecg5noui3c08sqio48ga6o?imageView2/2/w/1080/format/webp",
  17109. "https://ci.xiaohongshu.com/1040g2sg314rvsagl1eb05noui3c08sqioildsuo?imageView2/2/w/1080/format/webp"
  17110. ],
  17111. "image_list": [
  17112. {
  17113. "image_url": "https://ci.xiaohongshu.com/1040g2sg314rvsagl1edg5noui3c08sqi5fgd8j0?imageView2/2/w/1080/format/webp"
  17114. },
  17115. {
  17116. "image_url": "https://ci.xiaohongshu.com/1040g2sg314rvsagl1ec05noui3c08sqinpaljcg?imageView2/2/w/1080/format/webp"
  17117. },
  17118. {
  17119. "image_url": "https://ci.xiaohongshu.com/1040g2sg314rvsagl1ebg5noui3c08sqi9rjq7d0?imageView2/2/w/1080/format/webp"
  17120. },
  17121. {
  17122. "image_url": "https://ci.xiaohongshu.com/1040g2sg314rvsagl1ecg5noui3c08sqio48ga6o?imageView2/2/w/1080/format/webp"
  17123. },
  17124. {
  17125. "image_url": "https://ci.xiaohongshu.com/1040g2sg314rvsagl1eb05noui3c08sqioildsuo?imageView2/2/w/1080/format/webp"
  17126. }
  17127. ],
  17128. "interact_info": {
  17129. "liked_count": 38000,
  17130. "collected_count": 4938,
  17131. "comment_count": 4802,
  17132. "shared_count": 20130
  17133. },
  17134. "extraction": null,
  17135. "is_knowledge": false,
  17136. "knowledge_reason": "该帖子主要展示了作者制作的猫咪双标表情包及日常分享,不包含可复用的创作方法、技巧或教程指导等知识内容。",
  17137. "post_relevance_score": 0.8,
  17138. "relevance_level": "高度相关",
  17139. "relevance_reason": "帖子直接展示了如何以猫咪为主题来表达“双标行为”的表情包梗图,与原始问题“如何制作反映人类双标行为的猫咪表情包梗图”高度契合。虽然没有提供具体的制作教程,但其内容本身就是对问题的一种直接答案示范,提供了创作方向和视觉灵感。"
  17140. },
  17141. "post_68ae7e48000000001c004610_2_2": {
  17142. "type": "post",
  17143. "query": "[R] 可爱又双标的表情包27.0",
  17144. "level": 23,
  17145. "relevance_score": 0,
  17146. "strategy": "帖子",
  17147. "iteration": 2,
  17148. "is_selected": true,
  17149. "note_id": "68ae7e48000000001c004610",
  17150. "note_url": "https://www.xiaohongshu.com/explore/68ae7e48000000001c004610",
  17151. "body_text": "快发给你那即美丽又双标的姊妹吧#表情包演我精神状态 #每日表情包分享 #饭搭子 #实用表情包 #情侣表情包",
  17152. "images": [
  17153. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031lm33318lm005nddjvo08884om9osc8?imageView2/2/w/1080/format/webp",
  17154. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031lm33318lm0g5nddjvo0888437kibao?imageView2/2/w/1080/format/webp",
  17155. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031lm33318lm105nddjvo088845ner52g?imageView2/2/w/1080/format/webp",
  17156. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031lm33318lm1g5nddjvo08884gdrnkq0?imageView2/2/w/1080/format/webp",
  17157. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031lm33318lm205nddjvo08884d0n4bto?imageView2/2/w/1080/format/webp",
  17158. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031lm33318lm2g5nddjvo08884999uq0o?imageView2/2/w/1080/format/webp",
  17159. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031lm33318lm305nddjvo08884nldf1mo?imageView2/2/w/1080/format/webp",
  17160. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031lm33318lm3g5nddjvo08884pansvb8?imageView2/2/w/1080/format/webp",
  17161. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031lm33318lm405nddjvo08884q3bm9oo?imageView2/2/w/1080/format/webp",
  17162. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031lm33318lm4g5nddjvo08884euegjr0?imageView2/2/w/1080/format/webp",
  17163. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031lm33318lm505nddjvo08884rintmcg?imageView2/2/w/1080/format/webp",
  17164. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031lm33318lm5g5nddjvo08884qo6e5l8?imageView2/2/w/1080/format/webp",
  17165. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031lm33318lm605nddjvo08884il3i978?imageView2/2/w/1080/format/webp",
  17166. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031lm33318lm6g5nddjvo08884270l0jo?imageView2/2/w/1080/format/webp"
  17167. ],
  17168. "image_list": [
  17169. {
  17170. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031lm33318lm005nddjvo08884om9osc8?imageView2/2/w/1080/format/webp"
  17171. },
  17172. {
  17173. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031lm33318lm0g5nddjvo0888437kibao?imageView2/2/w/1080/format/webp"
  17174. },
  17175. {
  17176. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031lm33318lm105nddjvo088845ner52g?imageView2/2/w/1080/format/webp"
  17177. },
  17178. {
  17179. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031lm33318lm1g5nddjvo08884gdrnkq0?imageView2/2/w/1080/format/webp"
  17180. },
  17181. {
  17182. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031lm33318lm205nddjvo08884d0n4bto?imageView2/2/w/1080/format/webp"
  17183. },
  17184. {
  17185. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031lm33318lm2g5nddjvo08884999uq0o?imageView2/2/w/1080/format/webp"
  17186. },
  17187. {
  17188. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031lm33318lm305nddjvo08884nldf1mo?imageView2/2/w/1080/format/webp"
  17189. },
  17190. {
  17191. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031lm33318lm3g5nddjvo08884pansvb8?imageView2/2/w/1080/format/webp"
  17192. },
  17193. {
  17194. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031lm33318lm405nddjvo08884q3bm9oo?imageView2/2/w/1080/format/webp"
  17195. },
  17196. {
  17197. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031lm33318lm4g5nddjvo08884euegjr0?imageView2/2/w/1080/format/webp"
  17198. },
  17199. {
  17200. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031lm33318lm505nddjvo08884rintmcg?imageView2/2/w/1080/format/webp"
  17201. },
  17202. {
  17203. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031lm33318lm5g5nddjvo08884qo6e5l8?imageView2/2/w/1080/format/webp"
  17204. },
  17205. {
  17206. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031lm33318lm605nddjvo08884il3i978?imageView2/2/w/1080/format/webp"
  17207. },
  17208. {
  17209. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031lm33318lm6g5nddjvo08884270l0jo?imageView2/2/w/1080/format/webp"
  17210. }
  17211. ],
  17212. "interact_info": {
  17213. "liked_count": 20,
  17214. "collected_count": 9,
  17215. "comment_count": 0,
  17216. "shared_count": 2
  17217. },
  17218. "extraction": null,
  17219. "is_knowledge": false,
  17220. "knowledge_reason": "该帖子是一系列表情包的分享,没有提供任何关于表情包制作的方法、技巧、工具使用或流程教程,不包含可复用的创作知识。",
  17221. "post_relevance_score": 0.05,
  17222. "relevance_level": "低度相关",
  17223. "relevance_reason": "原始问题是关于“如何制作”反映双标行为的猫咪表情包梗图,而该帖子是“分享”可爱的表情包,且图片是人类幼崽而非猫咪。内容与问题描述的创作主题和对象均不符,不涉及制作方法或相关工具,参考价值极低。"
  17224. },
  17225. "post_6697b8310000000025003164_2_3": {
  17226. "type": "post",
  17227. "query": "[R] 豚的大型双标现场!",
  17228. "level": 23,
  17229. "relevance_score": 0,
  17230. "strategy": "帖子",
  17231. "iteration": 2,
  17232. "is_selected": true,
  17233. "note_id": "6697b8310000000025003164",
  17234. "note_url": "https://www.xiaohongshu.com/explore/6697b8310000000025003164",
  17235. "body_text": "我:说好不喜欢吃的呢!![抓狂R][抓狂R][抓狂R] 豚豚:嘿嘿[萌萌哒R]其实我都爱吃~[吐舌头H][吐舌头H",
  17236. "images": [
  17237. "https://ci.xiaohongshu.com/1040g2sg315brfaqk0s005p1vc53qaovb7c0nmt8?imageView2/2/w/1080/format/webp",
  17238. "https://ci.xiaohongshu.com/1040g2sg315brfaqk0s0g5p1vc53qaovb5fbb4q8?imageView2/2/w/1080/format/webp",
  17239. "https://ci.xiaohongshu.com/1040g2sg315brfaqk0s105p1vc53qaovbnuj9n2g?imageView2/2/w/1080/format/webp",
  17240. "https://ci.xiaohongshu.com/1040g2sg315brfaqk0s1g5p1vc53qaovbkks6p00?imageView2/2/w/1080/format/webp"
  17241. ],
  17242. "image_list": [
  17243. {
  17244. "image_url": "https://ci.xiaohongshu.com/1040g2sg315brfaqk0s005p1vc53qaovb7c0nmt8?imageView2/2/w/1080/format/webp"
  17245. },
  17246. {
  17247. "image_url": "https://ci.xiaohongshu.com/1040g2sg315brfaqk0s0g5p1vc53qaovb5fbb4q8?imageView2/2/w/1080/format/webp"
  17248. },
  17249. {
  17250. "image_url": "https://ci.xiaohongshu.com/1040g2sg315brfaqk0s105p1vc53qaovbnuj9n2g?imageView2/2/w/1080/format/webp"
  17251. },
  17252. {
  17253. "image_url": "https://ci.xiaohongshu.com/1040g2sg315brfaqk0s1g5p1vc53qaovbkks6p00?imageView2/2/w/1080/format/webp"
  17254. }
  17255. ],
  17256. "interact_info": {
  17257. "liked_count": 2967,
  17258. "collected_count": 1778,
  17259. "comment_count": 100,
  17260. "shared_count": 298
  17261. },
  17262. "extraction": null,
  17263. "is_knowledge": false,
  17264. "knowledge_reason": "该帖子通过一系列插画展示了卡皮巴拉“双标”的行为,内容为纯个人分享和情感表达,未提供任何关于制作表情包梗图的方法、技巧或工具使用等可复用的创作知识。",
  17265. "post_relevance_score": 0.75,
  17266. "relevance_level": "高度相关",
  17267. "relevance_reason": "帖子内容与原始问题“如何制作反映人类双标行为的猫咪表情包梗图”具有中高度相关性。尽管不是猫咪,而是卡皮巴拉,但它生动展示了“双标行为”这一核心概念,并以“表情包梗图”的形式呈现。观看此帖可激发创作灵感,理解双标行为的表达方式,但未提供制作指南。因此,有一定的参考价值,但缺乏技术指导。"
  17268. },
  17269. "post_68626478000000000d019251_2_4": {
  17270. "type": "post",
  17271. "query": "[R] 多栋对食物的双标日常",
  17272. "level": 23,
  17273. "relevance_score": 0,
  17274. "strategy": "帖子",
  17275. "iteration": 2,
  17276. "is_selected": true,
  17277. "note_id": "68626478000000000d019251",
  17278. "note_url": "https://www.xiaohongshu.com/explore/68626478000000000d019251",
  17279. "body_text": "#暹罗厘普 #比格多栋 #比格多栋是最棒的小狗 #比格多栋才是众望所归 #表情包 #我最爱的表情包 #双标狗",
  17280. "images": [
  17281. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031jbmq1oi360g5o9lqlq7vqa9daaonc8?imageView2/2/w/1080/format/webp",
  17282. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031jbmq1oi361g5o9lqlq7vqa94ndmp60?imageView2/2/w/1080/format/webp",
  17283. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031jbotkod36505o9lqlq7vqa9gaoqvs8?imageView2/2/w/1080/format/webp",
  17284. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031jbotkod366g5o9lqlq7vqa9qdf8tm0?imageView2/2/w/1080/format/webp",
  17285. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031jbmq1oi36005o9lqlq7vqa9hgblsho?imageView2/2/w/1080/format/webp",
  17286. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031jbmq1oi366g5o9lqlq7vqa9bqb27uo?imageView2/2/w/1080/format/webp",
  17287. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031jbmq1oi36405o9lqlq7vqa94elsf50?imageView2/2/w/1080/format/webp"
  17288. ],
  17289. "image_list": [
  17290. {
  17291. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031jbmq1oi360g5o9lqlq7vqa9daaonc8?imageView2/2/w/1080/format/webp"
  17292. },
  17293. {
  17294. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031jbmq1oi361g5o9lqlq7vqa94ndmp60?imageView2/2/w/1080/format/webp"
  17295. },
  17296. {
  17297. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031jbotkod36505o9lqlq7vqa9gaoqvs8?imageView2/2/w/1080/format/webp"
  17298. },
  17299. {
  17300. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031jbotkod366g5o9lqlq7vqa9qdf8tm0?imageView2/2/w/1080/format/webp"
  17301. },
  17302. {
  17303. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031jbmq1oi36005o9lqlq7vqa9hgblsho?imageView2/2/w/1080/format/webp"
  17304. },
  17305. {
  17306. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031jbmq1oi366g5o9lqlq7vqa9bqb27uo?imageView2/2/w/1080/format/webp"
  17307. },
  17308. {
  17309. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031jbmq1oi36405o9lqlq7vqa94elsf50?imageView2/2/w/1080/format/webp"
  17310. }
  17311. ],
  17312. "interact_info": {
  17313. "liked_count": 38154,
  17314. "collected_count": 4300,
  17315. "comment_count": 2876,
  17316. "shared_count": 18491
  17317. },
  17318. "extraction": null,
  17319. "is_knowledge": false,
  17320. "knowledge_reason": "该帖子是一系列关于比格犬对食物双标的梗图,属于日常分享和情感表达,不包含可复用的创作方法、技巧、工具使用或流程指导等知识内容。",
  17321. "post_relevance_score": 0.5,
  17322. "relevance_level": "中度相关",
  17323. "relevance_reason": "帖子内容通过图片形式表现了“双标”行为,与原始问题中的“反映人类双标行为”有概念上的重叠。但原始问题是关于“制作猫咪表情包梗图”,而帖子是关于狗的,且未提供任何制作方法或创作指导,因此相关性中等,仅有主题上的关联。"
  17324. },
  17325. "post_68dde20600000000070173ef_2_5": {
  17326. "type": "post",
  17327. "query": "[R] 画了一些新的表情包",
  17328. "level": 23,
  17329. "relevance_score": 0,
  17330. "strategy": "帖子",
  17331. "iteration": 2,
  17332. "is_selected": true,
  17333. "note_id": "68dde20600000000070173ef",
  17334. "note_url": "https://www.xiaohongshu.com/explore/68dde20600000000070173ef",
  17335. "body_text": "#表情包 #自制表情包 #小表情 #原创表情包 #表情包分享",
  17336. "images": [
  17337. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031n4c02g052505pmcamhjcser0m84koo?imageView2/2/w/1080/format/webp",
  17338. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031n4c02g0523g5pmcamhjcserr538rbg?imageView2/2/w/1080/format/webp",
  17339. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031n4c02g052205pmcamhjcserd5f07c0?imageView2/2/w/1080/format/webp",
  17340. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031n4c02g0522g5pmcamhjcser9u6itvo?imageView2/2/w/1080/format/webp",
  17341. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031n4c02g052305pmcamhjcserpsiatro?imageView2/2/w/1080/format/webp",
  17342. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031n4c02g052405pmcamhjcser4cr25pg?imageView2/2/w/1080/format/webp",
  17343. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031n4c02g0524g5pmcamhjcser9lu8vmo?imageView2/2/w/1080/format/webp",
  17344. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031n4c02g0525g5pmcamhjcserfb33c9g?imageView2/2/w/1080/format/webp",
  17345. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031n4c02g052605pmcamhjcser31amku0?imageView2/2/w/1080/format/webp",
  17346. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031n4c02g0526g5pmcamhjcserg1g3sa8?imageView2/2/w/1080/format/webp",
  17347. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831n4c2c64kq7g5pmcamhjcserqk4fjh0?imageView2/2/w/1080/format/webp",
  17348. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831n4c2c64kq705pmcamhjcserji5ruio?imageView2/2/w/1080/format/webp",
  17349. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831n4c2c64kq805pmcamhjcserkc1t240?imageView2/2/w/1080/format/webp",
  17350. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831n4c2c64kq8g5pmcamhjcser6k5tnlo?imageView2/2/w/1080/format/webp",
  17351. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831n4c2c64kq905pmcamhjcseroih3am8?imageView2/2/w/1080/format/webp",
  17352. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831n4c2c64kqa05pmcamhjcserknavu68?imageView2/2/w/1080/format/webp",
  17353. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831n4c2c64kq9g5pmcamhjcsermngsjg0?imageView2/2/w/1080/format/webp",
  17354. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831n4c2c64kqag5pmcamhjcserv5ov4no?imageView2/2/w/1080/format/webp"
  17355. ],
  17356. "image_list": [
  17357. {
  17358. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031n4c02g052505pmcamhjcser0m84koo?imageView2/2/w/1080/format/webp"
  17359. },
  17360. {
  17361. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031n4c02g0523g5pmcamhjcserr538rbg?imageView2/2/w/1080/format/webp"
  17362. },
  17363. {
  17364. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031n4c02g052205pmcamhjcserd5f07c0?imageView2/2/w/1080/format/webp"
  17365. },
  17366. {
  17367. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031n4c02g0522g5pmcamhjcser9u6itvo?imageView2/2/w/1080/format/webp"
  17368. },
  17369. {
  17370. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031n4c02g052305pmcamhjcserpsiatro?imageView2/2/w/1080/format/webp"
  17371. },
  17372. {
  17373. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031n4c02g052405pmcamhjcser4cr25pg?imageView2/2/w/1080/format/webp"
  17374. },
  17375. {
  17376. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031n4c02g0524g5pmcamhjcser9lu8vmo?imageView2/2/w/1080/format/webp"
  17377. },
  17378. {
  17379. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031n4c02g0525g5pmcamhjcserfb33c9g?imageView2/2/w/1080/format/webp"
  17380. },
  17381. {
  17382. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031n4c02g052605pmcamhjcser31amku0?imageView2/2/w/1080/format/webp"
  17383. },
  17384. {
  17385. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031n4c02g0526g5pmcamhjcserg1g3sa8?imageView2/2/w/1080/format/webp"
  17386. },
  17387. {
  17388. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831n4c2c64kq7g5pmcamhjcserqk4fjh0?imageView2/2/w/1080/format/webp"
  17389. },
  17390. {
  17391. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831n4c2c64kq705pmcamhjcserji5ruio?imageView2/2/w/1080/format/webp"
  17392. },
  17393. {
  17394. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831n4c2c64kq805pmcamhjcserkc1t240?imageView2/2/w/1080/format/webp"
  17395. },
  17396. {
  17397. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831n4c2c64kq8g5pmcamhjcser6k5tnlo?imageView2/2/w/1080/format/webp"
  17398. },
  17399. {
  17400. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831n4c2c64kq905pmcamhjcseroih3am8?imageView2/2/w/1080/format/webp"
  17401. },
  17402. {
  17403. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831n4c2c64kqa05pmcamhjcserknavu68?imageView2/2/w/1080/format/webp"
  17404. },
  17405. {
  17406. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831n4c2c64kq9g5pmcamhjcsermngsjg0?imageView2/2/w/1080/format/webp"
  17407. },
  17408. {
  17409. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831n4c2c64kqag5pmcamhjcserv5ov4no?imageView2/2/w/1080/format/webp"
  17410. }
  17411. ],
  17412. "interact_info": {
  17413. "liked_count": 4404,
  17414. "collected_count": 899,
  17415. "comment_count": 237,
  17416. "shared_count": 282
  17417. },
  17418. "extraction": null,
  17419. "is_knowledge": false,
  17420. "knowledge_reason": "该帖子仅分享了个人创作的表情包成品,未提供任何关于表情包制作的方法、技巧、工具使用或详细步骤,不包含可复用的创作知识。",
  17421. "post_relevance_score": 0.3,
  17422. "relevance_level": "低度相关",
  17423. "relevance_reason": "该帖子展示的是猫咪形象的表情包,与问题中“猫咪表情包”有形象上的关联,但其内容是纯表情包展示,并未涉及“反映人类双标行为”这一主题,也未提供任何制作表情包梗图的创作知识或方法,因此相关性较低。"
  17424. },
  17425. "post_67dd3945000000001d02d900_2_6": {
  17426. "type": "post",
  17427. "query": "[R] 我的双标时刻!",
  17428. "level": 23,
  17429. "relevance_score": 0,
  17430. "strategy": "帖子",
  17431. "iteration": 2,
  17432. "is_selected": true,
  17433. "note_id": "67dd3945000000001d02d900",
  17434. "note_url": "https://www.xiaohongshu.com/explore/67dd3945000000001d02d900",
  17435. "body_text": "#双标现场 #双标 #人的本质是双标 #有被内涵到 #打工人日常 #懒人 #表情包 #吃货 #官方助推",
  17436. "images": [
  17437. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831f9hk311me7g5ps76s5i3bmbbvkhmn8?imageView2/2/w/1080/format/webp",
  17438. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831f9hk311me9g5ps76s5i3bmb98rnhag?imageView2/2/w/1080/format/webp",
  17439. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831f9hk311me805ps76s5i3bmb2r6730g?imageView2/2/w/1080/format/webp",
  17440. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831f9hk311me8g5ps76s5i3bmb9tlcif8?imageView2/2/w/1080/format/webp",
  17441. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831f9hk311me905ps76s5i3bmbu5ehb8o?imageView2/2/w/1080/format/webp",
  17442. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831f9hk311mea05ps76s5i3bmbect83ro?imageView2/2/w/1080/format/webp"
  17443. ],
  17444. "image_list": [
  17445. {
  17446. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831f9hk311me7g5ps76s5i3bmbbvkhmn8?imageView2/2/w/1080/format/webp"
  17447. },
  17448. {
  17449. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831f9hk311me9g5ps76s5i3bmb98rnhag?imageView2/2/w/1080/format/webp"
  17450. },
  17451. {
  17452. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831f9hk311me805ps76s5i3bmb2r6730g?imageView2/2/w/1080/format/webp"
  17453. },
  17454. {
  17455. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831f9hk311me8g5ps76s5i3bmb9tlcif8?imageView2/2/w/1080/format/webp"
  17456. },
  17457. {
  17458. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831f9hk311me905ps76s5i3bmbu5ehb8o?imageView2/2/w/1080/format/webp"
  17459. },
  17460. {
  17461. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831f9hk311mea05ps76s5i3bmbect83ro?imageView2/2/w/1080/format/webp"
  17462. }
  17463. ],
  17464. "interact_info": {
  17465. "liked_count": 2861,
  17466. "collected_count": 458,
  17467. "comment_count": 525,
  17468. "shared_count": 3819
  17469. },
  17470. "extraction": null,
  17471. "is_knowledge": null,
  17472. "knowledge_reason": "",
  17473. "post_relevance_score": null,
  17474. "relevance_level": "",
  17475. "relevance_reason": ""
  17476. },
  17477. "post_6907666b0000000004022dbb_2_7": {
  17478. "type": "post",
  17479. "query": "[R] 表情包分享|威廉企鹅自恋版",
  17480. "level": 23,
  17481. "relevance_score": 0,
  17482. "strategy": "帖子",
  17483. "iteration": 2,
  17484. "is_selected": true,
  17485. "note_id": "6907666b0000000004022dbb",
  17486. "note_url": "https://www.xiaohongshu.com/explore/6907666b0000000004022dbb",
  17487. "body_text": "🐧🐧🐧 图源@早柚 #有趣的表情包 #企鹅 #每日表情包分享 #禁止搬运 #会火 #薯队长",
  17488. "images": [
  17489. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031octa2rg062g5q1qqkn6se2be4282no?imageView2/2/w/1080/format/webp",
  17490. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031octa2rg06405q1qqkn6se2ba0sa6m0?imageView2/2/w/1080/format/webp",
  17491. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031octfraf06105q1qqkn6se2bh2k1g70?imageView2/2/w/1080/format/webp",
  17492. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031octfraf06505q1qqkn6se2bnd96h18?imageView2/2/w/1080/format/webp",
  17493. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031octfraf066g5q1qqkn6se2b8lovrb8?imageView2/2/w/1080/format/webp",
  17494. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031octfraf065g5q1qqkn6se2bqc9e56g?imageView2/2/w/1080/format/webp",
  17495. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031octfr83g6605q1qqkn6se2b3h1dh6g?imageView2/2/w/1080/format/webp",
  17496. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031octfraf06605q1qqkn6se2b2rmrqn8?imageView2/2/w/1080/format/webp",
  17497. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031octfr83g66g5q1qqkn6se2b5b6ogso?imageView2/2/w/1080/format/webp",
  17498. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031octa2rg06005q1qqkn6se2btl8umjo?imageView2/2/w/1080/format/webp",
  17499. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031octa2rg061g5q1qqkn6se2bd2ntipg?imageView2/2/w/1080/format/webp",
  17500. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031octa2rg060g5q1qqkn6se2b88m0lmg?imageView2/2/w/1080/format/webp",
  17501. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031octa2rg06105q1qqkn6se2bhrj3di8?imageView2/2/w/1080/format/webp",
  17502. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031octa2rg063g5q1qqkn6se2bai7d700?imageView2/2/w/1080/format/webp",
  17503. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031octa2rg06305q1qqkn6se2bkuu22a0?imageView2/2/w/1080/format/webp",
  17504. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031octa2rg06205q1qqkn6se2b2gr424o?imageView2/2/w/1080/format/webp",
  17505. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031octa2rg06605q1qqkn6se2bvb0uv6g?imageView2/2/w/1080/format/webp"
  17506. ],
  17507. "image_list": [
  17508. {
  17509. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031octa2rg062g5q1qqkn6se2be4282no?imageView2/2/w/1080/format/webp"
  17510. },
  17511. {
  17512. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031octa2rg06405q1qqkn6se2ba0sa6m0?imageView2/2/w/1080/format/webp"
  17513. },
  17514. {
  17515. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031octfraf06105q1qqkn6se2bh2k1g70?imageView2/2/w/1080/format/webp"
  17516. },
  17517. {
  17518. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031octfraf06505q1qqkn6se2bnd96h18?imageView2/2/w/1080/format/webp"
  17519. },
  17520. {
  17521. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031octfraf066g5q1qqkn6se2b8lovrb8?imageView2/2/w/1080/format/webp"
  17522. },
  17523. {
  17524. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031octfraf065g5q1qqkn6se2bqc9e56g?imageView2/2/w/1080/format/webp"
  17525. },
  17526. {
  17527. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031octfr83g6605q1qqkn6se2b3h1dh6g?imageView2/2/w/1080/format/webp"
  17528. },
  17529. {
  17530. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031octfraf06605q1qqkn6se2b2rmrqn8?imageView2/2/w/1080/format/webp"
  17531. },
  17532. {
  17533. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031octfr83g66g5q1qqkn6se2b5b6ogso?imageView2/2/w/1080/format/webp"
  17534. },
  17535. {
  17536. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031octa2rg06005q1qqkn6se2btl8umjo?imageView2/2/w/1080/format/webp"
  17537. },
  17538. {
  17539. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031octa2rg061g5q1qqkn6se2bd2ntipg?imageView2/2/w/1080/format/webp"
  17540. },
  17541. {
  17542. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031octa2rg060g5q1qqkn6se2b88m0lmg?imageView2/2/w/1080/format/webp"
  17543. },
  17544. {
  17545. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031octa2rg06105q1qqkn6se2bhrj3di8?imageView2/2/w/1080/format/webp"
  17546. },
  17547. {
  17548. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031octa2rg063g5q1qqkn6se2bai7d700?imageView2/2/w/1080/format/webp"
  17549. },
  17550. {
  17551. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031octa2rg06305q1qqkn6se2bkuu22a0?imageView2/2/w/1080/format/webp"
  17552. },
  17553. {
  17554. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031octa2rg06205q1qqkn6se2b2gr424o?imageView2/2/w/1080/format/webp"
  17555. },
  17556. {
  17557. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031octa2rg06605q1qqkn6se2bvb0uv6g?imageView2/2/w/1080/format/webp"
  17558. }
  17559. ],
  17560. "interact_info": {
  17561. "liked_count": 3139,
  17562. "collected_count": 881,
  17563. "comment_count": 38,
  17564. "shared_count": 708
  17565. },
  17566. "extraction": null,
  17567. "is_knowledge": false,
  17568. "knowledge_reason": "该帖子仅分享了一组现成的企鹅表情包图片,没有提供任何关于表情包制作的方法、技巧、工具使用步骤或教程指导,不包含可复用的创作知识。",
  17569. "post_relevance_score": 0.1,
  17570. "relevance_level": "低度相关",
  17571. "relevance_reason": "原始问题是关于“如何制作反映人类双标行为的猫咪表情包梗图”的方法,而该帖子仅是分享企鹅表情包而非猫咪,且未提供任何制作方法或双标行为相关的创作思路,因此相关性极低。"
  17572. },
  17573. "post_68a43430000000001d0027d6_2_8": {
  17574. "type": "post",
  17575. "query": "[R] 比格多栋的双标时刻:",
  17576. "level": 23,
  17577. "relevance_score": 0,
  17578. "strategy": "帖子",
  17579. "iteration": 2,
  17580. "is_selected": true,
  17581. "note_id": "68a43430000000001d0027d6",
  17582. "note_url": "https://www.xiaohongshu.com/explore/68a43430000000001d0027d6",
  17583. "body_text": "#萌物 #梗图 #梗图系列 #此图有梗 #暹罗厘普 #比格多栋 #张田中 #兔子秀珍 #人的本质是双标",
  17584. "images": [
  17585. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831lbpdv3vkubg5o9lqlq7vqa9b21cqv0?imageView2/2/w/1080/format/webp",
  17586. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831lbpdv3vku9g5o9lqlq7vqa9ibu6p8o?imageView2/2/w/1080/format/webp"
  17587. ],
  17588. "image_list": [
  17589. {
  17590. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831lbpdv3vkubg5o9lqlq7vqa9b21cqv0?imageView2/2/w/1080/format/webp"
  17591. },
  17592. {
  17593. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831lbpdv3vku9g5o9lqlq7vqa9ibu6p8o?imageView2/2/w/1080/format/webp"
  17594. }
  17595. ],
  17596. "interact_info": {
  17597. "liked_count": 1448,
  17598. "collected_count": 116,
  17599. "comment_count": 90,
  17600. "shared_count": 586
  17601. },
  17602. "extraction": null,
  17603. "is_knowledge": false,
  17604. "knowledge_reason": "帖子内容为发布者创作的梗图展示,纯属个人分享和情感表达,不包含任何创作方法、技巧、工具使用或流程指导等可复用的知识内容。",
  17605. "post_relevance_score": 0.4,
  17606. "relevance_level": "中度相关",
  17607. "relevance_reason": "帖子展示的梗图确实反映了“双标”这一主题,并在标题和标签中提及,与原始问题“如何制作反映人类双标行为的猫咪表情包梗图”中的“双标行为”和“梗图”有一定概念上的重叠。但图片内容是狗,而非猫,且未提供关于如何制作梗图的任何指导或方法,因此参考价值有限。"
  17608. },
  17609. "post_67d2e30d000000000603eb03_2_9": {
  17610. "type": "post",
  17611. "query": "[R] 真的好喜欢这个表情包啊",
  17612. "level": 23,
  17613. "relevance_score": 0,
  17614. "strategy": "帖子",
  17615. "iteration": 2,
  17616. "is_selected": true,
  17617. "note_id": "67d2e30d000000000603eb03",
  17618. "note_url": "https://www.xiaohongshu.com/explore/67d2e30d000000000603eb03",
  17619. "body_text": "一些爱用表情包,谁会不喜欢可爱猫猫呢#表情包分享 #搞笑表情包 #聊天表情包 #可爱表情包 #猫咪表情包 #猫",
  17620. "images": [
  17621. "https://ci.xiaohongshu.com/1040g00831evkendj6a605on0j475al80hr6h0m8?imageView2/2/w/1080/format/webp",
  17622. "https://ci.xiaohongshu.com/1040g00831evkenhrme6g5on0j475al80lksdmbg?imageView2/2/w/1080/format/webp",
  17623. "https://ci.xiaohongshu.com/1040g00831evkenhj6a6g5on0j475al80d6ccjt0?imageView2/2/w/1080/format/webp",
  17624. "https://ci.xiaohongshu.com/1040g00831evkenhbmi5g5on0j475al80ck4knqo?imageView2/2/w/1080/format/webp",
  17625. "https://ci.xiaohongshu.com/1040g00831evkenf166605on0j475al8053lfo3g?imageView2/2/w/1080/format/webp",
  17626. "https://ci.xiaohongshu.com/1040g00831evkenebmi5g5on0j475al80tl294l0?imageView2/2/w/1080/format/webp",
  17627. "https://ci.xiaohongshu.com/1040g00831evkeneb6a605on0j475al80td1gpf8?imageView2/2/w/1080/format/webp",
  17628. "https://ci.xiaohongshu.com/1040g2sg31evkenecmocg5on0j475al80d8tc778?imageView2/2/w/1080/format/webp",
  17629. "https://ci.xiaohongshu.com/1040g00831evkene9ma6g5on0j475al80dccljs8?imageView2/2/w/1080/format/webp"
  17630. ],
  17631. "image_list": [
  17632. {
  17633. "image_url": "https://ci.xiaohongshu.com/1040g00831evkendj6a605on0j475al80hr6h0m8?imageView2/2/w/1080/format/webp"
  17634. },
  17635. {
  17636. "image_url": "https://ci.xiaohongshu.com/1040g00831evkenhrme6g5on0j475al80lksdmbg?imageView2/2/w/1080/format/webp"
  17637. },
  17638. {
  17639. "image_url": "https://ci.xiaohongshu.com/1040g00831evkenhj6a6g5on0j475al80d6ccjt0?imageView2/2/w/1080/format/webp"
  17640. },
  17641. {
  17642. "image_url": "https://ci.xiaohongshu.com/1040g00831evkenhbmi5g5on0j475al80ck4knqo?imageView2/2/w/1080/format/webp"
  17643. },
  17644. {
  17645. "image_url": "https://ci.xiaohongshu.com/1040g00831evkenf166605on0j475al8053lfo3g?imageView2/2/w/1080/format/webp"
  17646. },
  17647. {
  17648. "image_url": "https://ci.xiaohongshu.com/1040g00831evkenebmi5g5on0j475al80tl294l0?imageView2/2/w/1080/format/webp"
  17649. },
  17650. {
  17651. "image_url": "https://ci.xiaohongshu.com/1040g00831evkeneb6a605on0j475al80td1gpf8?imageView2/2/w/1080/format/webp"
  17652. },
  17653. {
  17654. "image_url": "https://ci.xiaohongshu.com/1040g2sg31evkenecmocg5on0j475al80d8tc778?imageView2/2/w/1080/format/webp"
  17655. },
  17656. {
  17657. "image_url": "https://ci.xiaohongshu.com/1040g00831evkene9ma6g5on0j475al80dccljs8?imageView2/2/w/1080/format/webp"
  17658. }
  17659. ],
  17660. "interact_info": {
  17661. "liked_count": 10582,
  17662. "collected_count": 2362,
  17663. "comment_count": 731,
  17664. "shared_count": 841
  17665. },
  17666. "extraction": null,
  17667. "is_knowledge": false,
  17668. "knowledge_reason": "该帖子仅为猫咪表情包的纯分享,提供了9张现成的表情包图片及一些标签,并未包含任何关于如何制作表情包的方法、技巧、步骤或工具使用等创作知识。",
  17669. "post_relevance_score": 0.1,
  17670. "relevance_level": "低度相关",
  17671. "relevance_reason": "原始问题是关于“如何制作反映人类双标行为的猫咪表情包梗图”,而帖子只分享了一些可爱的猫咪表情包,其中甚至没有明确体现“双标行为”的梗图,更没有提供制作方法,因此相关性极低。"
  17672. },
  17673. "search_梗图描改教程_r2_3": {
  17674. "type": "search_word",
  17675. "query": "[SEARCH] 梗图描改教程",
  17676. "level": 22,
  17677. "relevance_score": 0.705,
  17678. "strategy": "搜索词",
  17679. "iteration": 2,
  17680. "is_selected": true
  17681. },
  17682. "post_68ef8753000000000301d581_3_0": {
  17683. "type": "post",
  17684. "query": "[R] 奇美拉都能学会的让描改meme更有感觉教程",
  17685. "level": 23,
  17686. "relevance_score": 0,
  17687. "strategy": "帖子",
  17688. "iteration": 2,
  17689. "is_selected": true,
  17690. "note_id": "68ef8753000000000301d581",
  17691. "note_url": "https://www.xiaohongshu.com/explore/68ef8753000000000301d581",
  17692. "body_text": "——以五个超级讨厌mikuOMG和软件sai2为例 也可以当成氛围头万金油教程(……) #绘画过程 #绘画教程 #绘",
  17693. "images": [
  17694. "https://ci.xiaohongshu.com/1040g2sg31nlj712klmkg5p191obkcdnbufe8jj8?imageView2/2/w/1080/format/webp",
  17695. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831nljfuit6g605p191obkcdnbdrekct8?imageView2/2/w/1080/format/webp",
  17696. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831nljfuit6g3g5p191obkcdnbjf5o55g?imageView2/2/w/1080/format/webp",
  17697. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831nljfuit6g205p191obkcdnb3qmi2mg?imageView2/2/w/1080/format/webp",
  17698. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831nljfuit6g2g5p191obkcdnb25nn8b8?imageView2/2/w/1080/format/webp",
  17699. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831nljfuit6g405p191obkcdnbpav08lo?imageView2/2/w/1080/format/webp",
  17700. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831nljfuit6g6g5p191obkcdnbc329djo?imageView2/2/w/1080/format/webp",
  17701. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831nljfuit6g4g5p191obkcdnbbemu818?imageView2/2/w/1080/format/webp",
  17702. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831nljfuit6g5g5p191obkcdnbdhh5msg?imageView2/2/w/1080/format/webp",
  17703. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831nljfuit6g505p191obkcdnbj0v7oa0?imageView2/2/w/1080/format/webp"
  17704. ],
  17705. "image_list": [
  17706. {
  17707. "image_url": "https://ci.xiaohongshu.com/1040g2sg31nlj712klmkg5p191obkcdnbufe8jj8?imageView2/2/w/1080/format/webp"
  17708. },
  17709. {
  17710. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831nljfuit6g605p191obkcdnbdrekct8?imageView2/2/w/1080/format/webp"
  17711. },
  17712. {
  17713. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831nljfuit6g3g5p191obkcdnbjf5o55g?imageView2/2/w/1080/format/webp"
  17714. },
  17715. {
  17716. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831nljfuit6g205p191obkcdnb3qmi2mg?imageView2/2/w/1080/format/webp"
  17717. },
  17718. {
  17719. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831nljfuit6g2g5p191obkcdnb25nn8b8?imageView2/2/w/1080/format/webp"
  17720. },
  17721. {
  17722. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831nljfuit6g405p191obkcdnbpav08lo?imageView2/2/w/1080/format/webp"
  17723. },
  17724. {
  17725. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831nljfuit6g6g5p191obkcdnbc329djo?imageView2/2/w/1080/format/webp"
  17726. },
  17727. {
  17728. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831nljfuit6g4g5p191obkcdnbbemu818?imageView2/2/w/1080/format/webp"
  17729. },
  17730. {
  17731. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831nljfuit6g5g5p191obkcdnbdhh5msg?imageView2/2/w/1080/format/webp"
  17732. },
  17733. {
  17734. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831nljfuit6g505p191obkcdnbj0v7oa0?imageView2/2/w/1080/format/webp"
  17735. }
  17736. ],
  17737. "interact_info": {
  17738. "liked_count": 12520,
  17739. "collected_count": 6189,
  17740. "comment_count": 52,
  17741. "shared_count": 491
  17742. },
  17743. "extraction": null,
  17744. "is_knowledge": true,
  17745. "knowledge_reason": "帖子提供了详细的描改meme制作教程,包括线稿、上色、添加背景、调整光影等多个步骤以及软件使用技巧,属于可复用的创作方法和流程指导。",
  17746. "post_relevance_score": 0.5,
  17747. "relevance_level": "中度相关",
  17748. "relevance_reason": "帖子提供了制作表情包梗图的描改技术和后期处理方法,对'如何制作反映人类双标行为的猫咪表情包梗图'中的'制作表情包梗图'部分有指导作用。然而,它并未涉及'反映人类双标行为'或'猫咪'等主题内容,因此相关性为中等。"
  17749. },
  17750. "post_6882582c000000000d018245_3_1": {
  17751. "type": "post",
  17752. "query": "[R] 一个很抽象的教程",
  17753. "level": 23,
  17754. "relevance_score": 0,
  17755. "strategy": "帖子",
  17756. "iteration": 2,
  17757. "is_selected": true,
  17758. "note_id": "6882582c000000000d018245",
  17759. "note_url": "https://www.xiaohongshu.com/explore/6882582c000000000d018245",
  17760. "body_text": "我来了,有啥不会的评论区问吧😁 #oc #未经允许禁止转载二次修改 #禁ai #约稿展示 #自设 #毫无技术",
  17761. "images": [
  17762. "https://ci.xiaohongshu.com/1040g2sg31karqrsj3ql05pqo9c8ndpcillbda48?imageView2/2/w/1080/format/webp"
  17763. ],
  17764. "image_list": [
  17765. {
  17766. "image_url": "https://ci.xiaohongshu.com/1040g2sg31karqrsj3ql05pqo9c8ndpcillbda48?imageView2/2/w/1080/format/webp"
  17767. }
  17768. ],
  17769. "interact_info": {
  17770. "liked_count": 555,
  17771. "collected_count": 98,
  17772. "comment_count": 77,
  17773. "shared_count": 18
  17774. },
  17775. "extraction": null,
  17776. "is_knowledge": true,
  17777. "knowledge_reason": "帖子标题和图片明确提及“梗图教程”,正文虽短但表示“有啥不会的评论区问吧”,暗示可以提供创作方法或指导。虽然内容本身没展开,但形式上是提供了知识分享的意图。",
  17778. "post_relevance_score": 0.4,
  17779. "relevance_level": "中度相关",
  17780. "relevance_reason": "帖子标题和图片指出是“梗图教程”,与原始问题“如何制作…表情包梗图”的创作形式相关。但帖子内容并未涉及或展示任何猫咪元素或双标行为,也未给出具体教程,与特定主题关联性极弱。"
  17781. },
  17782. "post_689937da0000000022023e1e_3_2": {
  17783. "type": "post",
  17784. "query": "[R] 梗图描改模板",
  17785. "level": 23,
  17786. "relevance_score": 0,
  17787. "strategy": "帖子",
  17788. "iteration": 2,
  17789. "is_selected": true,
  17790. "note_id": "689937da0000000022023e1e",
  17791. "note_url": "https://www.xiaohongshu.com/explore/689937da0000000022023e1e",
  17792. "body_text": "二改随意#指绘 #梗图 #模板",
  17793. "images": [
  17794. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031l1a92ksiu5g5o1qs6j08u7k7urg0h8?imageView2/2/w/1080/format/webp",
  17795. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031l1a92u2304g5o1qs6j08u7kg20maeg?imageView2/2/w/1080/format/webp",
  17796. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031l1a92u2302g5o1qs6j08u7kuv6ta28?imageView2/2/w/1080/format/webp",
  17797. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031l1a92u230305o1qs6j08u7kc1bi1rg?imageView2/2/w/1080/format/webp",
  17798. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031l1a92u230205o1qs6j08u7kadbl8ig?imageView2/2/w/1080/format/webp"
  17799. ],
  17800. "image_list": [
  17801. {
  17802. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031l1a92ksiu5g5o1qs6j08u7k7urg0h8?imageView2/2/w/1080/format/webp"
  17803. },
  17804. {
  17805. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031l1a92u2304g5o1qs6j08u7kg20maeg?imageView2/2/w/1080/format/webp"
  17806. },
  17807. {
  17808. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031l1a92u2302g5o1qs6j08u7kuv6ta28?imageView2/2/w/1080/format/webp"
  17809. },
  17810. {
  17811. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031l1a92u230305o1qs6j08u7kc1bi1rg?imageView2/2/w/1080/format/webp"
  17812. },
  17813. {
  17814. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031l1a92u230205o1qs6j08u7kadbl8ig?imageView2/2/w/1080/format/webp"
  17815. }
  17816. ],
  17817. "interact_info": {
  17818. "liked_count": 1250,
  17819. "collected_count": 350,
  17820. "comment_count": 105,
  17821. "shared_count": 59
  17822. },
  17823. "extraction": null,
  17824. "is_knowledge": true,
  17825. "knowledge_reason": "帖子提供了梗图描改的模板,即一种可复用的创作工具或素材,用户可以基于此进行二次创作,属于制作梗图的方法之一。",
  17826. "post_relevance_score": 0.4,
  17827. "relevance_level": "中度相关",
  17828. "relevance_reason": "该帖子提供了梗图模板,这对于制作梗图具有一定的参考价值,但它没有直接涉及“猫咪表情包”和“人类双标行为”这两个核心元素,需要用户进一步创造性地填充内容。因此,相关性中等偏低。"
  17829. },
  17830. "post_68fdde910000000003018b60_3_3": {
  17831. "type": "post",
  17832. "query": "[R] 神犬妙探巴布洛梗图描改(5/)",
  17833. "level": 23,
  17834. "relevance_score": 0,
  17835. "strategy": "帖子",
  17836. "iteration": 2,
  17837. "is_selected": true,
  17838. "note_id": "68fdde910000000003018b60",
  17839. "note_url": "https://www.xiaohongshu.com/explore/68fdde910000000003018b60",
  17840. "body_text": "加百列:(耶) 依旧是@我想画稿 老师画的😋 #神犬妙探巴布洛 #同人产粮节 #好奇心档案馆 #加百列",
  17841. "images": [
  17842. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031o3j1igplm305pmc3nm2u2vnlr10lu8?imageView2/2/w/1080/format/webp"
  17843. ],
  17844. "image_list": [
  17845. {
  17846. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031o3j1igplm305pmc3nm2u2vnlr10lu8?imageView2/2/w/1080/format/webp"
  17847. }
  17848. ],
  17849. "interact_info": {
  17850. "liked_count": 52,
  17851. "collected_count": 6,
  17852. "comment_count": 8,
  17853. "shared_count": 0
  17854. },
  17855. "extraction": null,
  17856. "is_knowledge": false,
  17857. "knowledge_reason": "该帖子是一张描改的梗图分享,内容为二次创作和情感表达,不包含任何可复用的创作方法、技巧或指导,无法提供面向创作的知识。",
  17858. "post_relevance_score": 0.05,
  17859. "relevance_level": "低度相关",
  17860. "relevance_reason": "原始问题是关于制作猫咪表情包梗图以反映人类双标行为,而该帖子内容是《神犬妙探巴布洛》的同人描改梗图,主角为动漫人物,主题与猫咪和双标行为无关。因此相关性极低,无法解决原始问题。"
  17861. },
  17862. "post_63cfabdd000000001b0173d5_3_4": {
  17863. "type": "post",
  17864. "query": "[R] 描改梗图过程。",
  17865. "level": 23,
  17866. "relevance_score": 0,
  17867. "strategy": "帖子",
  17868. "iteration": 2,
  17869. "is_selected": true,
  17870. "note_id": "63cfabdd000000001b0173d5",
  17871. "note_url": "https://www.xiaohongshu.com/explore/63cfabdd000000001b0173d5",
  17872. "body_text": "#爱官方官方大大求热门 #查理九世 #绘画过程 #描改致敬@🎋是墨的恋爱对手la",
  17873. "images": [
  17874. "https://ci.xiaohongshu.com/1000g0081uhvsmsef00605oq1cemm54cdiupk2n0?imageView2/2/w/1080/format/webp"
  17875. ],
  17876. "image_list": [
  17877. {
  17878. "image_url": "https://ci.xiaohongshu.com/1000g0081uhvsmsef00605oq1cemm54cdiupk2n0?imageView2/2/w/1080/format/webp"
  17879. }
  17880. ],
  17881. "interact_info": {
  17882. "liked_count": 75,
  17883. "collected_count": 14,
  17884. "comment_count": 1,
  17885. "shared_count": 1
  17886. },
  17887. "extraction": null,
  17888. "is_knowledge": true,
  17889. "knowledge_reason": "帖子标题和标签提及“描改梗图过程”和“绘画过程”,暗示其可能包含描改梗图或绘画的步骤或技巧,具有可复用的创作指导价值。",
  17890. "post_relevance_score": 0.4,
  17891. "relevance_level": "中度相关",
  17892. "relevance_reason": "帖子内容提及“描改梗图过程”,与制作表情包梗图在一定程度上有方法上的关联,但与“猫咪表情包”和“人类双标行为”这两个核心元素关联性弱,不直接解决原问题。"
  17893. },
  17894. "post_62e4f79a000000000e0308ed_3_5": {
  17895. "type": "post",
  17896. "query": "[R] 描改教程(细讲线稿)",
  17897. "level": 23,
  17898. "relevance_score": 0,
  17899. "strategy": "帖子",
  17900. "iteration": 2,
  17901. "is_selected": true,
  17902. "note_id": "62e4f79a000000000e0308ed",
  17903. "note_url": "https://www.xiaohongshu.com/explore/62e4f79a000000000e0308ed",
  17904. "body_text": "#描改致歉 #喜羊羊与灰太狼 #教程",
  17905. "images": [
  17906. "https://ci.xiaohongshu.com/01027u01ki6ksriwfi701113kdfbp6wk3v?imageView2/2/w/1080/format/webp"
  17907. ],
  17908. "image_list": [
  17909. {
  17910. "image_url": "https://ci.xiaohongshu.com/01027u01ki6ksriwfi701113kdfbp6wk3v?imageView2/2/w/1080/format/webp"
  17911. }
  17912. ],
  17913. "interact_info": {
  17914. "liked_count": 716,
  17915. "collected_count": 383,
  17916. "comment_count": 63,
  17917. "shared_count": 14
  17918. },
  17919. "extraction": null,
  17920. "is_knowledge": true,
  17921. "knowledge_reason": "帖子标题明确标注“描改教程(细讲线稿)”,正文也有“教程”标签,图片展示了教程成品,清晰表明这是一个关于描改线稿的创作方法和技巧指导。",
  17922. "post_relevance_score": 0.45,
  17923. "relevance_level": "中度相关",
  17924. "relevance_reason": "该帖子提供了描改教程,包含创作方法,可以用于学习制作梗图。但它是一个通用的描改线稿教程,并未涉及如何将人类双标行为融入到猫咪表情包创作中,也未提供猫咪表情包相关的具体知识或案例,因此相关性中等偏低。"
  17925. },
  17926. "post_68429814000000002001dfc8_3_6": {
  17927. "type": "post",
  17928. "query": "[R] 还是梗图描改",
  17929. "level": 23,
  17930. "relevance_score": 0,
  17931. "strategy": "帖子",
  17932. "iteration": 2,
  17933. "is_selected": true,
  17934. "note_id": "68429814000000002001dfc8",
  17935. "note_url": "https://www.xiaohongshu.com/explore/68429814000000002001dfc8",
  17936. "body_text": "没错还是画梗图😁 原图后三张 受不了了画一个小时笑俩小时 含私/黑蓝/蓝卡其/卡其青cb #sprunki #摸鱼",
  17937. "images": [
  17938. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831icn9qmcgek05pp5sknndqaieuvgs7g?imageView2/2/w/1080/format/webp",
  17939. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831icn9qoag8ag5pp5sknndqaico0cqpo?imageView2/2/w/1080/format/webp",
  17940. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831icn9qoag8905pp5sknndqai57tojo0?imageView2/2/w/1080/format/webp",
  17941. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831icn9qoag89g5pp5sknndqaimkuc53g?imageView2/2/w/1080/format/webp",
  17942. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831icn9qoag8a05pp5sknndqai9kf7v8o?imageView2/2/w/1080/format/webp",
  17943. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831icn9qoag8cg5pp5sknndqaivg2f3lg?imageView2/2/w/1080/format/webp"
  17944. ],
  17945. "image_list": [
  17946. {
  17947. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831icn9qmcgek05pp5sknndqaieuvgs7g?imageView2/2/w/1080/format/webp"
  17948. },
  17949. {
  17950. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831icn9qoag8ag5pp5sknndqaico0cqpo?imageView2/2/w/1080/format/webp"
  17951. },
  17952. {
  17953. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831icn9qoag8905pp5sknndqai57tojo0?imageView2/2/w/1080/format/webp"
  17954. },
  17955. {
  17956. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831icn9qoag89g5pp5sknndqaimkuc53g?imageView2/2/w/1080/format/webp"
  17957. },
  17958. {
  17959. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831icn9qoag8a05pp5sknndqai9kf7v8o?imageView2/2/w/1080/format/webp"
  17960. },
  17961. {
  17962. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831icn9qoag8cg5pp5sknndqaivg2f3lg?imageView2/2/w/1080/format/webp"
  17963. }
  17964. ],
  17965. "interact_info": {
  17966. "liked_count": 592,
  17967. "collected_count": 305,
  17968. "comment_count": 8,
  17969. "shared_count": 12
  17970. },
  17971. "extraction": null,
  17972. "is_knowledge": false,
  17973. "knowledge_reason": "帖子是个人梗图描改分享,展示了作者将现有梗图素材进行二次创作的结果,但未提供任何可复用的创作方法、技巧或教程,不具备知识指导性。",
  17974. "post_relevance_score": 0.45,
  17975. "relevance_level": "中度相关",
  17976. "relevance_reason": "帖子内容是梗图描改,与原始问题“如何制作反映人类双标行为的猫咪表情包梗图”有一定联系,因为它展示了梗图二创的成果,其中暗含了双标行为。但帖子缺乏具体的猫咪元素和创作方法指导,无法直接解决问题,参考价值有限。"
  17977. },
  17978. "post_68f485a60000000003010182_3_7": {
  17979. "type": "post",
  17980. "query": "[R] 神探妙探巴布洛梗图描改(1/)",
  17981. "level": 23,
  17982. "relevance_score": 0,
  17983. "strategy": "帖子",
  17984. "iteration": 2,
  17985. "is_selected": true,
  17986. "note_id": "68f485a60000000003010182",
  17987. "note_url": "https://www.xiaohongshu.com/explore/68f485a60000000003010182",
  17988. "body_text": "巴布洛:“我们非得这样坐吗?” 尼克:(摇尾巴) 依旧是@我想画稿 老师画的 #神犬妙探巴布洛 #同人产粮节 #巴布",
  17989. "images": [
  17990. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031nqfgvlo6m005pmc3nm2u2vnq2tut18?imageView2/2/w/1080/format/webp"
  17991. ],
  17992. "image_list": [
  17993. {
  17994. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031nqfgvlo6m005pmc3nm2u2vnq2tut18?imageView2/2/w/1080/format/webp"
  17995. }
  17996. ],
  17997. "interact_info": {
  17998. "liked_count": 68,
  17999. "collected_count": 9,
  18000. "comment_count": 10,
  18001. "shared_count": 1
  18002. },
  18003. "extraction": null,
  18004. "is_knowledge": false,
  18005. "knowledge_reason": "该帖子是纯粹的同人作品分享和个人创作展示,属于娱乐内容。它没有提供任何关于表情包制作方法、技巧、工具使用或创作流程的知识。",
  18006. "post_relevance_score": 0.4,
  18007. "relevance_level": "中度相关",
  18008. "relevance_reason": "帖子中描写的猫咪(巴布洛)体现了某种人类行为,具有梗图形式,与原始问题在概念上略有重叠。但它仅是一个成品而非制作教程,因此参考价值有限,不能解决原始问题。"
  18009. },
  18010. "post_682b5cc3000000000f031bf9_3_8": {
  18011. "type": "post",
  18012. "query": "[R] 描改手书教程",
  18013. "level": 23,
  18014. "relevance_score": 0,
  18015. "strategy": "帖子",
  18016. "iteration": 2,
  18017. "is_selected": true,
  18018. "note_id": "682b5cc3000000000f031bf9",
  18019. "note_url": "https://www.xiaohongshu.com/explore/682b5cc3000000000f031bf9",
  18020. "body_text": "戎星野是凑时间的#手书教程 ,创作不易,希望多点点赞#描改手书 #手书 #自信小孩 #鬼图打码 #meme",
  18021. "images": [
  18022. "https://ci.xiaohongshu.com/1040g2sg31if41ea20c605q0op661o665pevjdf0?imageView2/2/w/1080/format/webp"
  18023. ],
  18024. "image_list": [
  18025. {
  18026. "image_url": "https://ci.xiaohongshu.com/1040g2sg31if41ea20c605q0op661o665pevjdf0?imageView2/2/w/1080/format/webp"
  18027. }
  18028. ],
  18029. "interact_info": {
  18030. "liked_count": 22394,
  18031. "collected_count": 13645,
  18032. "comment_count": 250,
  18033. "shared_count": 691
  18034. },
  18035. "extraction": null,
  18036. "is_knowledge": true,
  18037. "knowledge_reason": "标题明确指出是“描改手书教程”,图片内容也显示“教你怎么描改手书”,表明此帖提供了可学习、可复用的创作教学或指导。",
  18038. "post_relevance_score": 0.4,
  18039. "relevance_level": "中度相关",
  18040. "relevance_reason": "帖子内容是关于“描改手书教程”,而原始问题是“如何制作反映人类双标行为的猫咪表情包梗图”。虽然都属于创作范畴,但描改手书的知识与梗图表情包的制作存在较大差异且不直接相关。描改手书可能提供一定的人物或动物形象创作技巧,但与猫咪表情包以及人类双标行为的主题关联度很低。"
  18041. },
  18042. "post_681c78d50000000020028a5c_3_9": {
  18043. "type": "post",
  18044. "query": "[R] go部分梗图描改",
  18045. "level": 23,
  18046. "relevance_score": 0,
  18047. "strategy": "帖子",
  18048. "iteration": 2,
  18049. "is_selected": true,
  18050. "note_id": "681c78d50000000020028a5c",
  18051. "note_url": "https://www.xiaohongshu.com/explore/681c78d50000000020028a5c",
  18052. "body_text": "#mygo #avemujica #丰川祥子 #千早爱音 #祐天寺若麦 #三角初华 #纯田真奈 #梗图",
  18053. "images": [
  18054. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031h7fu9mb3idg5od9e0s41ibh6cpuun0?imageView2/2/w/1080/format/webp",
  18055. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031h7fu9q53ua05od9e0s41ibh1qmm0io?imageView2/2/w/1080/format/webp",
  18056. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031h7fu9q53u705od9e0s41ibhfcsj9d8?imageView2/2/w/1080/format/webp",
  18057. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031h7fu9q53uc05od9e0s41ibhaajha1o?imageView2/2/w/1080/format/webp",
  18058. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031h7fu9q53ucg5od9e0s41ibhp1g1120?imageView2/2/w/1080/format/webp",
  18059. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031h7fu9q53ud05od9e0s41ibhi8qlef0?imageView2/2/w/1080/format/webp",
  18060. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031h7fu9q53udg5od9e0s41ibhf7oef0g?imageView2/2/w/1080/format/webp"
  18061. ],
  18062. "image_list": [
  18063. {
  18064. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031h7fu9mb3idg5od9e0s41ibh6cpuun0?imageView2/2/w/1080/format/webp"
  18065. },
  18066. {
  18067. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031h7fu9q53ua05od9e0s41ibh1qmm0io?imageView2/2/w/1080/format/webp"
  18068. },
  18069. {
  18070. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031h7fu9q53u705od9e0s41ibhfcsj9d8?imageView2/2/w/1080/format/webp"
  18071. },
  18072. {
  18073. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031h7fu9q53uc05od9e0s41ibhaajha1o?imageView2/2/w/1080/format/webp"
  18074. },
  18075. {
  18076. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031h7fu9q53ucg5od9e0s41ibhp1g1120?imageView2/2/w/1080/format/webp"
  18077. },
  18078. {
  18079. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031h7fu9q53ud05od9e0s41ibhi8qlef0?imageView2/2/w/1080/format/webp"
  18080. },
  18081. {
  18082. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031h7fu9q53udg5od9e0s41ibhf7oef0g?imageView2/2/w/1080/format/webp"
  18083. }
  18084. ],
  18085. "interact_info": {
  18086. "liked_count": 1118,
  18087. "collected_count": 166,
  18088. "comment_count": 32,
  18089. "shared_count": 121
  18090. },
  18091. "extraction": null,
  18092. "is_knowledge": false,
  18093. "knowledge_reason": "帖子是用户分享的个人创作梗图作品,主要内容是利用动漫角色描改现有梗图,无关于创作方法、技巧或流程的指导,不包含可复用的创作知识。",
  18094. "post_relevance_score": 0.05,
  18095. "relevance_level": "低度相关",
  18096. "relevance_reason": "该帖子与原始问题“如何制作反映人类双标行为的猫咪表情包梗图”几乎不相关。帖子内容是关于动漫角色梗图描改,既没有涉及猫咪主题,也没有体现双标行为的制作方法或相关讨论,图片内容也与原始问题无关。因此参考价值极低。"
  18097. },
  18098. "search_梗图meme原创_r2_4": {
  18099. "type": "search_word",
  18100. "query": "[SEARCH] 梗图meme原创",
  18101. "level": 22,
  18102. "relevance_score": 0.654,
  18103. "strategy": "搜索词",
  18104. "iteration": 2,
  18105. "is_selected": true
  18106. },
  18107. "post_68e06587000000000401467d_4_0": {
  18108. "type": "post",
  18109. "query": "[R] 看香蕉meme🍌😲",
  18110. "level": 23,
  18111. "relevance_score": 0,
  18112. "strategy": "帖子",
  18113. "iteration": 2,
  18114. "is_selected": true,
  18115. "note_id": "68e06587000000000401467d",
  18116. "note_url": "https://www.xiaohongshu.com/explore/68e06587000000000401467d",
  18117. "body_text": "#meme #国宴 #抽象 #猎奇 #梗图 #娱乐 #完美的精神状态",
  18118. "images": [
  18119. "https://ci.xiaohongshu.com/1040g2sg31n6qgj75mgkg5pulgj039d3sjlcar4g?imageView2/2/w/1080/format/webp"
  18120. ],
  18121. "image_list": [
  18122. {
  18123. "image_url": "https://ci.xiaohongshu.com/1040g2sg31n6qgj75mgkg5pulgj039d3sjlcar4g?imageView2/2/w/1080/format/webp"
  18124. }
  18125. ],
  18126. "interact_info": {
  18127. "liked_count": 9047,
  18128. "collected_count": 2243,
  18129. "comment_count": 506,
  18130. "shared_count": 2145
  18131. },
  18132. "extraction": null,
  18133. "is_knowledge": false,
  18134. "knowledge_reason": "该帖子为纯粹的娱乐分享和情感表达,内容没有提供任何关于创作表情包的方法、技巧、工具或流程等实用性知识。",
  18135. "post_relevance_score": 0.05,
  18136. "relevance_level": "低度相关",
  18137. "relevance_reason": "帖子内容是关于一个香蕉meme图,主题与原始问题“如何制作反映人类双标行为的猫咪表情包梗图”完全不符。它既没有涉及猫咪表情包,也未提及双标行为,更没有提供任何创作指导,因此相关性极低。"
  18138. },
  18139. "post_690a02720000000005002039_4_1": {
  18140. "type": "post",
  18141. "query": "[R] 野兽先生😧🤓😧",
  18142. "level": 23,
  18143. "relevance_score": 0,
  18144. "strategy": "帖子",
  18145. "iteration": 2,
  18146. "is_selected": true,
  18147. "note_id": "690a02720000000005002039",
  18148. "note_url": "https://www.xiaohongshu.com/explore/690a02720000000005002039",
  18149. "body_text": "#野兽先生 #meme #抽象 #猎奇 #梗图 #国宴 #原创",
  18150. "images": [
  18151. "https://ci.xiaohongshu.com/1040g2sg31off1cmdl8005pulgj039d3sqcl5l60?imageView2/2/w/1080/format/webp"
  18152. ],
  18153. "image_list": [
  18154. {
  18155. "image_url": "https://ci.xiaohongshu.com/1040g2sg31off1cmdl8005pulgj039d3sqcl5l60?imageView2/2/w/1080/format/webp"
  18156. }
  18157. ],
  18158. "interact_info": {
  18159. "liked_count": 7006,
  18160. "collected_count": 2883,
  18161. "comment_count": 243,
  18162. "shared_count": 455
  18163. },
  18164. "extraction": null,
  18165. "is_knowledge": false,
  18166. "knowledge_reason": "该帖子仅包含一张图片和几个标签,未提供任何关于如何制作表情包或梗图的可复用创作方法、技巧、工具使用或教程指导。它只是一个内容的展示,并非知识分享。",
  18167. "post_relevance_score": 0.05,
  18168. "relevance_level": "低度相关",
  18169. "relevance_reason": "该帖子与原始问题“如何制作反映人类双标行为的猫咪表情包梗图”几乎不相关。帖子内容是关于“野兽先生”的YouTube视频截图,与猫咪、双标行为或表情包制作方法都无关,也缺乏任何创作指导。"
  18170. },
  18171. "post_68b27225000000001b03e3a4_4_2": {
  18172. "type": "post",
  18173. "query": "[R] 老奶奶打方向盘meme",
  18174. "level": 23,
  18175. "relevance_score": 0,
  18176. "strategy": "帖子",
  18177. "iteration": 2,
  18178. "is_selected": true,
  18179. "note_id": "68b27225000000001b03e3a4",
  18180. "note_url": "https://www.xiaohongshu.com/explore/68b27225000000001b03e3a4",
  18181. "body_text": "#老奶奶打方向盘 #memes #原创 #搞笑 #娱乐 #梗图 #禁止模仿搬运",
  18182. "images": [
  18183. "https://ci.xiaohongshu.com/1040g2sg31lpuj0fvlu605pulgj039d3s3cchlt0?imageView2/2/w/1080/format/webp"
  18184. ],
  18185. "image_list": [
  18186. {
  18187. "image_url": "https://ci.xiaohongshu.com/1040g2sg31lpuj0fvlu605pulgj039d3s3cchlt0?imageView2/2/w/1080/format/webp"
  18188. }
  18189. ],
  18190. "interact_info": {
  18191. "liked_count": 24890,
  18192. "collected_count": 5919,
  18193. "comment_count": 914,
  18194. "shared_count": 2531
  18195. },
  18196. "extraction": null,
  18197. "is_knowledge": false,
  18198. "knowledge_reason": "帖子的标题、正文和图片直接展示的是一个具体的梗图,而非关于如何制作梗图的创作方法、技巧或教程指导。它是一个成品展示,不包含可复用的创作知识。",
  18199. "post_relevance_score": 0.1,
  18200. "relevance_level": "低度相关",
  18201. "relevance_reason": "该帖子为一个具体的时事梗(老奶奶打方向盘meme)展示,与如何制作反映人类双标行为的猫咪表情包梗图的原始问题关联性微弱。帖子展示的梗图与猫咪、双标行为均不相关,也未提供任何制作方法或工具信息,因此参考价值极低。"
  18202. },
  18203. "post_677e6b540000000001000781_4_3": {
  18204. "type": "post",
  18205. "query": "[R] 请选择你要使用的可爱",
  18206. "level": 23,
  18207. "relevance_score": 0,
  18208. "strategy": "帖子",
  18209. "iteration": 2,
  18210. "is_selected": true,
  18211. "note_id": "677e6b540000000001000781",
  18212. "note_url": "https://www.xiaohongshu.com/explore/677e6b540000000001000781",
  18213. "body_text": "#表情包 #猎奇 #抽象 #meme #原创 #插画 #养成系",
  18214. "images": [
  18215. "https://ci.xiaohongshu.com/1040g00831cd4r0ke0s005ngkmrm0899i9usp0ro?imageView2/2/w/1080/format/webp",
  18216. "https://ci.xiaohongshu.com/1040g00831cd4r0ke0s0g5ngkmrm0899il23816o?imageView2/2/w/1080/format/webp",
  18217. "https://ci.xiaohongshu.com/1040g00831cd4r0ke0s105ngkmrm0899i1jk4djg?imageView2/2/w/1080/format/webp",
  18218. "https://ci.xiaohongshu.com/1040g00831cd4r0ke0s1g5ngkmrm0899i3l4g08g?imageView2/2/w/1080/format/webp",
  18219. "https://ci.xiaohongshu.com/1040g00831cd4r0ke0s205ngkmrm0899iv3rutig?imageView2/2/w/1080/format/webp",
  18220. "https://ci.xiaohongshu.com/1040g00831cd4r0ke0s2g5ngkmrm0899idq09amo?imageView2/2/w/1080/format/webp",
  18221. "https://ci.xiaohongshu.com/1040g00831cd4r0ke0s305ngkmrm0899ivilp1m0?imageView2/2/w/1080/format/webp",
  18222. "https://ci.xiaohongshu.com/1040g00831cd4r0ke0s3g5ngkmrm0899i1bkdj3o?imageView2/2/w/1080/format/webp",
  18223. "https://ci.xiaohongshu.com/1040g00831cd4r0ke0s405ngkmrm0899i1gcubqo?imageView2/2/w/1080/format/webp",
  18224. "https://ci.xiaohongshu.com/1040g00831cd4r0ke0s4g5ngkmrm0899im2rrckg?imageView2/2/w/1080/format/webp"
  18225. ],
  18226. "image_list": [
  18227. {
  18228. "image_url": "https://ci.xiaohongshu.com/1040g00831cd4r0ke0s005ngkmrm0899i9usp0ro?imageView2/2/w/1080/format/webp"
  18229. },
  18230. {
  18231. "image_url": "https://ci.xiaohongshu.com/1040g00831cd4r0ke0s0g5ngkmrm0899il23816o?imageView2/2/w/1080/format/webp"
  18232. },
  18233. {
  18234. "image_url": "https://ci.xiaohongshu.com/1040g00831cd4r0ke0s105ngkmrm0899i1jk4djg?imageView2/2/w/1080/format/webp"
  18235. },
  18236. {
  18237. "image_url": "https://ci.xiaohongshu.com/1040g00831cd4r0ke0s1g5ngkmrm0899i3l4g08g?imageView2/2/w/1080/format/webp"
  18238. },
  18239. {
  18240. "image_url": "https://ci.xiaohongshu.com/1040g00831cd4r0ke0s205ngkmrm0899iv3rutig?imageView2/2/w/1080/format/webp"
  18241. },
  18242. {
  18243. "image_url": "https://ci.xiaohongshu.com/1040g00831cd4r0ke0s2g5ngkmrm0899idq09amo?imageView2/2/w/1080/format/webp"
  18244. },
  18245. {
  18246. "image_url": "https://ci.xiaohongshu.com/1040g00831cd4r0ke0s305ngkmrm0899ivilp1m0?imageView2/2/w/1080/format/webp"
  18247. },
  18248. {
  18249. "image_url": "https://ci.xiaohongshu.com/1040g00831cd4r0ke0s3g5ngkmrm0899i1bkdj3o?imageView2/2/w/1080/format/webp"
  18250. },
  18251. {
  18252. "image_url": "https://ci.xiaohongshu.com/1040g00831cd4r0ke0s405ngkmrm0899i1gcubqo?imageView2/2/w/1080/format/webp"
  18253. },
  18254. {
  18255. "image_url": "https://ci.xiaohongshu.com/1040g00831cd4r0ke0s4g5ngkmrm0899im2rrckg?imageView2/2/w/1080/format/webp"
  18256. }
  18257. ],
  18258. "interact_info": {
  18259. "liked_count": 1517,
  18260. "collected_count": 311,
  18261. "comment_count": 259,
  18262. "shared_count": 440
  18263. },
  18264. "extraction": null,
  18265. "is_knowledge": false,
  18266. "knowledge_reason": "该帖子为表情包展示,无任何关于表情包制作方法、技巧、工具使用或流程指导等可复用的创作知识内容。",
  18267. "post_relevance_score": 0.2,
  18268. "relevance_level": "低度相关",
  18269. "relevance_reason": "帖子内容是展示已完成的表情包,与原始问题“如何制作反映人类双标行为的猫咪表情包梗图”相关性很弱。它不提供任何制作教程或思路,只是提供了参考表情包样式,且表情包并非猫咪形象,不含双标行为的体现。"
  18270. },
  18271. "post_6640beca000000001e023a10_4_4": {
  18272. "type": "post",
  18273. "query": "[R] meme梗图:这是我设计的怪物",
  18274. "level": 23,
  18275. "relevance_score": 0,
  18276. "strategy": "帖子",
  18277. "iteration": 2,
  18278. "is_selected": true,
  18279. "note_id": "6640beca000000001e023a10",
  18280. "note_url": "https://www.xiaohongshu.com/explore/6640beca000000001e023a10",
  18281. "body_text": "💫 一个发无水印#meme 的账号 🕚 日更【译制】or【原创】meme梗图笔记#梗图 #沙雕搞笑 #幽默搞笑",
  18282. "images": [
  18283. "https://ci.xiaohongshu.com/1040g008312mth2u3ie6g5p8mibd0hkqg93s06r0?imageView2/2/w/1080/format/webp",
  18284. "https://ci.xiaohongshu.com/1040g008312mth2u3ie605p8mibd0hkqgbvmfkco?imageView2/2/w/1080/format/webp",
  18285. "https://ci.xiaohongshu.com/1040g008312mth2u3ie5g5p8mibd0hkqgljkoho0?imageView2/2/w/1080/format/webp",
  18286. "https://ci.xiaohongshu.com/1040g008312mth2u3ie505p8mibd0hkqgbc1mtso?imageView2/2/w/1080/format/webp",
  18287. "https://ci.xiaohongshu.com/1040g008312mth2u3ie4g5p8mibd0hkqg5ndqh8o?imageView2/2/w/1080/format/webp",
  18288. "https://ci.xiaohongshu.com/1040g008312mth2u3ie105p8mibd0hkqgjuigjm0?imageView2/2/w/1080/format/webp",
  18289. "https://ci.xiaohongshu.com/1040g008312mth2u3ie405p8mibd0hkqgvvei808?imageView2/2/w/1080/format/webp",
  18290. "https://ci.xiaohongshu.com/1040g008312mth2u3ie3g5p8mibd0hkqgmm4t19g?imageView2/2/w/1080/format/webp",
  18291. "https://ci.xiaohongshu.com/1040g008312mth2u3ie305p8mibd0hkqgp2ds1tg?imageView2/2/w/1080/format/webp",
  18292. "https://ci.xiaohongshu.com/1040g008312mth2u3ie1g5p8mibd0hkqggv5p3e8?imageView2/2/w/1080/format/webp",
  18293. "https://ci.xiaohongshu.com/1040g008312mth2u3ie205p8mibd0hkqg7svhqlg?imageView2/2/w/1080/format/webp",
  18294. "https://ci.xiaohongshu.com/1040g008312mth2u3ie0g5p8mibd0hkqgg14kero?imageView2/2/w/1080/format/webp",
  18295. "https://ci.xiaohongshu.com/1040g008312mth2u3ie005p8mibd0hkqgb53sna0?imageView2/2/w/1080/format/webp",
  18296. "https://ci.xiaohongshu.com/1040g008312mth2u3ie2g5p8mibd0hkqgsge9r70?imageView2/2/w/1080/format/webp",
  18297. "https://ci.xiaohongshu.com/1040g008312muov1a2cd05p8mibd0hkqghrm9o58?imageView2/2/w/1080/format/webp"
  18298. ],
  18299. "image_list": [
  18300. {
  18301. "image_url": "https://ci.xiaohongshu.com/1040g008312mth2u3ie6g5p8mibd0hkqg93s06r0?imageView2/2/w/1080/format/webp"
  18302. },
  18303. {
  18304. "image_url": "https://ci.xiaohongshu.com/1040g008312mth2u3ie605p8mibd0hkqgbvmfkco?imageView2/2/w/1080/format/webp"
  18305. },
  18306. {
  18307. "image_url": "https://ci.xiaohongshu.com/1040g008312mth2u3ie5g5p8mibd0hkqgljkoho0?imageView2/2/w/1080/format/webp"
  18308. },
  18309. {
  18310. "image_url": "https://ci.xiaohongshu.com/1040g008312mth2u3ie505p8mibd0hkqgbc1mtso?imageView2/2/w/1080/format/webp"
  18311. },
  18312. {
  18313. "image_url": "https://ci.xiaohongshu.com/1040g008312mth2u3ie4g5p8mibd0hkqg5ndqh8o?imageView2/2/w/1080/format/webp"
  18314. },
  18315. {
  18316. "image_url": "https://ci.xiaohongshu.com/1040g008312mth2u3ie105p8mibd0hkqgjuigjm0?imageView2/2/w/1080/format/webp"
  18317. },
  18318. {
  18319. "image_url": "https://ci.xiaohongshu.com/1040g008312mth2u3ie405p8mibd0hkqgvvei808?imageView2/2/w/1080/format/webp"
  18320. },
  18321. {
  18322. "image_url": "https://ci.xiaohongshu.com/1040g008312mth2u3ie3g5p8mibd0hkqgmm4t19g?imageView2/2/w/1080/format/webp"
  18323. },
  18324. {
  18325. "image_url": "https://ci.xiaohongshu.com/1040g008312mth2u3ie305p8mibd0hkqgp2ds1tg?imageView2/2/w/1080/format/webp"
  18326. },
  18327. {
  18328. "image_url": "https://ci.xiaohongshu.com/1040g008312mth2u3ie1g5p8mibd0hkqggv5p3e8?imageView2/2/w/1080/format/webp"
  18329. },
  18330. {
  18331. "image_url": "https://ci.xiaohongshu.com/1040g008312mth2u3ie205p8mibd0hkqg7svhqlg?imageView2/2/w/1080/format/webp"
  18332. },
  18333. {
  18334. "image_url": "https://ci.xiaohongshu.com/1040g008312mth2u3ie0g5p8mibd0hkqgg14kero?imageView2/2/w/1080/format/webp"
  18335. },
  18336. {
  18337. "image_url": "https://ci.xiaohongshu.com/1040g008312mth2u3ie005p8mibd0hkqgb53sna0?imageView2/2/w/1080/format/webp"
  18338. },
  18339. {
  18340. "image_url": "https://ci.xiaohongshu.com/1040g008312mth2u3ie2g5p8mibd0hkqgsge9r70?imageView2/2/w/1080/format/webp"
  18341. },
  18342. {
  18343. "image_url": "https://ci.xiaohongshu.com/1040g008312muov1a2cd05p8mibd0hkqghrm9o58?imageView2/2/w/1080/format/webp"
  18344. }
  18345. ],
  18346. "interact_info": {
  18347. "liked_count": 3917,
  18348. "collected_count": 434,
  18349. "comment_count": 66,
  18350. "shared_count": 73
  18351. },
  18352. "extraction": null,
  18353. "is_knowledge": false,
  18354. "knowledge_reason": "该帖子主要是一个meme图的分享账号,内容是已制作好的搞笑梗图合集,不包含可学习、可复用的创作方法、技巧或教程指导,不属于面向创作的知识内容。",
  18355. "post_relevance_score": 0.2,
  18356. "relevance_level": "低度相关",
  18357. "relevance_reason": "帖子中虽然部分梗图涉及动物(猫、猴、狗)和幽默内容,但与原始问题“如何制作反映人类双标行为的猫咪表情包梗图”的核心诉求“制作方法”和“双标行为”无关。它仅提供了现成的meme图,部分图片中出现猫,但没有聚焦于“双标行为”的表达,也未提供任何制作指导。"
  18358. },
  18359. "post_67a38120000000001801354d_4_5": {
  18360. "type": "post",
  18361. "query": "[R] 自己原创了几个meme梗图",
  18362. "level": 23,
  18363. "relevance_score": 0,
  18364. "strategy": "帖子",
  18365. "iteration": 2,
  18366. "is_selected": true,
  18367. "note_id": "67a38120000000001801354d",
  18368. "note_url": "https://www.xiaohongshu.com/explore/67a38120000000001801354d",
  18369. "body_text": "发现自制梗图真的是件很有趣的事 所有的meme图均为原创[害羞R]#梗图 #meme #有趣日常 #原创梗图",
  18370. "images": [
  18371. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831dhbm82pgk705nff308g8011pgdv1ro?imageView2/2/w/1080/format/webp",
  18372. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831dhbm82pgk7g5nff308g8011pd4or78?imageView2/2/w/1080/format/webp",
  18373. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831dhbm82pgk805nff308g8011eko036g?imageView2/2/w/1080/format/webp",
  18374. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831dhbm82pgk8g5nff308g80117lqdhv0?imageView2/2/w/1080/format/webp"
  18375. ],
  18376. "image_list": [
  18377. {
  18378. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831dhbm82pgk705nff308g8011pgdv1ro?imageView2/2/w/1080/format/webp"
  18379. },
  18380. {
  18381. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831dhbm82pgk7g5nff308g8011pd4or78?imageView2/2/w/1080/format/webp"
  18382. },
  18383. {
  18384. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831dhbm82pgk805nff308g8011eko036g?imageView2/2/w/1080/format/webp"
  18385. },
  18386. {
  18387. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831dhbm82pgk8g5nff308g80117lqdhv0?imageView2/2/w/1080/format/webp"
  18388. }
  18389. ],
  18390. "interact_info": {
  18391. "liked_count": 16,
  18392. "collected_count": 3,
  18393. "comment_count": 1,
  18394. "shared_count": 3
  18395. },
  18396. "extraction": null,
  18397. "is_knowledge": false,
  18398. "knowledge_reason": "帖子正文仅是个人分享制作梗图的乐趣,没有提供任何关于如何制作梗图的方法、技巧、工具使用或具体流程指导,不包含可复用的创作知识。",
  18399. "post_relevance_score": 0.05,
  18400. "relevance_level": "低度相关",
  18401. "relevance_reason": "帖子内容与原始问题“如何制作反映人类双标行为的猫咪表情包梗图”几乎不相关。帖子只是分享了原创梗图,但未涉及梗图的制作方法,更没有提及猫咪表情包或人类双标行为的主题,提供不了任何解决原始问题所需的知识或方法。"
  18402. },
  18403. "post_66f6d0df000000002c029dc7_4_6": {
  18404. "type": "post",
  18405. "query": "[R] 大A,我来了 | meme梗图①",
  18406. "level": 23,
  18407. "relevance_score": 0,
  18408. "strategy": "帖子",
  18409. "iteration": 2,
  18410. "is_selected": true,
  18411. "note_id": "66f6d0df000000002c029dc7",
  18412. "note_url": "https://www.xiaohongshu.com/explore/66f6d0df000000002c029dc7",
  18413. "body_text": "只用了3天, sz指数就从2700点站到了3000点上, 不是做梦,不是做梦,不是做梦 今天是2024年9月27日 让我",
  18414. "images": [
  18415. "https://ci.xiaohongshu.com/1040g0083188n7gqt3q0049si7hnl20uo9m0mmt8?imageView2/2/w/1080/format/webp",
  18416. "https://ci.xiaohongshu.com/1040g0083188n7gqt3q0g49si7hnl20uon6h7a5o?imageView2/2/w/1080/format/webp",
  18417. "https://ci.xiaohongshu.com/1040g0083188n7gqt3q1049si7hnl20uo7g6bsoo?imageView2/2/w/1080/format/webp",
  18418. "https://ci.xiaohongshu.com/1040g0083188n7gqt3q2049si7hnl20uotlb7n6g?imageView2/2/w/1080/format/webp",
  18419. "https://ci.xiaohongshu.com/1040g0083188n7gqt3q2g49si7hnl20uoe6oc860?imageView2/2/w/1080/format/webp",
  18420. "https://ci.xiaohongshu.com/1040g0083188n7gqt3q3049si7hnl20uocb57cl8?imageView2/2/w/1080/format/webp",
  18421. "https://ci.xiaohongshu.com/1040g0083188n7gqt3q3g49si7hnl20uopdtkvvg?imageView2/2/w/1080/format/webp",
  18422. "https://ci.xiaohongshu.com/1040g0083188n7gqt3q4049si7hnl20uo90437oo?imageView2/2/w/1080/format/webp",
  18423. "https://ci.xiaohongshu.com/1040g0083188n7gqt3q4g49si7hnl20uo4kok46o?imageView2/2/w/1080/format/webp",
  18424. "https://ci.xiaohongshu.com/1040g0083188ob4u5kc0049si7hnl20uoh0vr6do?imageView2/2/w/1080/format/webp",
  18425. "https://ci.xiaohongshu.com/1040g0083188n7gqt3q5049si7hnl20uo52587go?imageView2/2/w/1080/format/webp",
  18426. "https://ci.xiaohongshu.com/1040g0083188n7gqt3q5g49si7hnl20uo5bbt10o?imageView2/2/w/1080/format/webp",
  18427. "https://ci.xiaohongshu.com/1040g0083188n7gqt3q6049si7hnl20uousf8r7g?imageView2/2/w/1080/format/webp",
  18428. "https://ci.xiaohongshu.com/1040g0083188n7gqt3q6g49si7hnl20uob0a4ko8?imageView2/2/w/1080/format/webp",
  18429. "https://ci.xiaohongshu.com/1040g0083188n7gs4jq0049si7hnl20uo3u9qig0?imageView2/2/w/1080/format/webp",
  18430. "https://ci.xiaohongshu.com/1040g0083188n7gs53q0049si7hnl20uoesuvn9o?imageView2/2/w/1080/format/webp"
  18431. ],
  18432. "image_list": [
  18433. {
  18434. "image_url": "https://ci.xiaohongshu.com/1040g0083188n7gqt3q0049si7hnl20uo9m0mmt8?imageView2/2/w/1080/format/webp"
  18435. },
  18436. {
  18437. "image_url": "https://ci.xiaohongshu.com/1040g0083188n7gqt3q0g49si7hnl20uon6h7a5o?imageView2/2/w/1080/format/webp"
  18438. },
  18439. {
  18440. "image_url": "https://ci.xiaohongshu.com/1040g0083188n7gqt3q1049si7hnl20uo7g6bsoo?imageView2/2/w/1080/format/webp"
  18441. },
  18442. {
  18443. "image_url": "https://ci.xiaohongshu.com/1040g0083188n7gqt3q2049si7hnl20uotlb7n6g?imageView2/2/w/1080/format/webp"
  18444. },
  18445. {
  18446. "image_url": "https://ci.xiaohongshu.com/1040g0083188n7gqt3q2g49si7hnl20uoe6oc860?imageView2/2/w/1080/format/webp"
  18447. },
  18448. {
  18449. "image_url": "https://ci.xiaohongshu.com/1040g0083188n7gqt3q3049si7hnl20uocb57cl8?imageView2/2/w/1080/format/webp"
  18450. },
  18451. {
  18452. "image_url": "https://ci.xiaohongshu.com/1040g0083188n7gqt3q3g49si7hnl20uopdtkvvg?imageView2/2/w/1080/format/webp"
  18453. },
  18454. {
  18455. "image_url": "https://ci.xiaohongshu.com/1040g0083188n7gqt3q4049si7hnl20uo90437oo?imageView2/2/w/1080/format/webp"
  18456. },
  18457. {
  18458. "image_url": "https://ci.xiaohongshu.com/1040g0083188n7gqt3q4g49si7hnl20uo4kok46o?imageView2/2/w/1080/format/webp"
  18459. },
  18460. {
  18461. "image_url": "https://ci.xiaohongshu.com/1040g0083188ob4u5kc0049si7hnl20uoh0vr6do?imageView2/2/w/1080/format/webp"
  18462. },
  18463. {
  18464. "image_url": "https://ci.xiaohongshu.com/1040g0083188n7gqt3q5049si7hnl20uo52587go?imageView2/2/w/1080/format/webp"
  18465. },
  18466. {
  18467. "image_url": "https://ci.xiaohongshu.com/1040g0083188n7gqt3q5g49si7hnl20uo5bbt10o?imageView2/2/w/1080/format/webp"
  18468. },
  18469. {
  18470. "image_url": "https://ci.xiaohongshu.com/1040g0083188n7gqt3q6049si7hnl20uousf8r7g?imageView2/2/w/1080/format/webp"
  18471. },
  18472. {
  18473. "image_url": "https://ci.xiaohongshu.com/1040g0083188n7gqt3q6g49si7hnl20uob0a4ko8?imageView2/2/w/1080/format/webp"
  18474. },
  18475. {
  18476. "image_url": "https://ci.xiaohongshu.com/1040g0083188n7gs4jq0049si7hnl20uo3u9qig0?imageView2/2/w/1080/format/webp"
  18477. },
  18478. {
  18479. "image_url": "https://ci.xiaohongshu.com/1040g0083188n7gs53q0049si7hnl20uoesuvn9o?imageView2/2/w/1080/format/webp"
  18480. }
  18481. ],
  18482. "interact_info": {
  18483. "liked_count": 110,
  18484. "collected_count": 46,
  18485. "comment_count": 6,
  18486. "shared_count": 35
  18487. },
  18488. "extraction": null,
  18489. "is_knowledge": false,
  18490. "knowledge_reason": "该帖子为对近期股市行情的情感表达和个人感受的分享,配图多为网络梗图或表情包,不包含任何关于创作表情包梗图的方法、技巧或工具使用等可复用的知识内容。",
  18491. "post_relevance_score": 0.1,
  18492. "relevance_level": "低度相关",
  18493. "relevance_reason": "帖子内容本身是关于中国股市(大A)的meme梗图合集,与原始问题“如何制作反映人类双标行为的猫咪表情包梗图”相关性极低。帖子没有提供任何制作猫咪表情包或反映双标行为的知识,仅展示了与股市情绪相关的梗图。"
  18494. },
  18495. "post_686cfdf60000000023005633_4_7": {
  18496. "type": "post",
  18497. "query": "[R] 失离",
  18498. "level": 23,
  18499. "relevance_score": 0,
  18500. "strategy": "帖子",
  18501. "iteration": 2,
  18502. "is_selected": true,
  18503. "note_id": "686cfdf60000000023005633",
  18504. "note_url": "https://www.xiaohongshu.com/explore/686cfdf60000000023005633",
  18505. "body_text": "黑暗meme梗图 搬运 2. 答案 ? #梗图 #创人 #原创未知 #猎奇 #黑暗meme #迷因 #meme",
  18506. "images": [
  18507. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031jm47rebio505ps8cv41o5gdngn1kbg?imageView2/2/w/1080/format/webp",
  18508. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831jm44o24j27g5ps8cv41o5gdmeahhug?imageView2/2/w/1080/format/webp",
  18509. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831jm44o24j2a05ps8cv41o5gd0hsjra8?imageView2/2/w/1080/format/webp",
  18510. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831jm44o24j2805ps8cv41o5gdtnb8a30?imageView2/2/w/1080/format/webp",
  18511. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031jm47red34005ps8cv41o5gdl2l5ip0?imageView2/2/w/1080/format/webp",
  18512. "https://ci.xiaohongshu.com/1040g2sg31jnve2ro2ofg5ps8cv41o5gdfod1ih8?imageView2/2/w/1080/format/webp",
  18513. "https://ci.xiaohongshu.com/1040g2sg31jnve2ro2ogg5ps8cv41o5gdmir5198?imageView2/2/w/1080/format/webp",
  18514. "https://ci.xiaohongshu.com/1040g2sg31jnve2ro2ojg5ps8cv41o5gdq1s7si8?imageView2/2/w/1080/format/webp",
  18515. "https://ci.xiaohongshu.com/1040g2sg31jnve2ro2oi05ps8cv41o5gdg8mc3o0?imageView2/2/w/1080/format/webp"
  18516. ],
  18517. "image_list": [
  18518. {
  18519. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031jm47rebio505ps8cv41o5gdngn1kbg?imageView2/2/w/1080/format/webp"
  18520. },
  18521. {
  18522. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831jm44o24j27g5ps8cv41o5gdmeahhug?imageView2/2/w/1080/format/webp"
  18523. },
  18524. {
  18525. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831jm44o24j2a05ps8cv41o5gd0hsjra8?imageView2/2/w/1080/format/webp"
  18526. },
  18527. {
  18528. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831jm44o24j2805ps8cv41o5gdtnb8a30?imageView2/2/w/1080/format/webp"
  18529. },
  18530. {
  18531. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031jm47red34005ps8cv41o5gdl2l5ip0?imageView2/2/w/1080/format/webp"
  18532. },
  18533. {
  18534. "image_url": "https://ci.xiaohongshu.com/1040g2sg31jnve2ro2ofg5ps8cv41o5gdfod1ih8?imageView2/2/w/1080/format/webp"
  18535. },
  18536. {
  18537. "image_url": "https://ci.xiaohongshu.com/1040g2sg31jnve2ro2ogg5ps8cv41o5gdmir5198?imageView2/2/w/1080/format/webp"
  18538. },
  18539. {
  18540. "image_url": "https://ci.xiaohongshu.com/1040g2sg31jnve2ro2ojg5ps8cv41o5gdq1s7si8?imageView2/2/w/1080/format/webp"
  18541. },
  18542. {
  18543. "image_url": "https://ci.xiaohongshu.com/1040g2sg31jnve2ro2oi05ps8cv41o5gdg8mc3o0?imageView2/2/w/1080/format/webp"
  18544. }
  18545. ],
  18546. "interact_info": {
  18547. "liked_count": 1969,
  18548. "collected_count": 651,
  18549. "comment_count": 20,
  18550. "shared_count": 98
  18551. },
  18552. "extraction": null,
  18553. "is_knowledge": false,
  18554. "knowledge_reason": "该帖子主要由一系列猎奇、黑暗风格的梗图组成,内容为个人搬运和分享,属于纯粹的娱乐性内容,不包含任何关于表情包创作的方法、技巧、工具或教程指导等实用知识。",
  18555. "post_relevance_score": 0.05,
  18556. "relevance_level": "低度相关",
  18557. "relevance_reason": "该帖子与原始问题“如何制作反映人类双标行为的猫咪表情包梗图”几乎没有相关性。帖子内容是黑暗meme的搬运,主题与猫咪、双标行为以及表情包制作都无关,完全无法提供解决问题所需的知识或方法。"
  18558. },
  18559. "post_674db30c00000000070278f1_4_8": {
  18560. "type": "post",
  18561. "query": "[R] 自制meme Man梗图",
  18562. "level": 23,
  18563. "relevance_score": 0,
  18564. "strategy": "帖子",
  18565. "iteration": 2,
  18566. "is_selected": true,
  18567. "note_id": "674db30c00000000070278f1",
  18568. "note_url": "https://www.xiaohongshu.com/explore/674db30c00000000070278f1",
  18569. "body_text": "#meme #meme梗图 #memeMan #抽象",
  18570. "images": [
  18571. "https://ci.xiaohongshu.com/1040g00831atib2me6u5g5p3ds4ejour91g23j6o?imageView2/2/w/1080/format/webp",
  18572. "https://ci.xiaohongshu.com/1040g00831atib2me6u605p3ds4ejour93fc3suo?imageView2/2/w/1080/format/webp",
  18573. "https://ci.xiaohongshu.com/1040g00831atib2me6u505p3ds4ejour90ce8alg?imageView2/2/w/1080/format/webp",
  18574. "https://ci.xiaohongshu.com/1040g00831atib2me6u3g5p3ds4ejour9nfgmer0?imageView2/2/w/1080/format/webp",
  18575. "https://ci.xiaohongshu.com/1040g00831atib2me6u305p3ds4ejour9s0q6gv0?imageView2/2/w/1080/format/webp",
  18576. "https://ci.xiaohongshu.com/1040g00831atib2me6u405p3ds4ejour90dtggjg?imageView2/2/w/1080/format/webp",
  18577. "https://ci.xiaohongshu.com/1040g00831atib2me6u205p3ds4ejour9d1j0vng?imageView2/2/w/1080/format/webp",
  18578. "https://ci.xiaohongshu.com/1040g00831atib2me6u2g5p3ds4ejour90980cf8?imageView2/2/w/1080/format/webp",
  18579. "https://ci.xiaohongshu.com/1040g00831atib2me6u1g5p3ds4ejour96alt3co?imageView2/2/w/1080/format/webp",
  18580. "https://ci.xiaohongshu.com/1040g00831atib2me6u105p3ds4ejour9rr4vp3o?imageView2/2/w/1080/format/webp",
  18581. "https://ci.xiaohongshu.com/1040g00831atib2me6u4g5p3ds4ejour9teunjm8?imageView2/2/w/1080/format/webp",
  18582. "https://ci.xiaohongshu.com/1040g00831atib2me6u005p3ds4ejour9ujd5hc8?imageView2/2/w/1080/format/webp"
  18583. ],
  18584. "image_list": [
  18585. {
  18586. "image_url": "https://ci.xiaohongshu.com/1040g00831atib2me6u5g5p3ds4ejour91g23j6o?imageView2/2/w/1080/format/webp"
  18587. },
  18588. {
  18589. "image_url": "https://ci.xiaohongshu.com/1040g00831atib2me6u605p3ds4ejour93fc3suo?imageView2/2/w/1080/format/webp"
  18590. },
  18591. {
  18592. "image_url": "https://ci.xiaohongshu.com/1040g00831atib2me6u505p3ds4ejour90ce8alg?imageView2/2/w/1080/format/webp"
  18593. },
  18594. {
  18595. "image_url": "https://ci.xiaohongshu.com/1040g00831atib2me6u3g5p3ds4ejour9nfgmer0?imageView2/2/w/1080/format/webp"
  18596. },
  18597. {
  18598. "image_url": "https://ci.xiaohongshu.com/1040g00831atib2me6u305p3ds4ejour9s0q6gv0?imageView2/2/w/1080/format/webp"
  18599. },
  18600. {
  18601. "image_url": "https://ci.xiaohongshu.com/1040g00831atib2me6u405p3ds4ejour90dtggjg?imageView2/2/w/1080/format/webp"
  18602. },
  18603. {
  18604. "image_url": "https://ci.xiaohongshu.com/1040g00831atib2me6u205p3ds4ejour9d1j0vng?imageView2/2/w/1080/format/webp"
  18605. },
  18606. {
  18607. "image_url": "https://ci.xiaohongshu.com/1040g00831atib2me6u2g5p3ds4ejour90980cf8?imageView2/2/w/1080/format/webp"
  18608. },
  18609. {
  18610. "image_url": "https://ci.xiaohongshu.com/1040g00831atib2me6u1g5p3ds4ejour96alt3co?imageView2/2/w/1080/format/webp"
  18611. },
  18612. {
  18613. "image_url": "https://ci.xiaohongshu.com/1040g00831atib2me6u105p3ds4ejour9rr4vp3o?imageView2/2/w/1080/format/webp"
  18614. },
  18615. {
  18616. "image_url": "https://ci.xiaohongshu.com/1040g00831atib2me6u4g5p3ds4ejour9teunjm8?imageView2/2/w/1080/format/webp"
  18617. },
  18618. {
  18619. "image_url": "https://ci.xiaohongshu.com/1040g00831atib2me6u005p3ds4ejour9ujd5hc8?imageView2/2/w/1080/format/webp"
  18620. }
  18621. ],
  18622. "interact_info": {
  18623. "liked_count": 1002,
  18624. "collected_count": 420,
  18625. "comment_count": 24,
  18626. "shared_count": 99
  18627. },
  18628. "extraction": null,
  18629. "is_knowledge": false,
  18630. "knowledge_reason": "该帖子仅分享了Stonks Meme梗图成品,未提供任何关于如何制作Stonks Meme、如何将内容与双标行为结合或使用猫咪形象的创作方法、工具或教程。",
  18631. "post_relevance_score": 0.1,
  18632. "relevance_level": "低度相关",
  18633. "relevance_reason": "帖子内容是Stonks Meme系列梗图,与原始问题的'猫咪表情包梗图'不符,也没有涉及'反映人类双标行为'的主题。虽然都是梗图,但其风格、形象和表达内容与原始问题差异巨大,无法提供有效参考。"
  18634. },
  18635. "post_6913214e0000000003034f7f_4_9": {
  18636. "type": "post",
  18637. "query": "[R] 没有不可爱的义务!(`へ´*)ノ",
  18638. "level": 23,
  18639. "relevance_score": 0,
  18640. "strategy": "帖子",
  18641. "iteration": 2,
  18642. "is_selected": true,
  18643. "note_id": "6913214e0000000003034f7f",
  18644. "note_url": "https://www.xiaohongshu.com/explore/6913214e0000000003034f7f",
  18645. "body_text": "窝就这样!能拿窝咋地👉👈~~~ #原创ip #ip #梗图 #原创IP #表情包 #可爱 #meme",
  18646. "images": [
  18647. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031ooc06146g005pm5n55iu73ep2p0ul8?imageView2/2/w/1080/format/webp"
  18648. ],
  18649. "image_list": [
  18650. {
  18651. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031ooc06146g005pm5n55iu73ep2p0ul8?imageView2/2/w/1080/format/webp"
  18652. }
  18653. ],
  18654. "interact_info": {
  18655. "liked_count": 38,
  18656. "collected_count": 9,
  18657. "comment_count": 5,
  18658. "shared_count": 1
  18659. },
  18660. "extraction": null,
  18661. "is_knowledge": false,
  18662. "knowledge_reason": "该帖子为纯个人原创IP的展示和情感表达,不包含任何关于表情包制作的方法、技巧、工具使用或流程步骤等可复用的创作知识。",
  18663. "post_relevance_score": 0.05,
  18664. "relevance_level": "低度相关",
  18665. "relevance_reason": "原始问题是关于如何制作反映人类双标行为的猫咪表情包梗图。该帖子虽然涉及“梗图”和“表情包”的标签,但内容并未提及猫咪,也未涉及如何反映双标行为,更没有任何制作方法。因此,其与原始问题的相关性极低,无法提供任何有效参考。"
  18666. },
  18667. "search_猫咪表情包梗图搞笑_r2_5": {
  18668. "type": "search_word",
  18669. "query": "[SEARCH] 猫咪表情包梗图搞笑",
  18670. "level": 22,
  18671. "relevance_score": 0.6000000000000001,
  18672. "strategy": "搜索词",
  18673. "iteration": 2,
  18674. "is_selected": true
  18675. },
  18676. "post_67d2310a000000001d026c02_5_0": {
  18677. "type": "post",
  18678. "query": "[R] 抽象猫猫表情包",
  18679. "level": 23,
  18680. "relevance_score": 0,
  18681. "strategy": "帖子",
  18682. "iteration": 2,
  18683. "is_selected": true,
  18684. "note_id": "67d2310a000000001d026c02",
  18685. "note_url": "https://www.xiaohongshu.com/explore/67d2310a000000001d026c02",
  18686. "body_text": "#猫咪表情包 #如果猫猫会说话 #每日表情包分享",
  18687. "images": [
  18688. "https://ci.xiaohongshu.com/1040g2sg31euuncaglu6g5pbpmdto6fqbk8t7v90?imageView2/2/w/1080/format/webp",
  18689. "https://ci.xiaohongshu.com/1040g2sg31euuncgcmqdg5pbpmdto6fqbbg8l43o?imageView2/2/w/1080/format/webp",
  18690. "https://ci.xiaohongshu.com/1040g00831euuncgdmm605pbpmdto6fqb386sn00?imageView2/2/w/1080/format/webp",
  18691. "https://ci.xiaohongshu.com/1040g2sg31euuncgbludg5pbpmdto6fqbfpihpd8?imageView2/2/w/1080/format/webp",
  18692. "https://ci.xiaohongshu.com/1040g2sg31euuncf15ud05pbpmdto6fqbh03riso?imageView2/2/w/1080/format/webp",
  18693. "https://ci.xiaohongshu.com/1040g00831euuncf15s605pbpmdto6fqbnfufsio?imageView2/2/w/1080/format/webp",
  18694. "https://ci.xiaohongshu.com/1040g2sg31euunccblu6g5pbpmdto6fqbct48sdg?imageView2/2/w/1080/format/webp",
  18695. "https://ci.xiaohongshu.com/1040g00831euunc9r6s405pbpmdto6fqbte9172g?imageView2/2/w/1080/format/webp",
  18696. "https://ci.xiaohongshu.com/1040g2sg31euuncah5scg5pbpmdto6fqb0refke0?imageView2/2/w/1080/format/webp",
  18697. "https://ci.xiaohongshu.com/1040g00831euunc9rls6g5pbpmdto6fqbb5a40c8?imageView2/2/w/1080/format/webp",
  18698. "https://ci.xiaohongshu.com/1040g00831euunc9o6m6g5pbpmdto6fqb8pi31ao?imageView2/2/w/1080/format/webp",
  18699. "https://ci.xiaohongshu.com/1040g00831euuncahlu5g5pbpmdto6fqb6js6ih0?imageView2/2/w/1080/format/webp"
  18700. ],
  18701. "image_list": [
  18702. {
  18703. "image_url": "https://ci.xiaohongshu.com/1040g2sg31euuncaglu6g5pbpmdto6fqbk8t7v90?imageView2/2/w/1080/format/webp"
  18704. },
  18705. {
  18706. "image_url": "https://ci.xiaohongshu.com/1040g2sg31euuncgcmqdg5pbpmdto6fqbbg8l43o?imageView2/2/w/1080/format/webp"
  18707. },
  18708. {
  18709. "image_url": "https://ci.xiaohongshu.com/1040g00831euuncgdmm605pbpmdto6fqb386sn00?imageView2/2/w/1080/format/webp"
  18710. },
  18711. {
  18712. "image_url": "https://ci.xiaohongshu.com/1040g2sg31euuncgbludg5pbpmdto6fqbfpihpd8?imageView2/2/w/1080/format/webp"
  18713. },
  18714. {
  18715. "image_url": "https://ci.xiaohongshu.com/1040g2sg31euuncf15ud05pbpmdto6fqbh03riso?imageView2/2/w/1080/format/webp"
  18716. },
  18717. {
  18718. "image_url": "https://ci.xiaohongshu.com/1040g00831euuncf15s605pbpmdto6fqbnfufsio?imageView2/2/w/1080/format/webp"
  18719. },
  18720. {
  18721. "image_url": "https://ci.xiaohongshu.com/1040g2sg31euunccblu6g5pbpmdto6fqbct48sdg?imageView2/2/w/1080/format/webp"
  18722. },
  18723. {
  18724. "image_url": "https://ci.xiaohongshu.com/1040g00831euunc9r6s405pbpmdto6fqbte9172g?imageView2/2/w/1080/format/webp"
  18725. },
  18726. {
  18727. "image_url": "https://ci.xiaohongshu.com/1040g2sg31euuncah5scg5pbpmdto6fqb0refke0?imageView2/2/w/1080/format/webp"
  18728. },
  18729. {
  18730. "image_url": "https://ci.xiaohongshu.com/1040g00831euunc9rls6g5pbpmdto6fqbb5a40c8?imageView2/2/w/1080/format/webp"
  18731. },
  18732. {
  18733. "image_url": "https://ci.xiaohongshu.com/1040g00831euunc9o6m6g5pbpmdto6fqb8pi31ao?imageView2/2/w/1080/format/webp"
  18734. },
  18735. {
  18736. "image_url": "https://ci.xiaohongshu.com/1040g00831euuncahlu5g5pbpmdto6fqb6js6ih0?imageView2/2/w/1080/format/webp"
  18737. }
  18738. ],
  18739. "interact_info": {
  18740. "liked_count": 4281,
  18741. "collected_count": 924,
  18742. "comment_count": 143,
  18743. "shared_count": 239
  18744. },
  18745. "extraction": null,
  18746. "is_knowledge": false,
  18747. "knowledge_reason": "该帖子仅分享了一组猫咪表情包图片,标题和正文也只是简单的标签和分享性文字。不包含任何关于表情包制作方法、技巧、工具使用或教程指导等可复用的创作知识。",
  18748. "post_relevance_score": 0.4,
  18749. "relevance_level": "中度相关",
  18750. "relevance_reason": "该帖子提供了猫咪表情包成品,可以作为制作灵感参考,但未提供如何制作“反映人类双标行为”的表情包的具体方法或指导,因此相关性较低,仅提供部分视觉灵感。"
  18751. },
  18752. "post_68d8bddf000000000e031155_5_1": {
  18753. "type": "post",
  18754. "query": "[R] 就爱收藏阿猫阿狗抽象表情包",
  18755. "level": 23,
  18756. "relevance_score": 0,
  18757. "strategy": "帖子",
  18758. "iteration": 2,
  18759. "is_selected": true,
  18760. "note_id": "68d8bddf000000000e031155",
  18761. "note_url": "https://www.xiaohongshu.com/explore/68d8bddf000000000e031155",
  18762. "body_text": "#宠物表情包 #定格有梗瞬间 #捕捉动物的表情包 #有趣的表情包 #猫咪表情包 #干翻这个世界 #每日表情包",
  18763. "images": [
  18764. "https://ci.xiaohongshu.com/1040g00831mvb43s06m4g5nrvsp8g91o5dfl2sgg?imageView2/2/w/1080/format/webp",
  18765. "https://ci.xiaohongshu.com/1040g00831mvb43s06m305nrvsp8g91o5kks4c78?imageView2/2/w/1080/format/webp",
  18766. "https://ci.xiaohongshu.com/1040g00831mvb43s06m3g5nrvsp8g91o5f6ltin8?imageView2/2/w/1080/format/webp",
  18767. "https://ci.xiaohongshu.com/1040g00831mvb43s06m005nrvsp8g91o5sg0m5u8?imageView2/2/w/1080/format/webp",
  18768. "https://ci.xiaohongshu.com/1040g00831mvb43s06m6g5nrvsp8g91o5lbf2pc0?imageView2/2/w/1080/format/webp",
  18769. "https://ci.xiaohongshu.com/1040g00831mvbdgijmg005nrvsp8g91o5psiunh8?imageView2/2/w/1080/format/webp",
  18770. "https://ci.xiaohongshu.com/1040g00831mvb43s06m605nrvsp8g91o5ujanhlg?imageView2/2/w/1080/format/webp",
  18771. "https://ci.xiaohongshu.com/1040g00831mvb43s06m0g5nrvsp8g91o5qe7k490?imageView2/2/w/1080/format/webp",
  18772. "https://ci.xiaohongshu.com/1040g00831mvb43s06m105nrvsp8g91o51k0bpng?imageView2/2/w/1080/format/webp",
  18773. "https://ci.xiaohongshu.com/1040g00831mvb43s06m1g5nrvsp8g91o585spb60?imageView2/2/w/1080/format/webp",
  18774. "https://ci.xiaohongshu.com/1040g00831mvb43s06m405nrvsp8g91o5lf5j0i8?imageView2/2/w/1080/format/webp",
  18775. "https://ci.xiaohongshu.com/1040g00831mvbdgijmg105nrvsp8g91o5q7emmqo?imageView2/2/w/1080/format/webp",
  18776. "https://ci.xiaohongshu.com/1040g00831mvb43s06m205nrvsp8g91o5gvkvolg?imageView2/2/w/1080/format/webp",
  18777. "https://ci.xiaohongshu.com/1040g00831mvb43s06m2g5nrvsp8g91o5c82q7ao?imageView2/2/w/1080/format/webp",
  18778. "https://ci.xiaohongshu.com/1040g00831mvbdgijmg0g5nrvsp8g91o57qegvf8?imageView2/2/w/1080/format/webp",
  18779. "https://ci.xiaohongshu.com/1040g00831mvb43s06m5g5nrvsp8g91o57i9jt10?imageView2/2/w/1080/format/webp",
  18780. "https://ci.xiaohongshu.com/1040g00831mvb43s06m505nrvsp8g91o5o6tgc08?imageView2/2/w/1080/format/webp"
  18781. ],
  18782. "image_list": [
  18783. {
  18784. "image_url": "https://ci.xiaohongshu.com/1040g00831mvb43s06m4g5nrvsp8g91o5dfl2sgg?imageView2/2/w/1080/format/webp"
  18785. },
  18786. {
  18787. "image_url": "https://ci.xiaohongshu.com/1040g00831mvb43s06m305nrvsp8g91o5kks4c78?imageView2/2/w/1080/format/webp"
  18788. },
  18789. {
  18790. "image_url": "https://ci.xiaohongshu.com/1040g00831mvb43s06m3g5nrvsp8g91o5f6ltin8?imageView2/2/w/1080/format/webp"
  18791. },
  18792. {
  18793. "image_url": "https://ci.xiaohongshu.com/1040g00831mvb43s06m005nrvsp8g91o5sg0m5u8?imageView2/2/w/1080/format/webp"
  18794. },
  18795. {
  18796. "image_url": "https://ci.xiaohongshu.com/1040g00831mvb43s06m6g5nrvsp8g91o5lbf2pc0?imageView2/2/w/1080/format/webp"
  18797. },
  18798. {
  18799. "image_url": "https://ci.xiaohongshu.com/1040g00831mvbdgijmg005nrvsp8g91o5psiunh8?imageView2/2/w/1080/format/webp"
  18800. },
  18801. {
  18802. "image_url": "https://ci.xiaohongshu.com/1040g00831mvb43s06m605nrvsp8g91o5ujanhlg?imageView2/2/w/1080/format/webp"
  18803. },
  18804. {
  18805. "image_url": "https://ci.xiaohongshu.com/1040g00831mvb43s06m0g5nrvsp8g91o5qe7k490?imageView2/2/w/1080/format/webp"
  18806. },
  18807. {
  18808. "image_url": "https://ci.xiaohongshu.com/1040g00831mvb43s06m105nrvsp8g91o51k0bpng?imageView2/2/w/1080/format/webp"
  18809. },
  18810. {
  18811. "image_url": "https://ci.xiaohongshu.com/1040g00831mvb43s06m1g5nrvsp8g91o585spb60?imageView2/2/w/1080/format/webp"
  18812. },
  18813. {
  18814. "image_url": "https://ci.xiaohongshu.com/1040g00831mvb43s06m405nrvsp8g91o5lf5j0i8?imageView2/2/w/1080/format/webp"
  18815. },
  18816. {
  18817. "image_url": "https://ci.xiaohongshu.com/1040g00831mvbdgijmg105nrvsp8g91o5q7emmqo?imageView2/2/w/1080/format/webp"
  18818. },
  18819. {
  18820. "image_url": "https://ci.xiaohongshu.com/1040g00831mvb43s06m205nrvsp8g91o5gvkvolg?imageView2/2/w/1080/format/webp"
  18821. },
  18822. {
  18823. "image_url": "https://ci.xiaohongshu.com/1040g00831mvb43s06m2g5nrvsp8g91o5c82q7ao?imageView2/2/w/1080/format/webp"
  18824. },
  18825. {
  18826. "image_url": "https://ci.xiaohongshu.com/1040g00831mvbdgijmg0g5nrvsp8g91o57qegvf8?imageView2/2/w/1080/format/webp"
  18827. },
  18828. {
  18829. "image_url": "https://ci.xiaohongshu.com/1040g00831mvb43s06m5g5nrvsp8g91o57i9jt10?imageView2/2/w/1080/format/webp"
  18830. },
  18831. {
  18832. "image_url": "https://ci.xiaohongshu.com/1040g00831mvb43s06m505nrvsp8g91o5o6tgc08?imageView2/2/w/1080/format/webp"
  18833. }
  18834. ],
  18835. "interact_info": {
  18836. "liked_count": 2461,
  18837. "collected_count": 673,
  18838. "comment_count": 64,
  18839. "shared_count": 566
  18840. },
  18841. "extraction": null,
  18842. "is_knowledge": false,
  18843. "knowledge_reason": "该帖子为纯粹的表情包分享,内容旨在娱乐和情感表达,不包含任何关于表情包制作的方法、技巧、工具使用或教程指导等可复用的创作知识。",
  18844. "post_relevance_score": 0.4,
  18845. "relevance_level": "中度相关",
  18846. "relevance_reason": "帖子内容展示了一些猫咪表情包,其中部分图片能隐约体现出双标或拟人化的幽默情境,例如两只猫排泄的图片可能略微暗示双标。但帖子未提供任何关于如何制作或创作这类表情包的知识,其参考价值非常有限,未能直接解决原始问题。"
  18847. },
  18848. "post_6710c5a7000000001402dc9f_5_2": {
  18849. "type": "post",
  18850. "query": "[R] 太好了是小猫表情包,我们有救了!",
  18851. "level": 23,
  18852. "relevance_score": 0,
  18853. "strategy": "帖子",
  18854. "iteration": 2,
  18855. "is_selected": true,
  18856. "note_id": "6710c5a7000000001402dc9f",
  18857. "note_url": "https://www.xiaohongshu.com/explore/6710c5a7000000001402dc9f",
  18858. "body_text": "丫头们久等了,哥的第十一弹表情包来了[kissR][kissR][kissR] #我的工具宠 #解闷宠 #田园猫",
  18859. "images": [
  18860. "https://ci.xiaohongshu.com/1040g2sg31922bs335a704a541utvp5rcl5mfueo?imageView2/2/w/1080/format/webp",
  18861. "https://ci.xiaohongshu.com/1040g2sg31922bs335a7g4a541utvp5rcovup6io?imageView2/2/w/1080/format/webp",
  18862. "https://ci.xiaohongshu.com/1040g2sg31922bs335a804a541utvp5rcgc5as3g?imageView2/2/w/1080/format/webp",
  18863. "https://ci.xiaohongshu.com/1040g2sg31922bs335a8g4a541utvp5rcsithfdo?imageView2/2/w/1080/format/webp",
  18864. "https://ci.xiaohongshu.com/1040g2sg31922bs335a904a541utvp5rca4nsvh0?imageView2/2/w/1080/format/webp",
  18865. "https://ci.xiaohongshu.com/1040g2sg31922bs335a9g4a541utvp5rc28ll0eo?imageView2/2/w/1080/format/webp",
  18866. "https://ci.xiaohongshu.com/1040g2sg31922bs335aa04a541utvp5rca58js3g?imageView2/2/w/1080/format/webp",
  18867. "https://ci.xiaohongshu.com/1040g2sg31922bs335aag4a541utvp5rcdrhk04g?imageView2/2/w/1080/format/webp",
  18868. "https://ci.xiaohongshu.com/1040g2sg31922bs335ab04a541utvp5rcddn19ag?imageView2/2/w/1080/format/webp",
  18869. "https://ci.xiaohongshu.com/1040g2sg31922bs335abg4a541utvp5rc7d6r16o?imageView2/2/w/1080/format/webp",
  18870. "https://ci.xiaohongshu.com/1040g2sg31922bs335ac04a541utvp5rcq0msb40?imageView2/2/w/1080/format/webp",
  18871. "https://ci.xiaohongshu.com/1040g2sg31922bs335acg4a541utvp5rc2s5j7v8?imageView2/2/w/1080/format/webp",
  18872. "https://ci.xiaohongshu.com/1040g2sg31922bs335ad04a541utvp5rc03dtr28?imageView2/2/w/1080/format/webp",
  18873. "https://ci.xiaohongshu.com/1040g2sg31922bs335adg4a541utvp5rc8fk781o?imageView2/2/w/1080/format/webp",
  18874. "https://ci.xiaohongshu.com/1040g2sg31922bs4058704a541utvp5rc9q3odro?imageView2/2/w/1080/format/webp",
  18875. "https://ci.xiaohongshu.com/1040g2sg31922bs40587g4a541utvp5rc6gk218g?imageView2/2/w/1080/format/webp"
  18876. ],
  18877. "image_list": [
  18878. {
  18879. "image_url": "https://ci.xiaohongshu.com/1040g2sg31922bs335a704a541utvp5rcl5mfueo?imageView2/2/w/1080/format/webp"
  18880. },
  18881. {
  18882. "image_url": "https://ci.xiaohongshu.com/1040g2sg31922bs335a7g4a541utvp5rcovup6io?imageView2/2/w/1080/format/webp"
  18883. },
  18884. {
  18885. "image_url": "https://ci.xiaohongshu.com/1040g2sg31922bs335a804a541utvp5rcgc5as3g?imageView2/2/w/1080/format/webp"
  18886. },
  18887. {
  18888. "image_url": "https://ci.xiaohongshu.com/1040g2sg31922bs335a8g4a541utvp5rcsithfdo?imageView2/2/w/1080/format/webp"
  18889. },
  18890. {
  18891. "image_url": "https://ci.xiaohongshu.com/1040g2sg31922bs335a904a541utvp5rca4nsvh0?imageView2/2/w/1080/format/webp"
  18892. },
  18893. {
  18894. "image_url": "https://ci.xiaohongshu.com/1040g2sg31922bs335a9g4a541utvp5rc28ll0eo?imageView2/2/w/1080/format/webp"
  18895. },
  18896. {
  18897. "image_url": "https://ci.xiaohongshu.com/1040g2sg31922bs335aa04a541utvp5rca58js3g?imageView2/2/w/1080/format/webp"
  18898. },
  18899. {
  18900. "image_url": "https://ci.xiaohongshu.com/1040g2sg31922bs335aag4a541utvp5rcdrhk04g?imageView2/2/w/1080/format/webp"
  18901. },
  18902. {
  18903. "image_url": "https://ci.xiaohongshu.com/1040g2sg31922bs335ab04a541utvp5rcddn19ag?imageView2/2/w/1080/format/webp"
  18904. },
  18905. {
  18906. "image_url": "https://ci.xiaohongshu.com/1040g2sg31922bs335abg4a541utvp5rc7d6r16o?imageView2/2/w/1080/format/webp"
  18907. },
  18908. {
  18909. "image_url": "https://ci.xiaohongshu.com/1040g2sg31922bs335ac04a541utvp5rcq0msb40?imageView2/2/w/1080/format/webp"
  18910. },
  18911. {
  18912. "image_url": "https://ci.xiaohongshu.com/1040g2sg31922bs335acg4a541utvp5rc2s5j7v8?imageView2/2/w/1080/format/webp"
  18913. },
  18914. {
  18915. "image_url": "https://ci.xiaohongshu.com/1040g2sg31922bs335ad04a541utvp5rc03dtr28?imageView2/2/w/1080/format/webp"
  18916. },
  18917. {
  18918. "image_url": "https://ci.xiaohongshu.com/1040g2sg31922bs335adg4a541utvp5rc8fk781o?imageView2/2/w/1080/format/webp"
  18919. },
  18920. {
  18921. "image_url": "https://ci.xiaohongshu.com/1040g2sg31922bs4058704a541utvp5rc9q3odro?imageView2/2/w/1080/format/webp"
  18922. },
  18923. {
  18924. "image_url": "https://ci.xiaohongshu.com/1040g2sg31922bs40587g4a541utvp5rc6gk218g?imageView2/2/w/1080/format/webp"
  18925. }
  18926. ],
  18927. "interact_info": {
  18928. "liked_count": 9406,
  18929. "collected_count": 2019,
  18930. "comment_count": 335,
  18931. "shared_count": 1019
  18932. },
  18933. "extraction": null,
  18934. "is_knowledge": false,
  18935. "knowledge_reason": "该帖子仅分享了猫咪表情包成品,未包含任何关于如何制作表情包的方法、技巧、工具使用、流程步骤或教程指导等创作知识。",
  18936. "post_relevance_score": 0.2,
  18937. "relevance_level": "低度相关",
  18938. "relevance_reason": "帖子内容是成品表情包的分享,虽然与“猫咪表情包梗图”这一主题相关,但没有提供任何关于“如何制作”或“反映人类双标行为”的创作知识或方法,因此对解决原始问题帮助不大,相关性较低。"
  18939. },
  18940. "post_6731806d000000001b02cf7f_5_3": {
  18941. "type": "post",
  18942. "query": "[R] 小猫干架表情包合辑2",
  18943. "level": 23,
  18944. "relevance_score": 0,
  18945. "strategy": "帖子",
  18946. "iteration": 2,
  18947. "is_selected": true,
  18948. "note_id": "6731806d000000001b02cf7f",
  18949. "note_url": "https://www.xiaohongshu.com/explore/6731806d000000001b02cf7f",
  18950. "body_text": "#猫咪性格 #可可爱爱表情包 #猫咪表情包 #表情包 #猫咪日常 #宠物表情包 #虞书欣凌妙妙 #猫咪",
  18951. "images": [
  18952. "https://ci.xiaohongshu.com/1040g00831a1uuq9b72605niem91g840b1fm2hvg?imageView2/2/w/1080/format/webp",
  18953. "https://ci.xiaohongshu.com/1040g00831a1uuq9b721g5niem91g840birajg18?imageView2/2/w/1080/format/webp",
  18954. "https://ci.xiaohongshu.com/1040g00831a1uuq9b72405niem91g840bggddgqo?imageView2/2/w/1080/format/webp",
  18955. "https://ci.xiaohongshu.com/1040g00831a1uuq9b72105niem91g840b6o0okeo?imageView2/2/w/1080/format/webp",
  18956. "https://ci.xiaohongshu.com/1040g2sg31a215e2572dg5niem91g840bmmms1ng?imageView2/2/w/1080/format/webp",
  18957. "https://ci.xiaohongshu.com/1040g2sg31a215e2572d05niem91g840bh7mcg98?imageView2/2/w/1080/format/webp",
  18958. "https://ci.xiaohongshu.com/1040g2sg31a215e2572bg5niem91g840bj137cv8?imageView2/2/w/1080/format/webp",
  18959. "https://ci.xiaohongshu.com/1040g2sg31a215e2572b05niem91g840b6lehi6g?imageView2/2/w/1080/format/webp",
  18960. "https://ci.xiaohongshu.com/1040g2sg31a215e25729g5niem91g840bsfg5fvg?imageView2/2/w/1080/format/webp",
  18961. "https://ci.xiaohongshu.com/1040g2sg31a215e25728g5niem91g840bin01a0o?imageView2/2/w/1080/format/webp",
  18962. "https://ci.xiaohongshu.com/1040g2sg31a215e2572cg5niem91g840bqkmp4qg?imageView2/2/w/1080/format/webp",
  18963. "https://ci.xiaohongshu.com/1040g2sg31a215e2572a05niem91g840bp8u9cr0?imageView2/2/w/1080/format/webp",
  18964. "https://ci.xiaohongshu.com/1040g2sg31a215e2572805niem91g840bbmm1hko?imageView2/2/w/1080/format/webp",
  18965. "https://ci.xiaohongshu.com/1040g2sg31a215e2572705niem91g840b8ku2e38?imageView2/2/w/1080/format/webp",
  18966. "https://ci.xiaohongshu.com/1040g2sg31a215e2572905niem91g840b1u5cps8?imageView2/2/w/1080/format/webp"
  18967. ],
  18968. "image_list": [
  18969. {
  18970. "image_url": "https://ci.xiaohongshu.com/1040g00831a1uuq9b72605niem91g840b1fm2hvg?imageView2/2/w/1080/format/webp"
  18971. },
  18972. {
  18973. "image_url": "https://ci.xiaohongshu.com/1040g00831a1uuq9b721g5niem91g840birajg18?imageView2/2/w/1080/format/webp"
  18974. },
  18975. {
  18976. "image_url": "https://ci.xiaohongshu.com/1040g00831a1uuq9b72405niem91g840bggddgqo?imageView2/2/w/1080/format/webp"
  18977. },
  18978. {
  18979. "image_url": "https://ci.xiaohongshu.com/1040g00831a1uuq9b72105niem91g840b6o0okeo?imageView2/2/w/1080/format/webp"
  18980. },
  18981. {
  18982. "image_url": "https://ci.xiaohongshu.com/1040g2sg31a215e2572dg5niem91g840bmmms1ng?imageView2/2/w/1080/format/webp"
  18983. },
  18984. {
  18985. "image_url": "https://ci.xiaohongshu.com/1040g2sg31a215e2572d05niem91g840bh7mcg98?imageView2/2/w/1080/format/webp"
  18986. },
  18987. {
  18988. "image_url": "https://ci.xiaohongshu.com/1040g2sg31a215e2572bg5niem91g840bj137cv8?imageView2/2/w/1080/format/webp"
  18989. },
  18990. {
  18991. "image_url": "https://ci.xiaohongshu.com/1040g2sg31a215e2572b05niem91g840b6lehi6g?imageView2/2/w/1080/format/webp"
  18992. },
  18993. {
  18994. "image_url": "https://ci.xiaohongshu.com/1040g2sg31a215e25729g5niem91g840bsfg5fvg?imageView2/2/w/1080/format/webp"
  18995. },
  18996. {
  18997. "image_url": "https://ci.xiaohongshu.com/1040g2sg31a215e25728g5niem91g840bin01a0o?imageView2/2/w/1080/format/webp"
  18998. },
  18999. {
  19000. "image_url": "https://ci.xiaohongshu.com/1040g2sg31a215e2572cg5niem91g840bqkmp4qg?imageView2/2/w/1080/format/webp"
  19001. },
  19002. {
  19003. "image_url": "https://ci.xiaohongshu.com/1040g2sg31a215e2572a05niem91g840bp8u9cr0?imageView2/2/w/1080/format/webp"
  19004. },
  19005. {
  19006. "image_url": "https://ci.xiaohongshu.com/1040g2sg31a215e2572805niem91g840bbmm1hko?imageView2/2/w/1080/format/webp"
  19007. },
  19008. {
  19009. "image_url": "https://ci.xiaohongshu.com/1040g2sg31a215e2572705niem91g840b8ku2e38?imageView2/2/w/1080/format/webp"
  19010. },
  19011. {
  19012. "image_url": "https://ci.xiaohongshu.com/1040g2sg31a215e2572905niem91g840b1u5cps8?imageView2/2/w/1080/format/webp"
  19013. }
  19014. ],
  19015. "interact_info": {
  19016. "liked_count": 2307,
  19017. "collected_count": 936,
  19018. "comment_count": 181,
  19019. "shared_count": 990
  19020. },
  19021. "extraction": null,
  19022. "is_knowledge": false,
  19023. "knowledge_reason": "帖子仅提供了猫咪表情包合集,属于纯内容分享和情感表达,不包含任何可复用的创作方法、技巧或流程指导。",
  19024. "post_relevance_score": 0.4,
  19025. "relevance_level": "中度相关",
  19026. "relevance_reason": "帖子提供了大量猫咪表情包,其中部分图片通过文案表达了攻击性、威胁等“双标”情绪。虽然没有直接指导创作,但这些已制作好的表情包可以作为创作素材或启发,为用户在构建“反映人类双标行为”的猫咪表情包时提供灵感,具有一定的间接参考价值。"
  19027. },
  19028. "post_66505e0c000000001401add3_5_4": {
  19029. "type": "post",
  19030. "query": "[R] 奥德彪经典语录 精神状态遥遥领先",
  19031. "level": 23,
  19032. "relevance_score": 0,
  19033. "strategy": "帖子",
  19034. "iteration": 2,
  19035. "is_selected": true,
  19036. "note_id": "66505e0c000000001401add3",
  19037. "note_url": "https://www.xiaohongshu.com/explore/66505e0c000000001401add3",
  19038. "body_text": "#奥德彪 #人间清醒 #发疯文学 #精神状态 #情感语录 #三观 #梗图 #笑话 #沙雕搞笑 #表情包 #精",
  19039. "images": [
  19040. "https://ci.xiaohongshu.com/1040g2sg31365n37mnieg4a77u6v5i4tqkb632s8?imageView2/2/w/1080/format/webp",
  19041. "https://ci.xiaohongshu.com/1040g2sg31365n37mnie04a77u6v5i4tq7dkmk78?imageView2/2/w/1080/format/webp",
  19042. "https://ci.xiaohongshu.com/1040g2sg31365n37mnif04a77u6v5i4tqn6o95mg?imageView2/2/w/1080/format/webp",
  19043. "https://ci.xiaohongshu.com/1040g2sg31365n37mnifg4a77u6v5i4tqc3oq9s8?imageView2/2/w/1080/format/webp"
  19044. ],
  19045. "image_list": [
  19046. {
  19047. "image_url": "https://ci.xiaohongshu.com/1040g2sg31365n37mnieg4a77u6v5i4tqkb632s8?imageView2/2/w/1080/format/webp"
  19048. },
  19049. {
  19050. "image_url": "https://ci.xiaohongshu.com/1040g2sg31365n37mnie04a77u6v5i4tq7dkmk78?imageView2/2/w/1080/format/webp"
  19051. },
  19052. {
  19053. "image_url": "https://ci.xiaohongshu.com/1040g2sg31365n37mnif04a77u6v5i4tqn6o95mg?imageView2/2/w/1080/format/webp"
  19054. },
  19055. {
  19056. "image_url": "https://ci.xiaohongshu.com/1040g2sg31365n37mnifg4a77u6v5i4tqc3oq9s8?imageView2/2/w/1080/format/webp"
  19057. }
  19058. ],
  19059. "interact_info": {
  19060. "liked_count": 33354,
  19061. "collected_count": 9411,
  19062. "comment_count": 1744,
  19063. "shared_count": 14441
  19064. },
  19065. "extraction": null,
  19066. "is_knowledge": false,
  19067. "knowledge_reason": "帖子是纯粹的搞笑梗图分享,不包含任何关于如何制作表情包梗图的方法、技巧或教程指导,不具备可复用的创作知识。",
  19068. "post_relevance_score": 0.5,
  19069. "relevance_level": "中度相关",
  19070. "relevance_reason": "帖子内容是猫咪表情包梗图,与原始问题的“猫咪表情包梗图”这一载体是匹配的。且图片中的确有所谓的“双标”或“人性的弱点”的表达,但是并未直接解决如何利用猫咪表现人类双标行为这一创作难点,整体内容是比较通用的段子,并非为了解决具体问题而设计,因此相关性为中等。"
  19071. },
  19072. "post_6629f62a00000000030233d9_5_5": {
  19073. "type": "post",
  19074. "query": "[R] 到底是谁还在用这么抽象的表情包啊",
  19075. "level": 23,
  19076. "relevance_score": 0,
  19077. "strategy": "帖子",
  19078. "iteration": 2,
  19079. "is_selected": true,
  19080. "note_id": "6629f62a00000000030233d9",
  19081. "note_url": "https://www.xiaohongshu.com/explore/6629f62a00000000030233d9",
  19082. "body_text": "#表情包分享 #记录猫咪日常 #萌宠出道计划 #每日表情包分享 #搞笑日常",
  19083. "images": [
  19084. "https://ci.xiaohongshu.com/1040g2sg3120lhc7g3a705n414vv446ja1upig88?imageView2/2/w/1080/format/webp",
  19085. "https://ci.xiaohongshu.com/1040g2sg3120lhc7g3a7g5n414vv446jan9nfpn0?imageView2/2/w/1080/format/webp",
  19086. "https://ci.xiaohongshu.com/1040g2sg3120lhc7g3a805n414vv446jaoj6r3g0?imageView2/2/w/1080/format/webp",
  19087. "https://ci.xiaohongshu.com/1040g2sg3120lhc7g3a8g5n414vv446ja7r8ase8?imageView2/2/w/1080/format/webp",
  19088. "https://ci.xiaohongshu.com/1040g2sg3120lhc7g3a905n414vv446jac7pj1bo?imageView2/2/w/1080/format/webp",
  19089. "https://ci.xiaohongshu.com/1040g2sg3120lhc7g3a9g5n414vv446ja2nh59mg?imageView2/2/w/1080/format/webp",
  19090. "https://ci.xiaohongshu.com/1040g2sg3120lhc7g3aa05n414vv446ja7fta530?imageView2/2/w/1080/format/webp",
  19091. "https://ci.xiaohongshu.com/1040g2sg3120lhc7g3aag5n414vv446jan52id0o?imageView2/2/w/1080/format/webp",
  19092. "https://ci.xiaohongshu.com/1040g2sg3120lhc7g3ab05n414vv446javca1c4o?imageView2/2/w/1080/format/webp",
  19093. "https://ci.xiaohongshu.com/1040g2sg3120lhc7g3abg5n414vv446ja11e0bg8?imageView2/2/w/1080/format/webp",
  19094. "https://ci.xiaohongshu.com/1040g2sg3120lhc7g3ac05n414vv446jaueuipd8?imageView2/2/w/1080/format/webp",
  19095. "https://ci.xiaohongshu.com/1040g2sg3120lhc7g3acg5n414vv446jalf0pgm8?imageView2/2/w/1080/format/webp",
  19096. "https://ci.xiaohongshu.com/1040g2sg3120lhc7g3ad05n414vv446jal454m4g?imageView2/2/w/1080/format/webp",
  19097. "https://ci.xiaohongshu.com/1040g2sg3120lhc7g3adg5n414vv446jad7g7vm8?imageView2/2/w/1080/format/webp",
  19098. "https://ci.xiaohongshu.com/1040g0083120lhc953c005n414vv446japjgnktg?imageView2/2/w/1080/format/webp",
  19099. "https://ci.xiaohongshu.com/1040g0083120lhc953c0g5n414vv446jatikjlj0?imageView2/2/w/1080/format/webp"
  19100. ],
  19101. "image_list": [
  19102. {
  19103. "image_url": "https://ci.xiaohongshu.com/1040g2sg3120lhc7g3a705n414vv446ja1upig88?imageView2/2/w/1080/format/webp"
  19104. },
  19105. {
  19106. "image_url": "https://ci.xiaohongshu.com/1040g2sg3120lhc7g3a7g5n414vv446jan9nfpn0?imageView2/2/w/1080/format/webp"
  19107. },
  19108. {
  19109. "image_url": "https://ci.xiaohongshu.com/1040g2sg3120lhc7g3a805n414vv446jaoj6r3g0?imageView2/2/w/1080/format/webp"
  19110. },
  19111. {
  19112. "image_url": "https://ci.xiaohongshu.com/1040g2sg3120lhc7g3a8g5n414vv446ja7r8ase8?imageView2/2/w/1080/format/webp"
  19113. },
  19114. {
  19115. "image_url": "https://ci.xiaohongshu.com/1040g2sg3120lhc7g3a905n414vv446jac7pj1bo?imageView2/2/w/1080/format/webp"
  19116. },
  19117. {
  19118. "image_url": "https://ci.xiaohongshu.com/1040g2sg3120lhc7g3a9g5n414vv446ja2nh59mg?imageView2/2/w/1080/format/webp"
  19119. },
  19120. {
  19121. "image_url": "https://ci.xiaohongshu.com/1040g2sg3120lhc7g3aa05n414vv446ja7fta530?imageView2/2/w/1080/format/webp"
  19122. },
  19123. {
  19124. "image_url": "https://ci.xiaohongshu.com/1040g2sg3120lhc7g3aag5n414vv446jan52id0o?imageView2/2/w/1080/format/webp"
  19125. },
  19126. {
  19127. "image_url": "https://ci.xiaohongshu.com/1040g2sg3120lhc7g3ab05n414vv446javca1c4o?imageView2/2/w/1080/format/webp"
  19128. },
  19129. {
  19130. "image_url": "https://ci.xiaohongshu.com/1040g2sg3120lhc7g3abg5n414vv446ja11e0bg8?imageView2/2/w/1080/format/webp"
  19131. },
  19132. {
  19133. "image_url": "https://ci.xiaohongshu.com/1040g2sg3120lhc7g3ac05n414vv446jaueuipd8?imageView2/2/w/1080/format/webp"
  19134. },
  19135. {
  19136. "image_url": "https://ci.xiaohongshu.com/1040g2sg3120lhc7g3acg5n414vv446jalf0pgm8?imageView2/2/w/1080/format/webp"
  19137. },
  19138. {
  19139. "image_url": "https://ci.xiaohongshu.com/1040g2sg3120lhc7g3ad05n414vv446jal454m4g?imageView2/2/w/1080/format/webp"
  19140. },
  19141. {
  19142. "image_url": "https://ci.xiaohongshu.com/1040g2sg3120lhc7g3adg5n414vv446jad7g7vm8?imageView2/2/w/1080/format/webp"
  19143. },
  19144. {
  19145. "image_url": "https://ci.xiaohongshu.com/1040g0083120lhc953c005n414vv446japjgnktg?imageView2/2/w/1080/format/webp"
  19146. },
  19147. {
  19148. "image_url": "https://ci.xiaohongshu.com/1040g0083120lhc953c0g5n414vv446jatikjlj0?imageView2/2/w/1080/format/webp"
  19149. }
  19150. ],
  19151. "interact_info": {
  19152. "liked_count": 785,
  19153. "collected_count": 295,
  19154. "comment_count": 25,
  19155. "shared_count": 92
  19156. },
  19157. "extraction": null,
  19158. "is_knowledge": false,
  19159. "knowledge_reason": "帖子是纯粹的表情包分享,未提供任何关于如何制作表情包的创作方法、技巧或教程指导。",
  19160. "post_relevance_score": 0.4,
  19161. "relevance_level": "中度相关",
  19162. "relevance_reason": "帖子展示了一些猫咪表情包,其中部分(如“就凭你?”、“我不要”、“我想想”)可能间接反映出双标行为的某种情绪或场景,但未直接或深入探讨如何创作此类内容,也未提供具体制作方法。"
  19163. },
  19164. "post_68e71e340000000007002e56_5_6": {
  19165. "type": "post",
  19166. "query": "[R] 叛逆小猫在线打人",
  19167. "level": 23,
  19168. "relevance_score": 0,
  19169. "strategy": "帖子",
  19170. "iteration": 2,
  19171. "is_selected": true,
  19172. "note_id": "68e71e340000000007002e56",
  19173. "note_url": "https://www.xiaohongshu.com/explore/68e71e340000000007002e56",
  19174. "body_text": "表情包分享[棒R][棒R]#日常文案 #聊天 #表情包 #实用表情包 #每日表情包分享 #可爱表情包 #搞笑",
  19175. "images": [
  19176. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031ndcljtll0005pehqv8h3kd3n2ijvk0?imageView2/2/w/1080/format/webp",
  19177. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031ndclkeq52jg5pehqv8h3kd35gksog8?imageView2/2/w/1080/format/webp",
  19178. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031ndclkeq52eg5pehqv8h3kd3npk95fg?imageView2/2/w/1080/format/webp",
  19179. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031ndclkeq52h05pehqv8h3kd31dc5cfo?imageView2/2/w/1080/format/webp",
  19180. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031ndclkeq52f05pehqv8h3kd3g0sr448?imageView2/2/w/1080/format/webp",
  19181. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031ndclkeq52ig5pehqv8h3kd3a79bfsg?imageView2/2/w/1080/format/webp",
  19182. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031ndclkeq52j05pehqv8h3kd3ed7pkno?imageView2/2/w/1080/format/webp"
  19183. ],
  19184. "image_list": [
  19185. {
  19186. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031ndcljtll0005pehqv8h3kd3n2ijvk0?imageView2/2/w/1080/format/webp"
  19187. },
  19188. {
  19189. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031ndclkeq52jg5pehqv8h3kd35gksog8?imageView2/2/w/1080/format/webp"
  19190. },
  19191. {
  19192. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031ndclkeq52eg5pehqv8h3kd3npk95fg?imageView2/2/w/1080/format/webp"
  19193. },
  19194. {
  19195. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031ndclkeq52h05pehqv8h3kd31dc5cfo?imageView2/2/w/1080/format/webp"
  19196. },
  19197. {
  19198. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031ndclkeq52f05pehqv8h3kd3g0sr448?imageView2/2/w/1080/format/webp"
  19199. },
  19200. {
  19201. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031ndclkeq52ig5pehqv8h3kd3a79bfsg?imageView2/2/w/1080/format/webp"
  19202. },
  19203. {
  19204. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031ndclkeq52j05pehqv8h3kd3ed7pkno?imageView2/2/w/1080/format/webp"
  19205. }
  19206. ],
  19207. "interact_info": {
  19208. "liked_count": 72,
  19209. "collected_count": 18,
  19210. "comment_count": 2,
  19211. "shared_count": 13
  19212. },
  19213. "extraction": null,
  19214. "is_knowledge": false,
  19215. "knowledge_reason": "该帖子仅为猫咪表情包的分享,不含任何可复用的创作方法、技巧、工具使用、流程步骤或教程指导,属于纯粹的个人内容分享和情感表达。",
  19216. "post_relevance_score": 0.4,
  19217. "relevance_level": "中度相关",
  19218. "relevance_reason": "该帖子提供了猫咪表情包梗图的成品,但未涉及如何“制作反映人类双标行为”的指导,也没有提供创作思路、工具教程或相关方法。虽然是猫咪表情包,但无法指导用户进行创作,仅有成品参考价值。"
  19219. },
  19220. "post_67cbe638000000001203e839_5_7": {
  19221. "type": "post",
  19222. "query": "[R] 猫meme表情包合集丨抽象~",
  19223. "level": 23,
  19224. "relevance_score": 0,
  19225. "strategy": "帖子",
  19226. "iteration": 2,
  19227. "is_selected": true,
  19228. "note_id": "67cbe638000000001203e839",
  19229. "note_url": "https://www.xiaohongshu.com/explore/67cbe638000000001203e839",
  19230. "body_text": "#表情包演我精神状态 #热门表情包 #趣味表情包 #发疯表情包 #猫猫的表情都写在脸上",
  19231. "images": [
  19232. "https://ci.xiaohongshu.com/1040g2sg31eoq33og6edg5nini3cg8o3nvm1e94g?imageView2/2/w/1080/format/webp",
  19233. "https://ci.xiaohongshu.com/1040g00831eoq33rv666g5nini3cg8o3n1rhgirg?imageView2/2/w/1080/format/webp",
  19234. "https://ci.xiaohongshu.com/1040g2sg31eoq33rsmad05nini3cg8o3n0ct439o?imageView2/2/w/1080/format/webp",
  19235. "https://ci.xiaohongshu.com/1040g2sg31eoq33rmm6dg5nini3cg8o3nlc2ch10?imageView2/2/w/1080/format/webp",
  19236. "https://ci.xiaohongshu.com/1040g00831eoq33q5mi6g5nini3cg8o3n3gvqc7o?imageView2/2/w/1080/format/webp",
  19237. "https://ci.xiaohongshu.com/1040g00831eoq33oem66g5nini3cg8o3n1u445no?imageView2/2/w/1080/format/webp",
  19238. "https://ci.xiaohongshu.com/1040g2sg31eoq33ofm6d05nini3cg8o3naq3a7lo?imageView2/2/w/1080/format/webp",
  19239. "https://ci.xiaohongshu.com/1040g00831eoq33oemecg5nini3cg8o3n16r2jog?imageView2/2/w/1080/format/webp",
  19240. "https://ci.xiaohongshu.com/1040g00831eoq33of6i605nini3cg8o3n35ps69g?imageView2/2/w/1080/format/webp"
  19241. ],
  19242. "image_list": [
  19243. {
  19244. "image_url": "https://ci.xiaohongshu.com/1040g2sg31eoq33og6edg5nini3cg8o3nvm1e94g?imageView2/2/w/1080/format/webp"
  19245. },
  19246. {
  19247. "image_url": "https://ci.xiaohongshu.com/1040g00831eoq33rv666g5nini3cg8o3n1rhgirg?imageView2/2/w/1080/format/webp"
  19248. },
  19249. {
  19250. "image_url": "https://ci.xiaohongshu.com/1040g2sg31eoq33rsmad05nini3cg8o3n0ct439o?imageView2/2/w/1080/format/webp"
  19251. },
  19252. {
  19253. "image_url": "https://ci.xiaohongshu.com/1040g2sg31eoq33rmm6dg5nini3cg8o3nlc2ch10?imageView2/2/w/1080/format/webp"
  19254. },
  19255. {
  19256. "image_url": "https://ci.xiaohongshu.com/1040g00831eoq33q5mi6g5nini3cg8o3n3gvqc7o?imageView2/2/w/1080/format/webp"
  19257. },
  19258. {
  19259. "image_url": "https://ci.xiaohongshu.com/1040g00831eoq33oem66g5nini3cg8o3n1u445no?imageView2/2/w/1080/format/webp"
  19260. },
  19261. {
  19262. "image_url": "https://ci.xiaohongshu.com/1040g2sg31eoq33ofm6d05nini3cg8o3naq3a7lo?imageView2/2/w/1080/format/webp"
  19263. },
  19264. {
  19265. "image_url": "https://ci.xiaohongshu.com/1040g00831eoq33oemecg5nini3cg8o3n16r2jog?imageView2/2/w/1080/format/webp"
  19266. },
  19267. {
  19268. "image_url": "https://ci.xiaohongshu.com/1040g00831eoq33of6i605nini3cg8o3n35ps69g?imageView2/2/w/1080/format/webp"
  19269. }
  19270. ],
  19271. "interact_info": {
  19272. "liked_count": 1375,
  19273. "collected_count": 304,
  19274. "comment_count": 67,
  19275. "shared_count": 82
  19276. },
  19277. "extraction": null,
  19278. "is_knowledge": false,
  19279. "knowledge_reason": "该帖子仅分享了一系列猫咪表情包图片,没有提供任何关于如何制作表情包的方法、技巧、工具或教程指导,不包含可复用的创作知识。",
  19280. "post_relevance_score": 0.3,
  19281. "relevance_level": "低度相关",
  19282. "relevance_reason": "帖子内容是猫咪表情包合集,与原始问题中的“猫咪表情包梗图”在主题上有所重叠。然而,原始问题是“如何制作”反映双标行为的表情包,而帖子仅为成品展示,并未提供任何制作方法或针对“双标行为”这一主题的指导,因此相关性较低,参考价值有限。"
  19283. },
  19284. "post_6826f7b7000000002202a171_5_8": {
  19285. "type": "post",
  19286. "query": "[R] 这组我是真喜欢|小猫|头像|表情包",
  19287. "level": 23,
  19288. "relevance_score": 0,
  19289. "strategy": "帖子",
  19290. "iteration": 2,
  19291. "is_selected": true,
  19292. "note_id": "6826f7b7000000002202a171",
  19293. "note_url": "https://www.xiaohongshu.com/explore/6826f7b7000000002202a171",
  19294. "body_text": "“这张卡你拿着的表情包,密码是0,余额也是。” 说,喜不喜欢我的大分享! 是鱼烧宝宝 #头像分享 #搞怪头像 #搞笑",
  19295. "images": [
  19296. "https://ci.xiaohongshu.com/1040g2sg31hhnqdno3a0g5olmr77msvb54crgrt8?imageView2/2/w/1080/format/webp",
  19297. "https://ci.xiaohongshu.com/1040g2sg31hhnqdno3a305olmr77msvb5ea1ihj8?imageView2/2/w/1080/format/webp",
  19298. "https://ci.xiaohongshu.com/1040g2sg31hhnqdno3a405olmr77msvb5pu9gaf8?imageView2/2/w/1080/format/webp",
  19299. "https://ci.xiaohongshu.com/1040g2sg31hhnqdno3a105olmr77msvb550s71sg?imageView2/2/w/1080/format/webp",
  19300. "https://ci.xiaohongshu.com/1040g2sg31hhnqdno3a205olmr77msvb5a66bs38?imageView2/2/w/1080/format/webp",
  19301. "https://ci.xiaohongshu.com/1040g2sg31hhnqdno3a005olmr77msvb513882do?imageView2/2/w/1080/format/webp",
  19302. "https://ci.xiaohongshu.com/1040g2sg31hhnqdno3a2g5olmr77msvb59p4k9dg?imageView2/2/w/1080/format/webp",
  19303. "https://ci.xiaohongshu.com/1040g2sg31hhnqdno3a1g5olmr77msvb55qp2400?imageView2/2/w/1080/format/webp",
  19304. "https://ci.xiaohongshu.com/1040g2sg31hhnqdno3a3g5olmr77msvb50mi7qvg?imageView2/2/w/1080/format/webp",
  19305. "https://ci.xiaohongshu.com/1040g2sg31hhnqdno3a4g5olmr77msvb5439qkng?imageView2/2/w/1080/format/webp",
  19306. "https://ci.xiaohongshu.com/1040g2sg31hhnqdno3a5g5olmr77msvb5fabo07g?imageView2/2/w/1080/format/webp",
  19307. "https://ci.xiaohongshu.com/1040g2sg31hhnqdno3a505olmr77msvb5bvdq410?imageView2/2/w/1080/format/webp",
  19308. "https://ci.xiaohongshu.com/1040g2sg31hhnqdno3a6g5olmr77msvb55rbl3cg?imageView2/2/w/1080/format/webp",
  19309. "https://ci.xiaohongshu.com/1040g2sg31hhnqdno3a605olmr77msvb5ju5sipg?imageView2/2/w/1080/format/webp",
  19310. "https://ci.xiaohongshu.com/1040g2sg31hhnveu2jaf05olmr77msvb5jntd7ho?imageView2/2/w/1080/format/webp",
  19311. "https://ci.xiaohongshu.com/1040g2sg31hhnveu2jaeg5olmr77msvb5oph4q08?imageView2/2/w/1080/format/webp",
  19312. "https://ci.xiaohongshu.com/1040g2sg31hhnveu2jae05olmr77msvb5fr06u8g?imageView2/2/w/1080/format/webp",
  19313. "https://ci.xiaohongshu.com/1040g2sg31hhnveu2jafg5olmr77msvb5bajd7i0?imageView2/2/w/1080/format/webp"
  19314. ],
  19315. "image_list": [
  19316. {
  19317. "image_url": "https://ci.xiaohongshu.com/1040g2sg31hhnqdno3a0g5olmr77msvb54crgrt8?imageView2/2/w/1080/format/webp"
  19318. },
  19319. {
  19320. "image_url": "https://ci.xiaohongshu.com/1040g2sg31hhnqdno3a305olmr77msvb5ea1ihj8?imageView2/2/w/1080/format/webp"
  19321. },
  19322. {
  19323. "image_url": "https://ci.xiaohongshu.com/1040g2sg31hhnqdno3a405olmr77msvb5pu9gaf8?imageView2/2/w/1080/format/webp"
  19324. },
  19325. {
  19326. "image_url": "https://ci.xiaohongshu.com/1040g2sg31hhnqdno3a105olmr77msvb550s71sg?imageView2/2/w/1080/format/webp"
  19327. },
  19328. {
  19329. "image_url": "https://ci.xiaohongshu.com/1040g2sg31hhnqdno3a205olmr77msvb5a66bs38?imageView2/2/w/1080/format/webp"
  19330. },
  19331. {
  19332. "image_url": "https://ci.xiaohongshu.com/1040g2sg31hhnqdno3a005olmr77msvb513882do?imageView2/2/w/1080/format/webp"
  19333. },
  19334. {
  19335. "image_url": "https://ci.xiaohongshu.com/1040g2sg31hhnqdno3a2g5olmr77msvb59p4k9dg?imageView2/2/w/1080/format/webp"
  19336. },
  19337. {
  19338. "image_url": "https://ci.xiaohongshu.com/1040g2sg31hhnqdno3a1g5olmr77msvb55qp2400?imageView2/2/w/1080/format/webp"
  19339. },
  19340. {
  19341. "image_url": "https://ci.xiaohongshu.com/1040g2sg31hhnqdno3a3g5olmr77msvb50mi7qvg?imageView2/2/w/1080/format/webp"
  19342. },
  19343. {
  19344. "image_url": "https://ci.xiaohongshu.com/1040g2sg31hhnqdno3a4g5olmr77msvb5439qkng?imageView2/2/w/1080/format/webp"
  19345. },
  19346. {
  19347. "image_url": "https://ci.xiaohongshu.com/1040g2sg31hhnqdno3a5g5olmr77msvb5fabo07g?imageView2/2/w/1080/format/webp"
  19348. },
  19349. {
  19350. "image_url": "https://ci.xiaohongshu.com/1040g2sg31hhnqdno3a505olmr77msvb5bvdq410?imageView2/2/w/1080/format/webp"
  19351. },
  19352. {
  19353. "image_url": "https://ci.xiaohongshu.com/1040g2sg31hhnqdno3a6g5olmr77msvb55rbl3cg?imageView2/2/w/1080/format/webp"
  19354. },
  19355. {
  19356. "image_url": "https://ci.xiaohongshu.com/1040g2sg31hhnqdno3a605olmr77msvb5ju5sipg?imageView2/2/w/1080/format/webp"
  19357. },
  19358. {
  19359. "image_url": "https://ci.xiaohongshu.com/1040g2sg31hhnveu2jaf05olmr77msvb5jntd7ho?imageView2/2/w/1080/format/webp"
  19360. },
  19361. {
  19362. "image_url": "https://ci.xiaohongshu.com/1040g2sg31hhnveu2jaeg5olmr77msvb5oph4q08?imageView2/2/w/1080/format/webp"
  19363. },
  19364. {
  19365. "image_url": "https://ci.xiaohongshu.com/1040g2sg31hhnveu2jae05olmr77msvb5fr06u8g?imageView2/2/w/1080/format/webp"
  19366. },
  19367. {
  19368. "image_url": "https://ci.xiaohongshu.com/1040g2sg31hhnveu2jafg5olmr77msvb5bajd7i0?imageView2/2/w/1080/format/webp"
  19369. }
  19370. ],
  19371. "interact_info": {
  19372. "liked_count": 7358,
  19373. "collected_count": 2753,
  19374. "comment_count": 154,
  19375. "shared_count": 1771
  19376. },
  19377. "extraction": null,
  19378. "is_knowledge": false,
  19379. "knowledge_reason": "该帖子是纯粹的表情包分享,不包含任何关于表情包制作方法、技巧或教程等可复用的创作知识。",
  19380. "post_relevance_score": 0.3,
  19381. "relevance_level": "低度相关",
  19382. "relevance_reason": "帖子内容展示了一些猫咪表情包,其中部分表情包(如“小人得志”、“世界的中指”)在一定程度上反映了人类情绪或态度,可能与“双标行为”略有边缘关联。但帖子未提供任何关于如何制作这类表情包、如何表现“双标行为”的创作知识,无法直接解决原问题。因此,相关性较低。"
  19383. },
  19384. "post_666d59f2000000000e032b89_5_9": {
  19385. "type": "post",
  19386. "query": "[R] 今日份表情包|我小猫咪听不懂你在讲什么",
  19387. "level": 23,
  19388. "relevance_score": 0,
  19389. "strategy": "帖子",
  19390. "iteration": 2,
  19391. "is_selected": true,
  19392. "note_id": "666d59f2000000000e032b89",
  19393. "note_url": "https://www.xiaohongshu.com/explore/666d59f2000000000e032b89",
  19394. "body_text": "这个话好难懂!真是难懂如维纳斯黄金比例般的奇迹我恨不得又哭又叫从五行山下嗖一声窜出来跑遍五岳爬珠穆朗玛峰跑哭来一个螺旋跪",
  19395. "images": [
  19396. "https://ci.xiaohongshu.com/1040g2sg3142fqsmp26705oefu9g41i9fv0h5jo8?imageView2/2/w/1080/format/webp",
  19397. "https://ci.xiaohongshu.com/1040g2sg3142fqsmp267g5oefu9g41i9fej3cc5o?imageView2/2/w/1080/format/webp",
  19398. "https://ci.xiaohongshu.com/1040g2sg3142fqsmp26805oefu9g41i9fopeo190?imageView2/2/w/1080/format/webp",
  19399. "https://ci.xiaohongshu.com/1040g2sg3142fqsmp268g5oefu9g41i9fvo0lig0?imageView2/2/w/1080/format/webp",
  19400. "https://ci.xiaohongshu.com/1040g2sg3142fqsmp26905oefu9g41i9fe15s1b8?imageView2/2/w/1080/format/webp",
  19401. "https://ci.xiaohongshu.com/1040g2sg3142fqsmp269g5oefu9g41i9f7hchq28?imageView2/2/w/1080/format/webp",
  19402. "https://ci.xiaohongshu.com/1040g2sg3142fqsmp26a05oefu9g41i9fd9t8k3o?imageView2/2/w/1080/format/webp",
  19403. "https://ci.xiaohongshu.com/1040g2sg3142fqsmp26ag5oefu9g41i9fmr12fq8?imageView2/2/w/1080/format/webp",
  19404. "https://ci.xiaohongshu.com/1040g2sg3142fqsmp26b05oefu9g41i9fbnivupo?imageView2/2/w/1080/format/webp",
  19405. "https://ci.xiaohongshu.com/1040g2sg3142fqsmp26bg5oefu9g41i9fmp7egtg?imageView2/2/w/1080/format/webp",
  19406. "https://ci.xiaohongshu.com/1040g2sg3142fqsmp26c05oefu9g41i9f65kh8i8?imageView2/2/w/1080/format/webp",
  19407. "https://ci.xiaohongshu.com/1040g2sg3142fqsmp26cg5oefu9g41i9fh4gi8bo?imageView2/2/w/1080/format/webp",
  19408. "https://ci.xiaohongshu.com/1040g2sg3142fqsmp26d05oefu9g41i9fduh6vsg?imageView2/2/w/1080/format/webp",
  19409. "https://ci.xiaohongshu.com/1040g2sg3142fqsmp26dg5oefu9g41i9fmdnfi1g?imageView2/2/w/1080/format/webp",
  19410. "https://ci.xiaohongshu.com/1040g0083142fqsob260g5oefu9g41i9fti4t3rg?imageView2/2/w/1080/format/webp"
  19411. ],
  19412. "image_list": [
  19413. {
  19414. "image_url": "https://ci.xiaohongshu.com/1040g2sg3142fqsmp26705oefu9g41i9fv0h5jo8?imageView2/2/w/1080/format/webp"
  19415. },
  19416. {
  19417. "image_url": "https://ci.xiaohongshu.com/1040g2sg3142fqsmp267g5oefu9g41i9fej3cc5o?imageView2/2/w/1080/format/webp"
  19418. },
  19419. {
  19420. "image_url": "https://ci.xiaohongshu.com/1040g2sg3142fqsmp26805oefu9g41i9fopeo190?imageView2/2/w/1080/format/webp"
  19421. },
  19422. {
  19423. "image_url": "https://ci.xiaohongshu.com/1040g2sg3142fqsmp268g5oefu9g41i9fvo0lig0?imageView2/2/w/1080/format/webp"
  19424. },
  19425. {
  19426. "image_url": "https://ci.xiaohongshu.com/1040g2sg3142fqsmp26905oefu9g41i9fe15s1b8?imageView2/2/w/1080/format/webp"
  19427. },
  19428. {
  19429. "image_url": "https://ci.xiaohongshu.com/1040g2sg3142fqsmp269g5oefu9g41i9f7hchq28?imageView2/2/w/1080/format/webp"
  19430. },
  19431. {
  19432. "image_url": "https://ci.xiaohongshu.com/1040g2sg3142fqsmp26a05oefu9g41i9fd9t8k3o?imageView2/2/w/1080/format/webp"
  19433. },
  19434. {
  19435. "image_url": "https://ci.xiaohongshu.com/1040g2sg3142fqsmp26ag5oefu9g41i9fmr12fq8?imageView2/2/w/1080/format/webp"
  19436. },
  19437. {
  19438. "image_url": "https://ci.xiaohongshu.com/1040g2sg3142fqsmp26b05oefu9g41i9fbnivupo?imageView2/2/w/1080/format/webp"
  19439. },
  19440. {
  19441. "image_url": "https://ci.xiaohongshu.com/1040g2sg3142fqsmp26bg5oefu9g41i9fmp7egtg?imageView2/2/w/1080/format/webp"
  19442. },
  19443. {
  19444. "image_url": "https://ci.xiaohongshu.com/1040g2sg3142fqsmp26c05oefu9g41i9f65kh8i8?imageView2/2/w/1080/format/webp"
  19445. },
  19446. {
  19447. "image_url": "https://ci.xiaohongshu.com/1040g2sg3142fqsmp26cg5oefu9g41i9fh4gi8bo?imageView2/2/w/1080/format/webp"
  19448. },
  19449. {
  19450. "image_url": "https://ci.xiaohongshu.com/1040g2sg3142fqsmp26d05oefu9g41i9fduh6vsg?imageView2/2/w/1080/format/webp"
  19451. },
  19452. {
  19453. "image_url": "https://ci.xiaohongshu.com/1040g2sg3142fqsmp26dg5oefu9g41i9fmdnfi1g?imageView2/2/w/1080/format/webp"
  19454. },
  19455. {
  19456. "image_url": "https://ci.xiaohongshu.com/1040g0083142fqsob260g5oefu9g41i9fti4t3rg?imageView2/2/w/1080/format/webp"
  19457. }
  19458. ],
  19459. "interact_info": {
  19460. "liked_count": 1892,
  19461. "collected_count": 545,
  19462. "comment_count": 58,
  19463. "shared_count": 60
  19464. },
  19465. "extraction": null,
  19466. "is_knowledge": false,
  19467. "knowledge_reason": "该帖子为纯粹的表情包分享和个人情感表达,未提供任何关于表情包创作的方法、技巧、工具使用步骤或教程指导,不具备可复用创作知识。",
  19468. "post_relevance_score": 0.4,
  19469. "relevance_level": "中度相关",
  19470. "relevance_reason": "帖子内容包含猫咪表情包,与问题中的“猫咪表情包梗图”有一定表象关联。然而,帖子仅为表情包的集合与分享,并未针对如何制作或如何反映人类双标行为提供任何知识、方法或工具,因此参考价值有限。"
  19471. },
  19472. "search_猫咪表情包制作_r2_6": {
  19473. "type": "search_word",
  19474. "query": "[SEARCH] 猫咪表情包制作",
  19475. "level": 22,
  19476. "relevance_score": 0.825,
  19477. "strategy": "搜索词",
  19478. "iteration": 2,
  19479. "is_selected": true
  19480. },
  19481. "post_660581800000000012023abc_6_0": {
  19482. "type": "post",
  19483. "query": "[R] 表情包自制教程👀",
  19484. "level": 23,
  19485. "relevance_score": 0,
  19486. "strategy": "帖子",
  19487. "iteration": 2,
  19488. "is_selected": true,
  19489. "note_id": "660581800000000012023abc",
  19490. "note_url": "https://www.xiaohongshu.com/explore/660581800000000012023abc",
  19491. "body_text": "之前说过要出的教程虽迟但到🫶🏻 本来其实是用平板上的procreate 做的 但是考虑到软件普遍度的原因 所以用美图",
  19492. "images": [
  19493. "https://ci.xiaohongshu.com/1040g2sg310t29mip6m005o6apeq08rkadafqerg?imageView2/2/w/1080/format/webp",
  19494. "https://ci.xiaohongshu.com/1040g2sg310t29mip6m0g5o6apeq08rka1g0km40?imageView2/2/w/1080/format/webp",
  19495. "https://ci.xiaohongshu.com/1040g2sg310t29mip6m105o6apeq08rkakds9lco?imageView2/2/w/1080/format/webp",
  19496. "https://ci.xiaohongshu.com/1040g2sg310t29mip6m1g5o6apeq08rka4rhb3lo?imageView2/2/w/1080/format/webp",
  19497. "https://ci.xiaohongshu.com/1040g2sg310t29mip6m205o6apeq08rka968chro?imageView2/2/w/1080/format/webp"
  19498. ],
  19499. "image_list": [
  19500. {
  19501. "image_url": "https://ci.xiaohongshu.com/1040g2sg310t29mip6m005o6apeq08rkadafqerg?imageView2/2/w/1080/format/webp"
  19502. },
  19503. {
  19504. "image_url": "https://ci.xiaohongshu.com/1040g2sg310t29mip6m0g5o6apeq08rka1g0km40?imageView2/2/w/1080/format/webp"
  19505. },
  19506. {
  19507. "image_url": "https://ci.xiaohongshu.com/1040g2sg310t29mip6m105o6apeq08rkakds9lco?imageView2/2/w/1080/format/webp"
  19508. },
  19509. {
  19510. "image_url": "https://ci.xiaohongshu.com/1040g2sg310t29mip6m1g5o6apeq08rka4rhb3lo?imageView2/2/w/1080/format/webp"
  19511. },
  19512. {
  19513. "image_url": "https://ci.xiaohongshu.com/1040g2sg310t29mip6m205o6apeq08rka968chro?imageView2/2/w/1080/format/webp"
  19514. }
  19515. ],
  19516. "interact_info": {
  19517. "liked_count": 430,
  19518. "collected_count": 306,
  19519. "comment_count": 8,
  19520. "shared_count": 76
  19521. },
  19522. "extraction": null,
  19523. "is_knowledge": true,
  19524. "knowledge_reason": "该帖子提供了详细的表情包制作教程,包括工具选择(美图秀秀)、具体操作步骤(抠图、背景替换、贴纸、涂鸦),属于可复用的创作方法和工具使用指导。",
  19525. "post_relevance_score": 0.6,
  19526. "relevance_level": "中度相关",
  19527. "relevance_reason": "帖子提供了制作猫咪表情包梗图的通用方法和工具指导,可以解决原始问题中的“如何制作”部分。但内容未涉及如何体现“人类双标行为”这一核心创意或主题,因此相关性中等,有一定参考价值但缺乏针对性。"
  19528. },
  19529. "post_678c8258000000001b00b500_6_1": {
  19530. "type": "post",
  19531. "query": "[R] 猫猫表情包",
  19532. "level": 23,
  19533. "relevance_score": 0,
  19534. "strategy": "帖子",
  19535. "iteration": 2,
  19536. "is_selected": true,
  19537. "note_id": "678c8258000000001b00b500",
  19538. "note_url": "https://www.xiaohongshu.com/explore/678c8258000000001b00b500",
  19539. "body_text": "制作了俺的小猫的表情包 😽可爱可爱😻 #宠物表情包 #圆脸小猫咪 #猫咪表情包 #可爱猫咪",
  19540. "images": [
  19541. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031cqt1iplgm0049qt9uv3tm8dlu39nj8?imageView2/2/w/1080/format/webp",
  19542. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031cqt1iplgm0g49qt9uv3tm8dpjpoqc0?imageView2/2/w/1080/format/webp",
  19543. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031cqt1iplgm1049qt9uv3tm8dcdr0bv8?imageView2/2/w/1080/format/webp",
  19544. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031cqt1iplgm1g49qt9uv3tm8dkvpner0?imageView2/2/w/1080/format/webp",
  19545. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031cqt1iplgm2049qt9uv3tm8df2bbjvo?imageView2/2/w/1080/format/webp",
  19546. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031cqt1iplgm2g49qt9uv3tm8dmo1mi7g?imageView2/2/w/1080/format/webp",
  19547. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031cqt1iplgm3049qt9uv3tm8dbu766uo?imageView2/2/w/1080/format/webp",
  19548. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031cqt1iplgm3g49qt9uv3tm8dfodgsto?imageView2/2/w/1080/format/webp",
  19549. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031cqt1iplgm4049qt9uv3tm8d3d3gor8?imageView2/2/w/1080/format/webp",
  19550. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031cqt1iplgm4g49qt9uv3tm8dq8vuc2o?imageView2/2/w/1080/format/webp",
  19551. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031cqt1iplgm5049qt9uv3tm8d2u4e3n0?imageView2/2/w/1080/format/webp",
  19552. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031cqt1iplgm5g49qt9uv3tm8dggfdj0o?imageView2/2/w/1080/format/webp",
  19553. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031cqt1iplgm6049qt9uv3tm8dan96g7g?imageView2/2/w/1080/format/webp"
  19554. ],
  19555. "image_list": [
  19556. {
  19557. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031cqt1iplgm0049qt9uv3tm8dlu39nj8?imageView2/2/w/1080/format/webp"
  19558. },
  19559. {
  19560. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031cqt1iplgm0g49qt9uv3tm8dpjpoqc0?imageView2/2/w/1080/format/webp"
  19561. },
  19562. {
  19563. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031cqt1iplgm1049qt9uv3tm8dcdr0bv8?imageView2/2/w/1080/format/webp"
  19564. },
  19565. {
  19566. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031cqt1iplgm1g49qt9uv3tm8dkvpner0?imageView2/2/w/1080/format/webp"
  19567. },
  19568. {
  19569. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031cqt1iplgm2049qt9uv3tm8df2bbjvo?imageView2/2/w/1080/format/webp"
  19570. },
  19571. {
  19572. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031cqt1iplgm2g49qt9uv3tm8dmo1mi7g?imageView2/2/w/1080/format/webp"
  19573. },
  19574. {
  19575. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031cqt1iplgm3049qt9uv3tm8dbu766uo?imageView2/2/w/1080/format/webp"
  19576. },
  19577. {
  19578. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031cqt1iplgm3g49qt9uv3tm8dfodgsto?imageView2/2/w/1080/format/webp"
  19579. },
  19580. {
  19581. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031cqt1iplgm4049qt9uv3tm8d3d3gor8?imageView2/2/w/1080/format/webp"
  19582. },
  19583. {
  19584. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031cqt1iplgm4g49qt9uv3tm8dq8vuc2o?imageView2/2/w/1080/format/webp"
  19585. },
  19586. {
  19587. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031cqt1iplgm5049qt9uv3tm8d2u4e3n0?imageView2/2/w/1080/format/webp"
  19588. },
  19589. {
  19590. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031cqt1iplgm5g49qt9uv3tm8dggfdj0o?imageView2/2/w/1080/format/webp"
  19591. },
  19592. {
  19593. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031cqt1iplgm6049qt9uv3tm8dan96g7g?imageView2/2/w/1080/format/webp"
  19594. }
  19595. ],
  19596. "interact_info": {
  19597. "liked_count": 216,
  19598. "collected_count": 76,
  19599. "comment_count": 12,
  19600. "shared_count": 17
  19601. },
  19602. "extraction": null,
  19603. "is_knowledge": false,
  19604. "knowledge_reason": "该帖子是纯粹的个人分享和情感表达,展示了用户制作的猫咪表情包,但未提供任何关于表情包制作的方法、技巧、工具或流程等可复用的创作知识。",
  19605. "post_relevance_score": 0.4,
  19606. "relevance_level": "中度相关",
  19607. "relevance_reason": "帖子内容展示了猫咪表情包,与原始问题中的“猫咪表情包”有表层关联,但其制作的表情包并非反映“人类双标行为”,且未提供任何制作猫咪表情包梗图的方法或思路,因此参考价值有限,仅为很低的启发性关联。"
  19608. },
  19609. "post_67f60c23000000001c03e8b0_6_2": {
  19610. "type": "post",
  19611. "query": "[R] 【猫主子の叛逆暴击!】当代恶猫表情包大赏",
  19612. "level": 23,
  19613. "relevance_score": 0,
  19614. "strategy": "帖子",
  19615. "iteration": 2,
  19616. "is_selected": true,
  19617. "note_id": "67f60c23000000001c03e8b0",
  19618. "note_url": "https://www.xiaohongshu.com/explore/67f60c23000000001c03e8b0",
  19619. "body_text": "教你如何制作自家猫咪搞怪表情包 1. 🙄《看垃圾的眼神》 配字:\"两脚兽又在加班?呵,小鱼干都凉透了\" 2. 😈《暗",
  19620. "images": [
  19621. "https://ci.xiaohongshu.com/1040g00831g1v76c70g005orrhr2p2tihpq16vtg?imageView2/2/w/1080/format/webp",
  19622. "https://ci.xiaohongshu.com/1040g00831g1v76c70g0g5orrhr2p2tihne2ojm8?imageView2/2/w/1080/format/webp",
  19623. "https://ci.xiaohongshu.com/1040g00831g1v76c70g105orrhr2p2tih2kjqo48?imageView2/2/w/1080/format/webp",
  19624. "https://ci.xiaohongshu.com/1040g00831g1v76c70g1g5orrhr2p2tihnnkqeb8?imageView2/2/w/1080/format/webp",
  19625. "https://ci.xiaohongshu.com/1040g00831g1v76c70g205orrhr2p2tih02pkcs0?imageView2/2/w/1080/format/webp",
  19626. "https://ci.xiaohongshu.com/1040g00831g1v76c70g2g5orrhr2p2tih5ggoa80?imageView2/2/w/1080/format/webp",
  19627. "https://ci.xiaohongshu.com/1040g00831g1v76c70g305orrhr2p2tihrqr4juo?imageView2/2/w/1080/format/webp",
  19628. "https://ci.xiaohongshu.com/1040g00831g1v76c70g3g5orrhr2p2tihg25j6hg?imageView2/2/w/1080/format/webp",
  19629. "https://ci.xiaohongshu.com/1040g00831g1v76c70g405orrhr2p2tihm6urf5o?imageView2/2/w/1080/format/webp",
  19630. "https://ci.xiaohongshu.com/1040g00831g1v76c70g4g5orrhr2p2tihclmvqe8?imageView2/2/w/1080/format/webp",
  19631. "https://ci.xiaohongshu.com/1040g00831g1v76c70g505orrhr2p2tih4hprfio?imageView2/2/w/1080/format/webp",
  19632. "https://ci.xiaohongshu.com/1040g00831g1v76c70g5g5orrhr2p2tihbkjn3v0?imageView2/2/w/1080/format/webp",
  19633. "https://ci.xiaohongshu.com/1040g00831g1v76c70g605orrhr2p2tih8jjbuco?imageView2/2/w/1080/format/webp",
  19634. "https://ci.xiaohongshu.com/1040g00831g1v76c70g6g5orrhr2p2tih8h8493g?imageView2/2/w/1080/format/webp",
  19635. "https://ci.xiaohongshu.com/1040g00831g1v76ds0g005orrhr2p2tih92vgsgg?imageView2/2/w/1080/format/webp",
  19636. "https://ci.xiaohongshu.com/1040g00831g1v76ds0g0g5orrhr2p2tihnm2hu70?imageView2/2/w/1080/format/webp",
  19637. "https://ci.xiaohongshu.com/1040g00831g1v76ds0g105orrhr2p2tiht8u3crg?imageView2/2/w/1080/format/webp"
  19638. ],
  19639. "image_list": [
  19640. {
  19641. "image_url": "https://ci.xiaohongshu.com/1040g00831g1v76c70g005orrhr2p2tihpq16vtg?imageView2/2/w/1080/format/webp"
  19642. },
  19643. {
  19644. "image_url": "https://ci.xiaohongshu.com/1040g00831g1v76c70g0g5orrhr2p2tihne2ojm8?imageView2/2/w/1080/format/webp"
  19645. },
  19646. {
  19647. "image_url": "https://ci.xiaohongshu.com/1040g00831g1v76c70g105orrhr2p2tih2kjqo48?imageView2/2/w/1080/format/webp"
  19648. },
  19649. {
  19650. "image_url": "https://ci.xiaohongshu.com/1040g00831g1v76c70g1g5orrhr2p2tihnnkqeb8?imageView2/2/w/1080/format/webp"
  19651. },
  19652. {
  19653. "image_url": "https://ci.xiaohongshu.com/1040g00831g1v76c70g205orrhr2p2tih02pkcs0?imageView2/2/w/1080/format/webp"
  19654. },
  19655. {
  19656. "image_url": "https://ci.xiaohongshu.com/1040g00831g1v76c70g2g5orrhr2p2tih5ggoa80?imageView2/2/w/1080/format/webp"
  19657. },
  19658. {
  19659. "image_url": "https://ci.xiaohongshu.com/1040g00831g1v76c70g305orrhr2p2tihrqr4juo?imageView2/2/w/1080/format/webp"
  19660. },
  19661. {
  19662. "image_url": "https://ci.xiaohongshu.com/1040g00831g1v76c70g3g5orrhr2p2tihg25j6hg?imageView2/2/w/1080/format/webp"
  19663. },
  19664. {
  19665. "image_url": "https://ci.xiaohongshu.com/1040g00831g1v76c70g405orrhr2p2tihm6urf5o?imageView2/2/w/1080/format/webp"
  19666. },
  19667. {
  19668. "image_url": "https://ci.xiaohongshu.com/1040g00831g1v76c70g4g5orrhr2p2tihclmvqe8?imageView2/2/w/1080/format/webp"
  19669. },
  19670. {
  19671. "image_url": "https://ci.xiaohongshu.com/1040g00831g1v76c70g505orrhr2p2tih4hprfio?imageView2/2/w/1080/format/webp"
  19672. },
  19673. {
  19674. "image_url": "https://ci.xiaohongshu.com/1040g00831g1v76c70g5g5orrhr2p2tihbkjn3v0?imageView2/2/w/1080/format/webp"
  19675. },
  19676. {
  19677. "image_url": "https://ci.xiaohongshu.com/1040g00831g1v76c70g605orrhr2p2tih8jjbuco?imageView2/2/w/1080/format/webp"
  19678. },
  19679. {
  19680. "image_url": "https://ci.xiaohongshu.com/1040g00831g1v76c70g6g5orrhr2p2tih8h8493g?imageView2/2/w/1080/format/webp"
  19681. },
  19682. {
  19683. "image_url": "https://ci.xiaohongshu.com/1040g00831g1v76ds0g005orrhr2p2tih92vgsgg?imageView2/2/w/1080/format/webp"
  19684. },
  19685. {
  19686. "image_url": "https://ci.xiaohongshu.com/1040g00831g1v76ds0g0g5orrhr2p2tihnm2hu70?imageView2/2/w/1080/format/webp"
  19687. },
  19688. {
  19689. "image_url": "https://ci.xiaohongshu.com/1040g00831g1v76ds0g105orrhr2p2tiht8u3crg?imageView2/2/w/1080/format/webp"
  19690. }
  19691. ],
  19692. "interact_info": {
  19693. "liked_count": 105,
  19694. "collected_count": 53,
  19695. "comment_count": 0,
  19696. "shared_count": 7
  19697. },
  19698. "extraction": null,
  19699. "is_knowledge": true,
  19700. "knowledge_reason": "帖子正文第一句话明确指出“教你如何制作自家猫咪搞怪表情包”,提供了具体的表情包制作方法和配字思路,具有可复用的创作指导价值。",
  19701. "post_relevance_score": 0.85,
  19702. "relevance_level": "高度相关",
  19703. "relevance_reason": "该帖子直接提供了制作猫咪表情包梗图的实操教学和案例,特别是将猫咪行为与人类双标的配字结合,高度符合“制作反映人类双标行为的猫咪表情包梗图”的原始问题。内容针对性强,提供了创作方法和具体示例,虽然未穷尽所有双标场景,但指导性很强。"
  19704. },
  19705. "post_6618ef8a000000001b00815c_6_3": {
  19706. "type": "post",
  19707. "query": "[R] 当代年轻人的精神状态be like",
  19708. "level": 23,
  19709. "relevance_score": 0,
  19710. "strategy": "帖子",
  19711. "iteration": 2,
  19712. "is_selected": true,
  19713. "note_id": "6618ef8a000000001b00815c",
  19714. "note_url": "https://www.xiaohongshu.com/explore/6618ef8a000000001b00815c",
  19715. "body_text": "小猫咪演我精神状态[哭惹R] 给ee找了个制作表情包简易方法,教程在最后一页哦,请ee笑纳 #猫好人坏 #好猫俱乐部",
  19716. "images": [
  19717. "https://ci.xiaohongshu.com/1040g008311g1fg8t6o0g40196vjp2cv3s5318b8?imageView2/2/w/1080/format/webp",
  19718. "https://ci.xiaohongshu.com/1040g008311g1fg8t6o0040196vjp2cv3h58lt9g?imageView2/2/w/1080/format/webp",
  19719. "https://ci.xiaohongshu.com/1040g008311g1fg8t6o1040196vjp2cv3fvtbao8?imageView2/2/w/1080/format/webp",
  19720. "https://ci.xiaohongshu.com/1040g008311g1fg8tmo0040196vjp2cv311tthbg?imageView2/2/w/1080/format/webp",
  19721. "https://ci.xiaohongshu.com/1040g008311g1fg8tmo0g40196vjp2cv3bape6fg?imageView2/2/w/1080/format/webp",
  19722. "https://ci.xiaohongshu.com/1040g008311h7br706g0040196vjp2cv3vjmmqp8?imageView2/2/w/1080/format/webp"
  19723. ],
  19724. "image_list": [
  19725. {
  19726. "image_url": "https://ci.xiaohongshu.com/1040g008311g1fg8t6o0g40196vjp2cv3s5318b8?imageView2/2/w/1080/format/webp"
  19727. },
  19728. {
  19729. "image_url": "https://ci.xiaohongshu.com/1040g008311g1fg8t6o0040196vjp2cv3h58lt9g?imageView2/2/w/1080/format/webp"
  19730. },
  19731. {
  19732. "image_url": "https://ci.xiaohongshu.com/1040g008311g1fg8t6o1040196vjp2cv3fvtbao8?imageView2/2/w/1080/format/webp"
  19733. },
  19734. {
  19735. "image_url": "https://ci.xiaohongshu.com/1040g008311g1fg8tmo0040196vjp2cv311tthbg?imageView2/2/w/1080/format/webp"
  19736. },
  19737. {
  19738. "image_url": "https://ci.xiaohongshu.com/1040g008311g1fg8tmo0g40196vjp2cv3bape6fg?imageView2/2/w/1080/format/webp"
  19739. },
  19740. {
  19741. "image_url": "https://ci.xiaohongshu.com/1040g008311h7br706g0040196vjp2cv3vjmmqp8?imageView2/2/w/1080/format/webp"
  19742. }
  19743. ],
  19744. "interact_info": {
  19745. "liked_count": 918,
  19746. "collected_count": 410,
  19747. "comment_count": 64,
  19748. "shared_count": 151
  19749. },
  19750. "extraction": null,
  19751. "is_knowledge": true,
  19752. "knowledge_reason": "帖子正文明确指出“教程在最后一页”,图片展示了使用美图秀秀制作猫咪表情包的简化流程,包含具体的工具使用和步骤指导。",
  19753. "post_relevance_score": 0.4,
  19754. "relevance_level": "中度相关",
  19755. "relevance_reason": "该帖子提供了制作猫咪表情包的方法,与原始问题“如何制作…猫咪表情包梗图”的制作类需求有一定关联。但内容主要围绕美图秀秀简单操作,未涉及如何反映“人类双标行为”这一核心创意主题,针对性和完整性不足。"
  19756. },
  19757. "post_68650c0e000000002400ec34_6_4": {
  19758. "type": "post",
  19759. "query": "[R] 自制小猫微信表情包一次过审分享",
  19760. "level": 23,
  19761. "relevance_score": 0,
  19762. "strategy": "帖子",
  19763. "iteration": 2,
  19764. "is_selected": true,
  19765. "note_id": "68650c0e000000002400ec34",
  19766. "note_url": "https://www.xiaohongshu.com/explore/68650c0e000000002400ec34",
  19767. "body_text": "先说总结,美图秀秀制作表情包+修改像素,醒图抠图用作聊天页图标,ios自带app”文件”里的快速操作——转换图像来修改图",
  19768. "images": [
  19769. "https://ci.xiaohongshu.com/1040g2sg31jedrkp22o70433t274atqa5gjf140g?imageView2/2/w/1080/format/webp",
  19770. "https://ci.xiaohongshu.com/1040g00831je9pejg3400433t274atqa5m0uprgo?imageView2/2/w/1080/format/webp",
  19771. "https://ci.xiaohongshu.com/1040g00831je9pejg343g433t274atqa5q0g9tt0?imageView2/2/w/1080/format/webp",
  19772. "https://ci.xiaohongshu.com/1040g00831je9pejg344g433t274atqa5arv0to8?imageView2/2/w/1080/format/webp",
  19773. "https://ci.xiaohongshu.com/1040g00831je9pejg340g433t274atqa55hgil0o?imageView2/2/w/1080/format/webp",
  19774. "https://ci.xiaohongshu.com/1040g00831je9pejg3410433t274atqa5rjsf93o?imageView2/2/w/1080/format/webp",
  19775. "https://ci.xiaohongshu.com/1040g00831je9pejg345g433t274atqa55n3uae0?imageView2/2/w/1080/format/webp",
  19776. "https://ci.xiaohongshu.com/1040g00831je9pejg3420433t274atqa5vhi5a8g?imageView2/2/w/1080/format/webp",
  19777. "https://ci.xiaohongshu.com/1040g00831je9pejg3440433t274atqa5es21j70?imageView2/2/w/1080/format/webp",
  19778. "https://ci.xiaohongshu.com/1040g00831je9pejg342g433t274atqa57o4gtto?imageView2/2/w/1080/format/webp"
  19779. ],
  19780. "image_list": [
  19781. {
  19782. "image_url": "https://ci.xiaohongshu.com/1040g2sg31jedrkp22o70433t274atqa5gjf140g?imageView2/2/w/1080/format/webp"
  19783. },
  19784. {
  19785. "image_url": "https://ci.xiaohongshu.com/1040g00831je9pejg3400433t274atqa5m0uprgo?imageView2/2/w/1080/format/webp"
  19786. },
  19787. {
  19788. "image_url": "https://ci.xiaohongshu.com/1040g00831je9pejg343g433t274atqa5q0g9tt0?imageView2/2/w/1080/format/webp"
  19789. },
  19790. {
  19791. "image_url": "https://ci.xiaohongshu.com/1040g00831je9pejg344g433t274atqa5arv0to8?imageView2/2/w/1080/format/webp"
  19792. },
  19793. {
  19794. "image_url": "https://ci.xiaohongshu.com/1040g00831je9pejg340g433t274atqa55hgil0o?imageView2/2/w/1080/format/webp"
  19795. },
  19796. {
  19797. "image_url": "https://ci.xiaohongshu.com/1040g00831je9pejg3410433t274atqa5rjsf93o?imageView2/2/w/1080/format/webp"
  19798. },
  19799. {
  19800. "image_url": "https://ci.xiaohongshu.com/1040g00831je9pejg345g433t274atqa55n3uae0?imageView2/2/w/1080/format/webp"
  19801. },
  19802. {
  19803. "image_url": "https://ci.xiaohongshu.com/1040g00831je9pejg3420433t274atqa5vhi5a8g?imageView2/2/w/1080/format/webp"
  19804. },
  19805. {
  19806. "image_url": "https://ci.xiaohongshu.com/1040g00831je9pejg3440433t274atqa5es21j70?imageView2/2/w/1080/format/webp"
  19807. },
  19808. {
  19809. "image_url": "https://ci.xiaohongshu.com/1040g00831je9pejg342g433t274atqa57o4gtto?imageView2/2/w/1080/format/webp"
  19810. }
  19811. ],
  19812. "interact_info": {
  19813. "liked_count": 373,
  19814. "collected_count": 330,
  19815. "comment_count": 51,
  19816. "shared_count": 117
  19817. },
  19818. "extraction": null,
  19819. "is_knowledge": true,
  19820. "knowledge_reason": "帖子提供了详细的表情包制作流程和工具使用方法,包括图片编辑、像素调整、抠图、文件格式转换等实用创作知识。",
  19821. "post_relevance_score": 0.5,
  19822. "relevance_level": "中度相关",
  19823. "relevance_reason": "帖子提供了制作猫咪表情包的技术流程和工具,与原始问题中的“如何制作猫咪表情包”部分相关。但它未涉及“反映人类双标行为”这一创意核心,只是通用制作教程。"
  19824. },
  19825. "post_67541e26000000000800553c_6_5": {
  19826. "type": "post",
  19827. "query": "[R] ",
  19828. "level": 23,
  19829. "relevance_score": 0,
  19830. "strategy": "帖子",
  19831. "iteration": 2,
  19832. "is_selected": true,
  19833. "note_id": "67541e26000000000800553c",
  19834. "note_url": "https://www.xiaohongshu.com/explore/67541e26000000000800553c",
  19835. "body_text": "上班猫猫头也制作很简单,我用炫图ai抠下来了一些图像,我习惯先用一遍提画质,再进行抠图,抠出来的素材就会很清晰~还可以替",
  19836. "images": [
  19837. "https://ci.xiaohongshu.com/1040g2sg31b3qtj367ae05p6u7u5g9t1ovte6nm8?imageView2/2/w/1080/format/webp",
  19838. "https://ci.xiaohongshu.com/1040g2sg31b3qtj367aeg5p6u7u5g9t1odhe09f0?imageView2/2/w/1080/format/webp",
  19839. "https://ci.xiaohongshu.com/1040g2sg31b3qtj367af05p6u7u5g9t1o2gngd7o?imageView2/2/w/1080/format/webp",
  19840. "https://ci.xiaohongshu.com/1040g2sg31b3qtj367afg5p6u7u5g9t1oub6b2m8?imageView2/2/w/1080/format/webp"
  19841. ],
  19842. "image_list": [
  19843. {
  19844. "image_url": "https://ci.xiaohongshu.com/1040g2sg31b3qtj367ae05p6u7u5g9t1ovte6nm8?imageView2/2/w/1080/format/webp"
  19845. },
  19846. {
  19847. "image_url": "https://ci.xiaohongshu.com/1040g2sg31b3qtj367aeg5p6u7u5g9t1odhe09f0?imageView2/2/w/1080/format/webp"
  19848. },
  19849. {
  19850. "image_url": "https://ci.xiaohongshu.com/1040g2sg31b3qtj367af05p6u7u5g9t1o2gngd7o?imageView2/2/w/1080/format/webp"
  19851. },
  19852. {
  19853. "image_url": "https://ci.xiaohongshu.com/1040g2sg31b3qtj367afg5p6u7u5g9t1oub6b2m8?imageView2/2/w/1080/format/webp"
  19854. }
  19855. ],
  19856. "interact_info": {
  19857. "liked_count": 75,
  19858. "collected_count": 24,
  19859. "comment_count": 0,
  19860. "shared_count": 5
  19861. },
  19862. "extraction": null,
  19863. "is_knowledge": true,
  19864. "knowledge_reason": "帖子分享了使用'炫图ai'进行抠图和提画质的工具和操作步骤,属于图像处理的实用技巧,可复用于制作表情包等创作。",
  19865. "post_relevance_score": 0.4,
  19866. "relevance_level": "中度相关",
  19867. "relevance_reason": "帖子内容与“制作反映人类双标行为的猫咪表情包梗图”的原始问题中关于“猫咪表情包梗图”的制作有一定关联性。它提供了基础的图像处理方法(抠图、提画质),这些是制作表情包的重要步骤。然而,帖子并未触及“反映人类双标行为”这一核心概念,也没有提供如何将猫咪形象与双标行为结合的创意或具体指导,因此相关性不高。"
  19868. },
  19869. "post_68ee4f9400000000050318ba_6_6": {
  19870. "type": "post",
  19871. "query": "[R] ",
  19872. "level": 23,
  19873. "relevance_score": 0,
  19874. "strategy": "帖子",
  19875. "iteration": 2,
  19876. "is_selected": true,
  19877. "note_id": "68ee4f9400000000050318ba",
  19878. "note_url": "https://www.xiaohongshu.com/explore/68ee4f9400000000050318ba",
  19879. "body_text": "无字白底猫memeP图素材来啦! 找图不易,取图喵喵喵[派对R] 期待宝宝的返图[皱眉R] 转载自@哥叫鱼烧你记住 #谁",
  19880. "images": [
  19881. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031nkddnnjmg6g5p3uoaf46r01iij4cm0?imageView2/2/w/1080/format/webp",
  19882. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831nkddnp0l8kg5p3uoaf46r01cee0iv8?imageView2/2/w/1080/format/webp",
  19883. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831nkddnrelm805p3uoaf46r01a4mqjq8?imageView2/2/w/1080/format/webp",
  19884. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831nkddnrelm7g5p3uoaf46r01emisi4o?imageView2/2/w/1080/format/webp",
  19885. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831nkddnrelm905p3uoaf46r01vvh1fmo?imageView2/2/w/1080/format/webp",
  19886. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831nkddnrelmag5p3uoaf46r01ol44jm0?imageView2/2/w/1080/format/webp",
  19887. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831nkddnrelmb05p3uoaf46r0168fvpmo?imageView2/2/w/1080/format/webp",
  19888. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831nkddnrelm9g5p3uoaf46r01fer6mv8?imageView2/2/w/1080/format/webp",
  19889. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831nkddnrelmbg5p3uoaf46r0130s6tu0?imageView2/2/w/1080/format/webp",
  19890. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831nkddnrelmc05p3uoaf46r01d5bgnpo?imageView2/2/w/1080/format/webp",
  19891. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831nkddnrelmcg5p3uoaf46r0110avtco?imageView2/2/w/1080/format/webp",
  19892. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831nkddnrelmd05p3uoaf46r01469p3j0?imageView2/2/w/1080/format/webp",
  19893. "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831nkddnrelmdg5p3uoaf46r015mpfhao?imageView2/2/w/1080/format/webp"
  19894. ],
  19895. "image_list": [
  19896. {
  19897. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k031nkddnnjmg6g5p3uoaf46r01iij4cm0?imageView2/2/w/1080/format/webp"
  19898. },
  19899. {
  19900. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831nkddnp0l8kg5p3uoaf46r01cee0iv8?imageView2/2/w/1080/format/webp"
  19901. },
  19902. {
  19903. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831nkddnrelm805p3uoaf46r01a4mqjq8?imageView2/2/w/1080/format/webp"
  19904. },
  19905. {
  19906. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831nkddnrelm7g5p3uoaf46r01emisi4o?imageView2/2/w/1080/format/webp"
  19907. },
  19908. {
  19909. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831nkddnrelm905p3uoaf46r01vvh1fmo?imageView2/2/w/1080/format/webp"
  19910. },
  19911. {
  19912. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831nkddnrelmag5p3uoaf46r01ol44jm0?imageView2/2/w/1080/format/webp"
  19913. },
  19914. {
  19915. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831nkddnrelmb05p3uoaf46r0168fvpmo?imageView2/2/w/1080/format/webp"
  19916. },
  19917. {
  19918. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831nkddnrelm9g5p3uoaf46r01fer6mv8?imageView2/2/w/1080/format/webp"
  19919. },
  19920. {
  19921. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831nkddnrelmbg5p3uoaf46r0130s6tu0?imageView2/2/w/1080/format/webp"
  19922. },
  19923. {
  19924. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831nkddnrelmc05p3uoaf46r01d5bgnpo?imageView2/2/w/1080/format/webp"
  19925. },
  19926. {
  19927. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831nkddnrelmcg5p3uoaf46r0110avtco?imageView2/2/w/1080/format/webp"
  19928. },
  19929. {
  19930. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831nkddnrelmd05p3uoaf46r01469p3j0?imageView2/2/w/1080/format/webp"
  19931. },
  19932. {
  19933. "image_url": "https://ci.xiaohongshu.com/notes_pre_post/1040g3k831nkddnrelmdg5p3uoaf46r015mpfhao?imageView2/2/w/1080/format/webp"
  19934. }
  19935. ],
  19936. "interact_info": {
  19937. "liked_count": 120,
  19938. "collected_count": 48,
  19939. "comment_count": 4,
  19940. "shared_count": 14
  19941. },
  19942. "extraction": null,
  19943. "is_knowledge": false,
  19944. "knowledge_reason": "帖子提供了P图素材,但没有包含可复用的创作方法、技巧、工具使用、流程步骤或教程指导等知识内容。",
  19945. "post_relevance_score": 0.5,
  19946. "relevance_level": "中度相关",
  19947. "relevance_reason": "帖子提供了一系列猫咪P图素材,这些素材可以用于制作猫咪表情包梗图,与原始问题的目标制作梗图相关。但是,帖子并未直接指导如何制作反映人类双标行为的表情包,也没有提供具体的P图技巧或双标行为的体现方式,属于中度相关。"
  19948. },
  19949. "post_6803ae1a000000001c036da7_6_7": {
  19950. "type": "post",
  19951. "query": "[R] 可爱咪咪表情包第三弹",
  19952. "level": 23,
  19953. "relevance_score": 0,
  19954. "strategy": "帖子",
  19955. "iteration": 2,
  19956. "is_selected": true,
  19957. "note_id": "6803ae1a000000001c036da7",
  19958. "note_url": "https://www.xiaohongshu.com/explore/6803ae1a000000001c036da7",
  19959. "body_text": "自制表情包#猫咪表情包 #可爱猫咪 #谁说猫猫没有表情的 #表情包 #宠物表情包 #猫猫可以有多可爱 #猫猫",
  19960. "images": [
  19961. "https://ci.xiaohongshu.com/1040g2sg31gf97stqjae05pk54p23cr3n6emm32o?imageView2/2/w/1080/format/webp",
  19962. "https://ci.xiaohongshu.com/1040g2sg31gf97stqjaeg5pk54p23cr3nk3d3mt8?imageView2/2/w/1080/format/webp",
  19963. "https://ci.xiaohongshu.com/1040g2sg31gf97stqjaf05pk54p23cr3n0tlsj2o?imageView2/2/w/1080/format/webp",
  19964. "https://ci.xiaohongshu.com/1040g2sg31gf97stqjafg5pk54p23cr3n64c1pso?imageView2/2/w/1080/format/webp",
  19965. "https://ci.xiaohongshu.com/1040g2sg31gf97stqjag05pk54p23cr3nkjebcig?imageView2/2/w/1080/format/webp",
  19966. "https://ci.xiaohongshu.com/1040g2sg31gf97stqjagg5pk54p23cr3nv4fnpu8?imageView2/2/w/1080/format/webp",
  19967. "https://ci.xiaohongshu.com/1040g2sg31gf97stqjah05pk54p23cr3njutea58?imageView2/2/w/1080/format/webp"
  19968. ],
  19969. "image_list": [
  19970. {
  19971. "image_url": "https://ci.xiaohongshu.com/1040g2sg31gf97stqjae05pk54p23cr3n6emm32o?imageView2/2/w/1080/format/webp"
  19972. },
  19973. {
  19974. "image_url": "https://ci.xiaohongshu.com/1040g2sg31gf97stqjaeg5pk54p23cr3nk3d3mt8?imageView2/2/w/1080/format/webp"
  19975. },
  19976. {
  19977. "image_url": "https://ci.xiaohongshu.com/1040g2sg31gf97stqjaf05pk54p23cr3n0tlsj2o?imageView2/2/w/1080/format/webp"
  19978. },
  19979. {
  19980. "image_url": "https://ci.xiaohongshu.com/1040g2sg31gf97stqjafg5pk54p23cr3n64c1pso?imageView2/2/w/1080/format/webp"
  19981. },
  19982. {
  19983. "image_url": "https://ci.xiaohongshu.com/1040g2sg31gf97stqjag05pk54p23cr3nkjebcig?imageView2/2/w/1080/format/webp"
  19984. },
  19985. {
  19986. "image_url": "https://ci.xiaohongshu.com/1040g2sg31gf97stqjagg5pk54p23cr3nv4fnpu8?imageView2/2/w/1080/format/webp"
  19987. },
  19988. {
  19989. "image_url": "https://ci.xiaohongshu.com/1040g2sg31gf97stqjah05pk54p23cr3njutea58?imageView2/2/w/1080/format/webp"
  19990. }
  19991. ],
  19992. "interact_info": {
  19993. "liked_count": 2888,
  19994. "collected_count": 631,
  19995. "comment_count": 47,
  19996. "shared_count": 80
  19997. },
  19998. "extraction": null,
  19999. "is_knowledge": false,
  20000. "knowledge_reason": "该帖子是纯分享猫咪表情包的集合,没有提供任何关于如何制作表情包的方法、技巧、工具使用或详细的创作步骤指导,不包含可复用的创作知识。",
  20001. "post_relevance_score": 0.4,
  20002. "relevance_level": "中度相关",
  20003. "relevance_reason": "帖子内容是猫咪表情包,与原始问题中的“猫咪表情包”元素相符,但并未提及如何反映“人类双标行为”,也没有提供任何制作此类表情包的具体方法或创作思路,相关性较低,仅提供素材参考价值。"
  20004. },
  20005. "post_66209a4c00000000040180ad_6_8": {
  20006. "type": "post",
  20007. "query": "[R] 有些图截着截着就变成了表情包",
  20008. "level": 23,
  20009. "relevance_score": 0,
  20010. "strategy": "帖子",
  20011. "iteration": 2,
  20012. "is_selected": true,
  20013. "note_id": "66209a4c00000000040180ad",
  20014. "note_url": "https://www.xiaohongshu.com/explore/66209a4c00000000040180ad",
  20015. "body_text": "唯爱自制表情包#被迫营业的小猫咪 #我家猫咪真可爱 #我的宠物真可爱 #表情包 #猫咪表情包 #羽毛球表情包",
  20016. "images": [
  20017. "https://ci.xiaohongshu.com/1040g008311nhq90ugce05n3u8tek38otlomtu78?imageView2/2/w/1080/format/webp",
  20018. "https://ci.xiaohongshu.com/1040g008311nh2fg60c0g5n3u8tek38otm0de2u8?imageView2/2/w/1080/format/webp",
  20019. "https://ci.xiaohongshu.com/1040g008311nh2fg60c105n3u8tek38otsglbhr8?imageView2/2/w/1080/format/webp",
  20020. "https://ci.xiaohongshu.com/1040g008311nh2fg60c1g5n3u8tek38ot2la3drg?imageView2/2/w/1080/format/webp",
  20021. "https://ci.xiaohongshu.com/1040g008311nh2fg60c205n3u8tek38ot3p4hk8o?imageView2/2/w/1080/format/webp",
  20022. "https://ci.xiaohongshu.com/1040g008311nh2fg60c2g5n3u8tek38otai81kig?imageView2/2/w/1080/format/webp",
  20023. "https://ci.xiaohongshu.com/1040g008311nh2fg60c305n3u8tek38ot4vt5c4o?imageView2/2/w/1080/format/webp",
  20024. "https://ci.xiaohongshu.com/1040g008311nh2fg60c3g5n3u8tek38otss3q720?imageView2/2/w/1080/format/webp",
  20025. "https://ci.xiaohongshu.com/1040g008311nh2fg60c405n3u8tek38otb0j9rio?imageView2/2/w/1080/format/webp",
  20026. "https://ci.xiaohongshu.com/1040g008311nh2fg60c4g5n3u8tek38otai6pb9o?imageView2/2/w/1080/format/webp",
  20027. "https://ci.xiaohongshu.com/1040g008311nh2fg60c505n3u8tek38otcu2593o?imageView2/2/w/1080/format/webp",
  20028. "https://ci.xiaohongshu.com/1040g008311nh2fg60c5g5n3u8tek38otg5gd95g?imageView2/2/w/1080/format/webp",
  20029. "https://ci.xiaohongshu.com/1040g008311nh2fg60c605n3u8tek38otlr4pi88?imageView2/2/w/1080/format/webp",
  20030. "https://ci.xiaohongshu.com/1040g008311nh2fg60c6g5n3u8tek38ot59q9o08?imageView2/2/w/1080/format/webp",
  20031. "https://ci.xiaohongshu.com/1040g2sg311nh2fi80e005n3u8tek38otvioot4g?imageView2/2/w/1080/format/webp"
  20032. ],
  20033. "image_list": [
  20034. {
  20035. "image_url": "https://ci.xiaohongshu.com/1040g008311nhq90ugce05n3u8tek38otlomtu78?imageView2/2/w/1080/format/webp"
  20036. },
  20037. {
  20038. "image_url": "https://ci.xiaohongshu.com/1040g008311nh2fg60c0g5n3u8tek38otm0de2u8?imageView2/2/w/1080/format/webp"
  20039. },
  20040. {
  20041. "image_url": "https://ci.xiaohongshu.com/1040g008311nh2fg60c105n3u8tek38otsglbhr8?imageView2/2/w/1080/format/webp"
  20042. },
  20043. {
  20044. "image_url": "https://ci.xiaohongshu.com/1040g008311nh2fg60c1g5n3u8tek38ot2la3drg?imageView2/2/w/1080/format/webp"
  20045. },
  20046. {
  20047. "image_url": "https://ci.xiaohongshu.com/1040g008311nh2fg60c205n3u8tek38ot3p4hk8o?imageView2/2/w/1080/format/webp"
  20048. },
  20049. {
  20050. "image_url": "https://ci.xiaohongshu.com/1040g008311nh2fg60c2g5n3u8tek38otai81kig?imageView2/2/w/1080/format/webp"
  20051. },
  20052. {
  20053. "image_url": "https://ci.xiaohongshu.com/1040g008311nh2fg60c305n3u8tek38ot4vt5c4o?imageView2/2/w/1080/format/webp"
  20054. },
  20055. {
  20056. "image_url": "https://ci.xiaohongshu.com/1040g008311nh2fg60c3g5n3u8tek38otss3q720?imageView2/2/w/1080/format/webp"
  20057. },
  20058. {
  20059. "image_url": "https://ci.xiaohongshu.com/1040g008311nh2fg60c405n3u8tek38otb0j9rio?imageView2/2/w/1080/format/webp"
  20060. },
  20061. {
  20062. "image_url": "https://ci.xiaohongshu.com/1040g008311nh2fg60c4g5n3u8tek38otai6pb9o?imageView2/2/w/1080/format/webp"
  20063. },
  20064. {
  20065. "image_url": "https://ci.xiaohongshu.com/1040g008311nh2fg60c505n3u8tek38otcu2593o?imageView2/2/w/1080/format/webp"
  20066. },
  20067. {
  20068. "image_url": "https://ci.xiaohongshu.com/1040g008311nh2fg60c5g5n3u8tek38otg5gd95g?imageView2/2/w/1080/format/webp"
  20069. },
  20070. {
  20071. "image_url": "https://ci.xiaohongshu.com/1040g008311nh2fg60c605n3u8tek38otlr4pi88?imageView2/2/w/1080/format/webp"
  20072. },
  20073. {
  20074. "image_url": "https://ci.xiaohongshu.com/1040g008311nh2fg60c6g5n3u8tek38ot59q9o08?imageView2/2/w/1080/format/webp"
  20075. },
  20076. {
  20077. "image_url": "https://ci.xiaohongshu.com/1040g2sg311nh2fi80e005n3u8tek38otvioot4g?imageView2/2/w/1080/format/webp"
  20078. }
  20079. ],
  20080. "interact_info": {
  20081. "liked_count": 210,
  20082. "collected_count": 19,
  20083. "comment_count": 21,
  20084. "shared_count": 27
  20085. },
  20086. "extraction": null,
  20087. "is_knowledge": false,
  20088. "knowledge_reason": "帖子属于个人日常分享和娱乐,展示了作者利用猫咪照片制作的表情包。内容没有提供任何关于表情包制作的步骤、技巧或工具使用方法,不包含可复用的创作知识。",
  20089. "post_relevance_score": 0.3,
  20090. "relevance_level": "低度相关",
  20091. "relevance_reason": "帖子内容与原始问题“如何制作反映人类双标行为的猫咪表情包梗图”相关性较低。帖子只是展示了作者制作的猫咪表情包,虽然是猫咪表情包,但没有提及“双标行为”的创作主题,也未提供任何制作方法或思路指导,无法解决原始问题。"
  20092. },
  20093. "post_618ff44f0000000001029e17_6_9": {
  20094. "type": "post",
  20095. "query": "[R] 猫咪大嘴表情包3",
  20096. "level": 23,
  20097. "relevance_score": 0,
  20098. "strategy": "帖子",
  20099. "iteration": 2,
  20100. "is_selected": true,
  20101. "note_id": "618ff44f0000000001029e17",
  20102. "note_url": "https://www.xiaohongshu.com/explore/618ff44f0000000001029e17",
  20103. "body_text": "可以自制表情包哦,可私拿原图,我登红薯🍠我都会回滴!!!#我最爱的表情包 #猫咪表情包",
  20104. "images": [
  20105. "https://ci.xiaohongshu.com/7f6bc9f2-45e2-37f5-94eb-41b72120ad56?imageView2/2/w/1080/format/webp",
  20106. "https://ci.xiaohongshu.com/30fe86dc-60af-3fc9-8573-03f27d7b4f56?imageView2/2/w/1080/format/webp",
  20107. "https://ci.xiaohongshu.com/78298768-e442-3a8c-b97f-7d917bc1f487?imageView2/2/w/1080/format/webp",
  20108. "https://ci.xiaohongshu.com/cba06721-b5f4-31e0-a138-390e6cc5a2de?imageView2/2/w/1080/format/webp",
  20109. "https://ci.xiaohongshu.com/f0cef77d-2d57-3bdd-8c6d-2e1b9173792a?imageView2/2/w/1080/format/webp",
  20110. "https://ci.xiaohongshu.com/fa9a52c3-62c0-34da-8578-7a8e15d679f9?imageView2/2/w/1080/format/webp",
  20111. "https://ci.xiaohongshu.com/fbc6daf0-b6dc-34f2-bf47-d7fa0205e4a7?imageView2/2/w/1080/format/webp",
  20112. "https://ci.xiaohongshu.com/7cbb8eaf-503f-389b-b576-5a6c87f3e6e2?imageView2/2/w/1080/format/webp",
  20113. "https://ci.xiaohongshu.com/6a909195-e455-3c54-bd61-7f4fba6c140e?imageView2/2/w/1080/format/webp"
  20114. ],
  20115. "image_list": [
  20116. {
  20117. "image_url": "https://ci.xiaohongshu.com/7f6bc9f2-45e2-37f5-94eb-41b72120ad56?imageView2/2/w/1080/format/webp"
  20118. },
  20119. {
  20120. "image_url": "https://ci.xiaohongshu.com/30fe86dc-60af-3fc9-8573-03f27d7b4f56?imageView2/2/w/1080/format/webp"
  20121. },
  20122. {
  20123. "image_url": "https://ci.xiaohongshu.com/78298768-e442-3a8c-b97f-7d917bc1f487?imageView2/2/w/1080/format/webp"
  20124. },
  20125. {
  20126. "image_url": "https://ci.xiaohongshu.com/cba06721-b5f4-31e0-a138-390e6cc5a2de?imageView2/2/w/1080/format/webp"
  20127. },
  20128. {
  20129. "image_url": "https://ci.xiaohongshu.com/f0cef77d-2d57-3bdd-8c6d-2e1b9173792a?imageView2/2/w/1080/format/webp"
  20130. },
  20131. {
  20132. "image_url": "https://ci.xiaohongshu.com/fa9a52c3-62c0-34da-8578-7a8e15d679f9?imageView2/2/w/1080/format/webp"
  20133. },
  20134. {
  20135. "image_url": "https://ci.xiaohongshu.com/fbc6daf0-b6dc-34f2-bf47-d7fa0205e4a7?imageView2/2/w/1080/format/webp"
  20136. },
  20137. {
  20138. "image_url": "https://ci.xiaohongshu.com/7cbb8eaf-503f-389b-b576-5a6c87f3e6e2?imageView2/2/w/1080/format/webp"
  20139. },
  20140. {
  20141. "image_url": "https://ci.xiaohongshu.com/6a909195-e455-3c54-bd61-7f4fba6c140e?imageView2/2/w/1080/format/webp"
  20142. }
  20143. ],
  20144. "interact_info": {
  20145. "liked_count": 2930,
  20146. "collected_count": 790,
  20147. "comment_count": 216,
  20148. "shared_count": 163
  20149. },
  20150. "extraction": null,
  20151. "is_knowledge": false,
  20152. "knowledge_reason": "帖子正文仅表示可以私拿原图和自制表情包,并无提供任何关于表情包制作的方法、技巧、工具使用或流程步骤等具体创作知识。",
  20153. "post_relevance_score": 0.4,
  20154. "relevance_level": "中度相关",
  20155. "relevance_reason": "帖子提供了猫咪表情包的图片素材,但并未涉及如何反映人类双标行为的创意内容指导,也没有制作这类梗图的具体方法或工具,因此参考价值有限。"
  20156. },
  20157. "step_next_round_r2": {
  20158. "type": "step",
  20159. "query": "步骤4: 构建下一轮 (82个查询)",
  20160. "level": 21,
  20161. "relevance_score": 0,
  20162. "strategy": "构建下一轮",
  20163. "iteration": 2,
  20164. "is_selected": true
  20165. },
  20166. "next_round_制作猫咪表情包梗图_r2_0": {
  20167. "type": "next_round_item",
  20168. "query": "[Q] 制作猫咪表情包梗图",
  20169. "level": 22,
  20170. "relevance_score": 0.944,
  20171. "strategy": "域内组合",
  20172. "iteration": 2,
  20173. "is_selected": true,
  20174. "type_label": "[核心动作+中心名词]",
  20175. "item_type": "combination",
  20176. "is_suggestion": false,
  20177. "suggestion_label": ""
  20178. },
  20179. "next_round_制作猫咪表情包_r2_1": {
  20180. "type": "next_round_item",
  20181. "query": "[Q] 制作猫咪表情包",
  20182. "level": 22,
  20183. "relevance_score": 0.8800935999999999,
  20184. "strategy": "域内组合",
  20185. "iteration": 2,
  20186. "is_selected": true,
  20187. "type_label": "[核心动作+中心名词]",
  20188. "item_type": "combination",
  20189. "is_suggestion": false,
  20190. "suggestion_label": ""
  20191. },
  20192. "next_round_制作猫咪梗图_r2_2": {
  20193. "type": "next_round_item",
  20194. "query": "[Q] 制作猫咪梗图",
  20195. "level": 22,
  20196. "relevance_score": 0.8800935999999999,
  20197. "strategy": "域内组合",
  20198. "iteration": 2,
  20199. "is_selected": true,
  20200. "type_label": "[核心动作+中心名词]",
  20201. "item_type": "combination",
  20202. "is_suggestion": false,
  20203. "suggestion_label": ""
  20204. },
  20205. "next_round_制作表情包梗图_r2_3": {
  20206. "type": "next_round_item",
  20207. "query": "[Q] 制作表情包梗图",
  20208. "level": 22,
  20209. "relevance_score": 0.8146599999999999,
  20210. "strategy": "域内组合",
  20211. "iteration": 2,
  20212. "is_selected": true,
  20213. "type_label": "[核心动作+中心名词]",
  20214. "item_type": "combination",
  20215. "is_suggestion": false,
  20216. "suggestion_label": ""
  20217. },
  20218. "next_round_制作表情包_r2_4": {
  20219. "type": "next_round_item",
  20220. "query": "[Q] 制作表情包",
  20221. "level": 22,
  20222. "relevance_score": 0.7911999999999999,
  20223. "strategy": "域内组合",
  20224. "iteration": 2,
  20225. "is_selected": true,
  20226. "type_label": "[核心动作+中心名词]",
  20227. "item_type": "combination",
  20228. "is_suggestion": false,
  20229. "suggestion_label": ""
  20230. },
  20231. "next_round_制作反映人类双标行为_r2_5": {
  20232. "type": "next_round_item",
  20233. "query": "[Q] 制作反映人类双标行为",
  20234. "level": 22,
  20235. "relevance_score": 0.782236,
  20236. "strategy": "域内组合",
  20237. "iteration": 2,
  20238. "is_selected": true,
  20239. "type_label": "[核心动作+修饰短语]",
  20240. "item_type": "combination",
  20241. "is_suggestion": false,
  20242. "suggestion_label": ""
  20243. },
  20244. "next_round_制作反映人类双标_r2_6": {
  20245. "type": "next_round_item",
  20246. "query": "[Q] 制作反映人类双标",
  20247. "level": 22,
  20248. "relevance_score": 0.7630792,
  20249. "strategy": "域内组合",
  20250. "iteration": 2,
  20251. "is_selected": true,
  20252. "type_label": "[核心动作+修饰短语]",
  20253. "item_type": "combination",
  20254. "is_suggestion": false,
  20255. "suggestion_label": ""
  20256. },
  20257. "next_round_制作人类双标_r2_7": {
  20258. "type": "next_round_item",
  20259. "query": "[Q] 制作人类双标",
  20260. "level": 22,
  20261. "relevance_score": 0.7561959999999999,
  20262. "strategy": "域内组合",
  20263. "iteration": 2,
  20264. "is_selected": true,
  20265. "type_label": "[核心动作+修饰短语]",
  20266. "item_type": "combination",
  20267. "is_suggestion": false,
  20268. "suggestion_label": ""
  20269. },
  20270. "next_round_制作人类双标行为_r2_8": {
  20271. "type": "next_round_item",
  20272. "query": "[Q] 制作人类双标行为",
  20273. "level": 22,
  20274. "relevance_score": 0.7561959999999999,
  20275. "strategy": "域内组合",
  20276. "iteration": 2,
  20277. "is_selected": true,
  20278. "type_label": "[核心动作+修饰短语]",
  20279. "item_type": "combination",
  20280. "is_suggestion": false,
  20281. "suggestion_label": ""
  20282. },
  20283. "next_round_制作反映双标_r2_9": {
  20284. "type": "next_round_item",
  20285. "query": "[Q] 制作反映双标",
  20286. "level": 22,
  20287. "relevance_score": 0.7443309999999999,
  20288. "strategy": "域内组合",
  20289. "iteration": 2,
  20290. "is_selected": true,
  20291. "type_label": "[核心动作+修饰短语]",
  20292. "item_type": "combination",
  20293. "is_suggestion": false,
  20294. "suggestion_label": ""
  20295. },
  20296. "next_round_制作反映双标行为_r2_10": {
  20297. "type": "next_round_item",
  20298. "query": "[Q] 制作反映双标行为",
  20299. "level": 22,
  20300. "relevance_score": 0.7400964999999999,
  20301. "strategy": "域内组合",
  20302. "iteration": 2,
  20303. "is_selected": true,
  20304. "type_label": "[核心动作+修饰短语]",
  20305. "item_type": "combination",
  20306. "is_suggestion": false,
  20307. "suggestion_label": ""
  20308. },
  20309. "next_round_制作双标行为_r2_11": {
  20310. "type": "next_round_item",
  20311. "query": "[Q] 制作双标行为",
  20312. "level": 22,
  20313. "relevance_score": 0.7235799999999999,
  20314. "strategy": "域内组合",
  20315. "iteration": 2,
  20316. "is_selected": true,
  20317. "type_label": "[核心动作+修饰短语]",
  20318. "item_type": "combination",
  20319. "is_suggestion": false,
  20320. "suggestion_label": ""
  20321. },
  20322. "next_round_制作反映人类行为_r2_12": {
  20323. "type": "next_round_item",
  20324. "query": "[Q] 制作反映人类行为",
  20325. "level": 22,
  20326. "relevance_score": 0.717784,
  20327. "strategy": "域内组合",
  20328. "iteration": 2,
  20329. "is_selected": true,
  20330. "type_label": "[核心动作+修饰短语]",
  20331. "item_type": "combination",
  20332. "is_suggestion": false,
  20333. "suggestion_label": ""
  20334. },
  20335. "next_round_反映人类双标猫咪表情包_r2_13": {
  20336. "type": "next_round_item",
  20337. "query": "[Q] 反映人类双标猫咪表情包",
  20338. "level": 22,
  20339. "relevance_score": 0.28565279999999993,
  20340. "strategy": "域内组合",
  20341. "iteration": 2,
  20342. "is_selected": true,
  20343. "type_label": "[修饰短语+中心名词]",
  20344. "item_type": "combination",
  20345. "is_suggestion": false,
  20346. "suggestion_label": ""
  20347. },
  20348. "next_round_反映双标猫咪梗图_r2_14": {
  20349. "type": "next_round_item",
  20350. "query": "[Q] 反映双标猫咪梗图",
  20351. "level": 22,
  20352. "relevance_score": 0.27439559999999996,
  20353. "strategy": "域内组合",
  20354. "iteration": 2,
  20355. "is_selected": true,
  20356. "type_label": "[修饰短语+中心名词]",
  20357. "item_type": "combination",
  20358. "is_suggestion": false,
  20359. "suggestion_label": ""
  20360. },
  20361. "next_round_如何猫咪表情包梗图_r2_15": {
  20362. "type": "next_round_item",
  20363. "query": "[Q] 如何猫咪表情包梗图",
  20364. "level": 22,
  20365. "relevance_score": 0.258,
  20366. "strategy": "域内组合",
  20367. "iteration": 2,
  20368. "is_selected": true,
  20369. "type_label": "[疑问引导+中心名词]",
  20370. "item_type": "combination",
  20371. "is_suggestion": false,
  20372. "suggestion_label": ""
  20373. },
  20374. "next_round_反映人类双标行为表情包梗图_r2_16": {
  20375. "type": "next_round_item",
  20376. "query": "[Q] 反映人类双标行为表情包梗图",
  20377. "level": 22,
  20378. "relevance_score": 0.22783679999999998,
  20379. "strategy": "域内组合",
  20380. "iteration": 2,
  20381. "is_selected": true,
  20382. "type_label": "[修饰短语+中心名词]",
  20383. "item_type": "combination",
  20384. "is_suggestion": false,
  20385. "suggestion_label": ""
  20386. },
  20387. "next_round_如何猫咪表情包_r2_17": {
  20388. "type": "next_round_item",
  20389. "query": "[Q] 如何猫咪表情包",
  20390. "level": 22,
  20391. "relevance_score": 0.22427759999999997,
  20392. "strategy": "域内组合",
  20393. "iteration": 2,
  20394. "is_selected": true,
  20395. "type_label": "[疑问引导+中心名词]",
  20396. "item_type": "combination",
  20397. "is_suggestion": false,
  20398. "suggestion_label": ""
  20399. },
  20400. "next_round_如何猫咪梗图_r2_18": {
  20401. "type": "next_round_item",
  20402. "query": "[Q] 如何猫咪梗图",
  20403. "level": 22,
  20404. "relevance_score": 0.22427759999999997,
  20405. "strategy": "域内组合",
  20406. "iteration": 2,
  20407. "is_selected": true,
  20408. "type_label": "[疑问引导+中心名词]",
  20409. "item_type": "combination",
  20410. "is_suggestion": false,
  20411. "suggestion_label": ""
  20412. },
  20413. "next_round_反映双标行为表情包梗图_r2_19": {
  20414. "type": "next_round_item",
  20415. "query": "[Q] 反映双标行为表情包梗图",
  20416. "level": 22,
  20417. "relevance_score": 0.217728,
  20418. "strategy": "域内组合",
  20419. "iteration": 2,
  20420. "is_selected": true,
  20421. "type_label": "[修饰短语+中心名词]",
  20422. "item_type": "combination",
  20423. "is_suggestion": false,
  20424. "suggestion_label": ""
  20425. },
  20426. "next_round_反映行为猫咪梗图_r2_20": {
  20427. "type": "next_round_item",
  20428. "query": "[Q] 反映行为猫咪梗图",
  20429. "level": 22,
  20430. "relevance_score": 0.1881792,
  20431. "strategy": "域内组合",
  20432. "iteration": 2,
  20433. "is_selected": true,
  20434. "type_label": "[修饰短语+中心名词]",
  20435. "item_type": "combination",
  20436. "is_suggestion": false,
  20437. "suggestion_label": ""
  20438. },
  20439. "next_round_如何表情包梗图_r2_21": {
  20440. "type": "next_round_item",
  20441. "query": "[Q] 如何表情包梗图",
  20442. "level": 22,
  20443. "relevance_score": 0.1705725,
  20444. "strategy": "域内组合",
  20445. "iteration": 2,
  20446. "is_selected": true,
  20447. "type_label": "[疑问引导+中心名词]",
  20448. "item_type": "combination",
  20449. "is_suggestion": false,
  20450. "suggestion_label": ""
  20451. },
  20452. "next_round_反映行为表情包梗图_r2_22": {
  20453. "type": "next_round_item",
  20454. "query": "[Q] 反映行为表情包梗图",
  20455. "level": 22,
  20456. "relevance_score": 0.153468,
  20457. "strategy": "域内组合",
  20458. "iteration": 2,
  20459. "is_selected": true,
  20460. "type_label": "[修饰短语+中心名词]",
  20461. "item_type": "combination",
  20462. "is_suggestion": false,
  20463. "suggestion_label": ""
  20464. },
  20465. "next_round_如何反映人类双标行为_r2_23": {
  20466. "type": "next_round_item",
  20467. "query": "[Q] 如何反映人类双标行为",
  20468. "level": 22,
  20469. "relevance_score": 0.1122,
  20470. "strategy": "域内组合",
  20471. "iteration": 2,
  20472. "is_selected": true,
  20473. "type_label": "[疑问引导+修饰短语]",
  20474. "item_type": "combination",
  20475. "is_suggestion": false,
  20476. "suggestion_label": ""
  20477. },
  20478. "next_round_如何反映人类双标_r2_24": {
  20479. "type": "next_round_item",
  20480. "query": "[Q] 如何反映人类双标",
  20481. "level": 22,
  20482. "relevance_score": 0.109956,
  20483. "strategy": "域内组合",
  20484. "iteration": 2,
  20485. "is_selected": true,
  20486. "type_label": "[疑问引导+修饰短语]",
  20487. "item_type": "combination",
  20488. "is_suggestion": false,
  20489. "suggestion_label": ""
  20490. },
  20491. "next_round_如何反映双标_r2_25": {
  20492. "type": "next_round_item",
  20493. "query": "[Q] 如何反映双标",
  20494. "level": 22,
  20495. "relevance_score": 0.10038000000000001,
  20496. "strategy": "域内组合",
  20497. "iteration": 2,
  20498. "is_selected": true,
  20499. "type_label": "[疑问引导+修饰短语]",
  20500. "item_type": "combination",
  20501. "is_suggestion": false,
  20502. "suggestion_label": ""
  20503. },
  20504. "next_round_如何反映双标行为_r2_26": {
  20505. "type": "next_round_item",
  20506. "query": "[Q] 如何反映双标行为",
  20507. "level": 22,
  20508. "relevance_score": 0.096078,
  20509. "strategy": "域内组合",
  20510. "iteration": 2,
  20511. "is_selected": true,
  20512. "type_label": "[疑问引导+修饰短语]",
  20513. "item_type": "combination",
  20514. "is_suggestion": false,
  20515. "suggestion_label": ""
  20516. },
  20517. "next_round_如何反映人类行为_r2_27": {
  20518. "type": "next_round_item",
  20519. "query": "[Q] 如何反映人类行为",
  20520. "level": 22,
  20521. "relevance_score": 0.080541,
  20522. "strategy": "域内组合",
  20523. "iteration": 2,
  20524. "is_selected": true,
  20525. "type_label": "[疑问引导+修饰短语]",
  20526. "item_type": "combination",
  20527. "is_suggestion": false,
  20528. "suggestion_label": ""
  20529. },
  20530. "next_round_如何反映_r2_28": {
  20531. "type": "next_round_item",
  20532. "query": "[Q] 如何反映",
  20533. "level": 22,
  20534. "relevance_score": 0.03408,
  20535. "strategy": "域内组合",
  20536. "iteration": 2,
  20537. "is_selected": true,
  20538. "type_label": "[疑问引导+修饰短语]",
  20539. "item_type": "combination",
  20540. "is_suggestion": false,
  20541. "suggestion_label": ""
  20542. },
  20543. "next_round_如何梗图_r2_29": {
  20544. "type": "next_round_item",
  20545. "query": "[Q] 如何梗图",
  20546. "level": 22,
  20547. "relevance_score": 0.0336,
  20548. "strategy": "域内组合",
  20549. "iteration": 2,
  20550. "is_selected": true,
  20551. "type_label": "[疑问引导+中心名词]",
  20552. "item_type": "combination",
  20553. "is_suggestion": false,
  20554. "suggestion_label": ""
  20555. },
  20556. "next_round_如何人类双标行为_r2_30": {
  20557. "type": "next_round_item",
  20558. "query": "[Q] 如何人类双标行为",
  20559. "level": 22,
  20560. "relevance_score": 0.029925,
  20561. "strategy": "域内组合",
  20562. "iteration": 2,
  20563. "is_selected": true,
  20564. "type_label": "[疑问引导+修饰短语]",
  20565. "item_type": "combination",
  20566. "is_suggestion": false,
  20567. "suggestion_label": ""
  20568. },
  20569. "next_round_如何反映行为_r2_31": {
  20570. "type": "next_round_item",
  20571. "query": "[Q] 如何反映行为",
  20572. "level": 22,
  20573. "relevance_score": 0.028423199999999996,
  20574. "strategy": "域内组合",
  20575. "iteration": 2,
  20576. "is_selected": true,
  20577. "type_label": "[疑问引导+修饰短语]",
  20578. "item_type": "combination",
  20579. "is_suggestion": false,
  20580. "suggestion_label": ""
  20581. },
  20582. "next_round_如何人类双标_r2_32": {
  20583. "type": "next_round_item",
  20584. "query": "[Q] 如何人类双标",
  20585. "level": 22,
  20586. "relevance_score": 0.028350000000000004,
  20587. "strategy": "域内组合",
  20588. "iteration": 2,
  20589. "is_selected": true,
  20590. "type_label": "[疑问引导+修饰短语]",
  20591. "item_type": "combination",
  20592. "is_suggestion": false,
  20593. "suggestion_label": ""
  20594. },
  20595. "next_round_反映人类双标梗图_r2_33": {
  20596. "type": "next_round_item",
  20597. "query": "[Q] 反映人类双标梗图",
  20598. "level": 22,
  20599. "relevance_score": 0.0262548,
  20600. "strategy": "域内组合",
  20601. "iteration": 2,
  20602. "is_selected": true,
  20603. "type_label": "[修饰短语+中心名词]",
  20604. "item_type": "combination",
  20605. "is_suggestion": false,
  20606. "suggestion_label": ""
  20607. },
  20608. "next_round_反映人类双标行为梗图_r2_34": {
  20609. "type": "next_round_item",
  20610. "query": "[Q] 反映人类双标行为梗图",
  20611. "level": 22,
  20612. "relevance_score": 0.0262548,
  20613. "strategy": "域内组合",
  20614. "iteration": 2,
  20615. "is_selected": true,
  20616. "type_label": "[修饰短语+中心名词]",
  20617. "item_type": "combination",
  20618. "is_suggestion": false,
  20619. "suggestion_label": ""
  20620. },
  20621. "next_round_反映双标梗图_r2_35": {
  20622. "type": "next_round_item",
  20623. "query": "[Q] 反映双标梗图",
  20624. "level": 22,
  20625. "relevance_score": 0.02457,
  20626. "strategy": "域内组合",
  20627. "iteration": 2,
  20628. "is_selected": true,
  20629. "type_label": "[修饰短语+中心名词]",
  20630. "item_type": "combination",
  20631. "is_suggestion": false,
  20632. "suggestion_label": ""
  20633. },
  20634. "next_round_人类双标梗图_r2_36": {
  20635. "type": "next_round_item",
  20636. "query": "[Q] 人类双标梗图",
  20637. "level": 22,
  20638. "relevance_score": 0.02457,
  20639. "strategy": "域内组合",
  20640. "iteration": 2,
  20641. "is_selected": true,
  20642. "type_label": "[修饰短语+中心名词]",
  20643. "item_type": "combination",
  20644. "is_suggestion": false,
  20645. "suggestion_label": ""
  20646. },
  20647. "next_round_人类双标行为梗图_r2_37": {
  20648. "type": "next_round_item",
  20649. "query": "[Q] 人类双标行为梗图",
  20650. "level": 22,
  20651. "relevance_score": 0.02457,
  20652. "strategy": "域内组合",
  20653. "iteration": 2,
  20654. "is_selected": true,
  20655. "type_label": "[修饰短语+中心名词]",
  20656. "item_type": "combination",
  20657. "is_suggestion": false,
  20658. "suggestion_label": ""
  20659. },
  20660. "next_round_猫咪表情包制作_r2_38": {
  20661. "type": "next_round_item",
  20662. "query": "[Q] 猫咪表情包制作",
  20663. "level": 22,
  20664. "relevance_score": 0.825,
  20665. "strategy": "高增益SUG",
  20666. "iteration": 2,
  20667. "is_selected": true,
  20668. "type_label": "",
  20669. "item_type": "sug",
  20670. "is_suggestion": true,
  20671. "suggestion_label": "[suggestion]"
  20672. },
  20673. "next_round_梗图描改教程_r2_39": {
  20674. "type": "next_round_item",
  20675. "query": "[Q] 梗图描改教程",
  20676. "level": 22,
  20677. "relevance_score": 0.705,
  20678. "strategy": "高增益SUG",
  20679. "iteration": 2,
  20680. "is_selected": true,
  20681. "type_label": "",
  20682. "item_type": "sug",
  20683. "is_suggestion": true,
  20684. "suggestion_label": "[suggestion]"
  20685. },
  20686. "next_round_可爱又双标的表情包_r2_40": {
  20687. "type": "next_round_item",
  20688. "query": "[Q] 可爱又双标的表情包",
  20689. "level": 22,
  20690. "relevance_score": 0.68,
  20691. "strategy": "高增益SUG",
  20692. "iteration": 2,
  20693. "is_selected": true,
  20694. "type_label": "",
  20695. "item_type": "sug",
  20696. "is_suggestion": true,
  20697. "suggestion_label": "[suggestion]"
  20698. },
  20699. "next_round_怼双标的人表情包_r2_41": {
  20700. "type": "next_round_item",
  20701. "query": "[Q] 怼双标的人表情包",
  20702. "level": 22,
  20703. "relevance_score": 0.655,
  20704. "strategy": "高增益SUG",
  20705. "iteration": 2,
  20706. "is_selected": true,
  20707. "type_label": "",
  20708. "item_type": "sug",
  20709. "is_suggestion": true,
  20710. "suggestion_label": "[suggestion]"
  20711. },
  20712. "next_round_梗图meme原创_r2_42": {
  20713. "type": "next_round_item",
  20714. "query": "[Q] 梗图meme原创",
  20715. "level": 22,
  20716. "relevance_score": 0.654,
  20717. "strategy": "高增益SUG",
  20718. "iteration": 2,
  20719. "is_selected": true,
  20720. "type_label": "",
  20721. "item_type": "sug",
  20722. "is_suggestion": true,
  20723. "suggestion_label": "[suggestion]"
  20724. },
  20725. "next_round_猫咪表情包梗图搞笑_r2_43": {
  20726. "type": "next_round_item",
  20727. "query": "[Q] 猫咪表情包梗图搞笑",
  20728. "level": 22,
  20729. "relevance_score": 0.6000000000000001,
  20730. "strategy": "高增益SUG",
  20731. "iteration": 2,
  20732. "is_selected": true,
  20733. "type_label": "",
  20734. "item_type": "sug",
  20735. "is_suggestion": true,
  20736. "suggestion_label": "[suggestion]"
  20737. },
  20738. "next_round_猫咪表情包图片_r2_44": {
  20739. "type": "next_round_item",
  20740. "query": "[Q] 猫咪表情包图片",
  20741. "level": 22,
  20742. "relevance_score": 0.52,
  20743. "strategy": "高增益SUG",
  20744. "iteration": 2,
  20745. "is_selected": true,
  20746. "type_label": "",
  20747. "item_type": "sug",
  20748. "is_suggestion": true,
  20749. "suggestion_label": "[suggestion]"
  20750. },
  20751. "next_round_猫咪表情包图片_r2_45": {
  20752. "type": "next_round_item",
  20753. "query": "[Q] 猫咪表情包图片",
  20754. "level": 22,
  20755. "relevance_score": 0.52,
  20756. "strategy": "高增益SUG",
  20757. "iteration": 2,
  20758. "is_selected": true,
  20759. "type_label": "",
  20760. "item_type": "sug",
  20761. "is_suggestion": true,
  20762. "suggestion_label": "[suggestion]"
  20763. },
  20764. "next_round_讽刺双标的图片_r2_46": {
  20765. "type": "next_round_item",
  20766. "query": "[Q] 讽刺双标的图片",
  20767. "level": 22,
  20768. "relevance_score": 0.49,
  20769. "strategy": "高增益SUG",
  20770. "iteration": 2,
  20771. "is_selected": true,
  20772. "type_label": "",
  20773. "item_type": "sug",
  20774. "is_suggestion": true,
  20775. "suggestion_label": "[suggestion]"
  20776. },
  20777. "next_round_讽刺双标的图片_r2_47": {
  20778. "type": "next_round_item",
  20779. "query": "[Q] 讽刺双标的图片",
  20780. "level": 22,
  20781. "relevance_score": 0.49,
  20782. "strategy": "高增益SUG",
  20783. "iteration": 2,
  20784. "is_selected": true,
  20785. "type_label": "",
  20786. "item_type": "sug",
  20787. "is_suggestion": true,
  20788. "suggestion_label": "[suggestion]"
  20789. },
  20790. "next_round_双标表情包图片_r2_48": {
  20791. "type": "next_round_item",
  20792. "query": "[Q] 双标表情包图片",
  20793. "level": 22,
  20794. "relevance_score": 0.48,
  20795. "strategy": "高增益SUG",
  20796. "iteration": 2,
  20797. "is_selected": true,
  20798. "type_label": "",
  20799. "item_type": "sug",
  20800. "is_suggestion": true,
  20801. "suggestion_label": "[suggestion]"
  20802. },
  20803. "next_round_猫咪表情包_r2_49": {
  20804. "type": "next_round_item",
  20805. "query": "[Q] 猫咪表情包",
  20806. "level": 22,
  20807. "relevance_score": 0.48,
  20808. "strategy": "高增益SUG",
  20809. "iteration": 2,
  20810. "is_selected": true,
  20811. "type_label": "",
  20812. "item_type": "sug",
  20813. "is_suggestion": true,
  20814. "suggestion_label": "[suggestion]"
  20815. },
  20816. "next_round_梗图描改过程_r2_50": {
  20817. "type": "next_round_item",
  20818. "query": "[Q] 梗图描改过程",
  20819. "level": 22,
  20820. "relevance_score": 0.46,
  20821. "strategy": "高增益SUG",
  20822. "iteration": 2,
  20823. "is_selected": true,
  20824. "type_label": "",
  20825. "item_type": "sug",
  20826. "is_suggestion": true,
  20827. "suggestion_label": "[suggestion]"
  20828. },
  20829. "next_round_猫咪表情包视频_r2_51": {
  20830. "type": "next_round_item",
  20831. "query": "[Q] 猫咪表情包视频",
  20832. "level": 22,
  20833. "relevance_score": 0.455,
  20834. "strategy": "高增益SUG",
  20835. "iteration": 2,
  20836. "is_selected": true,
  20837. "type_label": "",
  20838. "item_type": "sug",
  20839. "is_suggestion": true,
  20840. "suggestion_label": "[suggestion]"
  20841. },
  20842. "next_round_猫咪搞笑表情包_r2_52": {
  20843. "type": "next_round_item",
  20844. "query": "[Q] 猫咪搞笑表情包",
  20845. "level": 22,
  20846. "relevance_score": 0.44999999999999996,
  20847. "strategy": "高增益SUG",
  20848. "iteration": 2,
  20849. "is_selected": true,
  20850. "type_label": "",
  20851. "item_type": "sug",
  20852. "is_suggestion": true,
  20853. "suggestion_label": "[suggestion]"
  20854. },
  20855. "next_round_反映人类双标行为的图片_r2_53": {
  20856. "type": "next_round_item",
  20857. "query": "[Q] 反映人类双标行为的图片",
  20858. "level": 22,
  20859. "relevance_score": 0.44000000000000006,
  20860. "strategy": "高增益SUG",
  20861. "iteration": 2,
  20862. "is_selected": true,
  20863. "type_label": "",
  20864. "item_type": "sug",
  20865. "is_suggestion": true,
  20866. "suggestion_label": "[suggestion]"
  20867. },
  20868. "next_round_猫咪双标行为_r2_54": {
  20869. "type": "next_round_item",
  20870. "query": "[Q] 猫咪双标行为",
  20871. "level": 22,
  20872. "relevance_score": 0.44000000000000006,
  20873. "strategy": "高增益SUG",
  20874. "iteration": 2,
  20875. "is_selected": true,
  20876. "type_label": "",
  20877. "item_type": "sug",
  20878. "is_suggestion": true,
  20879. "suggestion_label": "[suggestion]"
  20880. },
  20881. "next_round_梗图素材抽象_r2_55": {
  20882. "type": "next_round_item",
  20883. "query": "[Q] 梗图素材抽象",
  20884. "level": 22,
  20885. "relevance_score": 0.41000000000000003,
  20886. "strategy": "高增益SUG",
  20887. "iteration": 2,
  20888. "is_selected": true,
  20889. "type_label": "",
  20890. "item_type": "sug",
  20891. "is_suggestion": true,
  20892. "suggestion_label": "[suggestion]"
  20893. },
  20894. "next_round_猫咪咪表情包图片_r2_56": {
  20895. "type": "next_round_item",
  20896. "query": "[Q] 猫咪咪表情包图片",
  20897. "level": 22,
  20898. "relevance_score": 0.41000000000000003,
  20899. "strategy": "高增益SUG",
  20900. "iteration": 2,
  20901. "is_selected": true,
  20902. "type_label": "",
  20903. "item_type": "sug",
  20904. "is_suggestion": true,
  20905. "suggestion_label": "[suggestion]"
  20906. },
  20907. "next_round_猫咪表情包动图_r2_57": {
  20908. "type": "next_round_item",
  20909. "query": "[Q] 猫咪表情包动图",
  20910. "level": 22,
  20911. "relevance_score": 0.41000000000000003,
  20912. "strategy": "高增益SUG",
  20913. "iteration": 2,
  20914. "is_selected": true,
  20915. "type_label": "",
  20916. "item_type": "sug",
  20917. "is_suggestion": true,
  20918. "suggestion_label": "[suggestion]"
  20919. },
  20920. "next_round_表情包梗图动图_r2_58": {
  20921. "type": "next_round_item",
  20922. "query": "[Q] 表情包梗图动图",
  20923. "level": 22,
  20924. "relevance_score": 0.41000000000000003,
  20925. "strategy": "高增益SUG",
  20926. "iteration": 2,
  20927. "is_selected": true,
  20928. "type_label": "",
  20929. "item_type": "sug",
  20930. "is_suggestion": true,
  20931. "suggestion_label": "[suggestion]"
  20932. },
  20933. "next_round_梗图素材表情包_r2_59": {
  20934. "type": "next_round_item",
  20935. "query": "[Q] 梗图素材表情包",
  20936. "level": 22,
  20937. "relevance_score": 0.4,
  20938. "strategy": "高增益SUG",
  20939. "iteration": 2,
  20940. "is_selected": true,
  20941. "type_label": "",
  20942. "item_type": "sug",
  20943. "is_suggestion": true,
  20944. "suggestion_label": "[suggestion]"
  20945. },
  20946. "next_round_猫咪梗图素材_r2_60": {
  20947. "type": "next_round_item",
  20948. "query": "[Q] 猫咪梗图素材",
  20949. "level": 22,
  20950. "relevance_score": 0.4,
  20951. "strategy": "高增益SUG",
  20952. "iteration": 2,
  20953. "is_selected": true,
  20954. "type_label": "",
  20955. "item_type": "sug",
  20956. "is_suggestion": true,
  20957. "suggestion_label": "[suggestion]"
  20958. },
  20959. "next_round_猫咪梗图模板_r2_61": {
  20960. "type": "next_round_item",
  20961. "query": "[Q] 猫咪梗图模板",
  20962. "level": 22,
  20963. "relevance_score": 0.4,
  20964. "strategy": "高增益SUG",
  20965. "iteration": 2,
  20966. "is_selected": true,
  20967. "type_label": "",
  20968. "item_type": "sug",
  20969. "is_suggestion": true,
  20970. "suggestion_label": "[suggestion]"
  20971. },
  20972. "next_round_表情包梗图学习_r2_62": {
  20973. "type": "next_round_item",
  20974. "query": "[Q] 表情包梗图学习",
  20975. "level": 22,
  20976. "relevance_score": 0.39499999999999996,
  20977. "strategy": "高增益SUG",
  20978. "iteration": 2,
  20979. "is_selected": true,
  20980. "type_label": "",
  20981. "item_type": "sug",
  20982. "is_suggestion": true,
  20983. "suggestion_label": "[suggestion]"
  20984. },
  20985. "next_round_猫咪表情包配文_r2_63": {
  20986. "type": "next_round_item",
  20987. "query": "[Q] 猫咪表情包配文",
  20988. "level": 22,
  20989. "relevance_score": 0.38,
  20990. "strategy": "高增益SUG",
  20991. "iteration": 2,
  20992. "is_selected": true,
  20993. "type_label": "",
  20994. "item_type": "sug",
  20995. "is_suggestion": true,
  20996. "suggestion_label": "[suggestion]"
  20997. },
  20998. "next_round_梗图meme素材_r2_64": {
  20999. "type": "next_round_item",
  21000. "query": "[Q] 梗图meme素材",
  21001. "level": 22,
  21002. "relevance_score": 0.37,
  21003. "strategy": "高增益SUG",
  21004. "iteration": 2,
  21005. "is_selected": true,
  21006. "type_label": "",
  21007. "item_type": "sug",
  21008. "is_suggestion": true,
  21009. "suggestion_label": "[suggestion]"
  21010. },
  21011. "next_round_猫咪表情包可爱_r2_65": {
  21012. "type": "next_round_item",
  21013. "query": "[Q] 猫咪表情包可爱",
  21014. "level": 22,
  21015. "relevance_score": 0.37,
  21016. "strategy": "高增益SUG",
  21017. "iteration": 2,
  21018. "is_selected": true,
  21019. "type_label": "",
  21020. "item_type": "sug",
  21021. "is_suggestion": true,
  21022. "suggestion_label": "[suggestion]"
  21023. },
  21024. "next_round_表情包梗图抽象_r2_66": {
  21025. "type": "next_round_item",
  21026. "query": "[Q] 表情包梗图抽象",
  21027. "level": 22,
  21028. "relevance_score": 0.37,
  21029. "strategy": "高增益SUG",
  21030. "iteration": 2,
  21031. "is_selected": true,
  21032. "type_label": "",
  21033. "item_type": "sug",
  21034. "is_suggestion": true,
  21035. "suggestion_label": "[suggestion]"
  21036. },
  21037. "next_round_猫meme表情包动图_r2_67": {
  21038. "type": "next_round_item",
  21039. "query": "[Q] 猫meme表情包动图",
  21040. "level": 22,
  21041. "relevance_score": 0.36,
  21042. "strategy": "高增益SUG",
  21043. "iteration": 2,
  21044. "is_selected": true,
  21045. "type_label": "",
  21046. "item_type": "sug",
  21047. "is_suggestion": true,
  21048. "suggestion_label": "[suggestion]"
  21049. },
  21050. "next_round_猫咪梗图骂人_r2_68": {
  21051. "type": "next_round_item",
  21052. "query": "[Q] 猫咪梗图骂人",
  21053. "level": 22,
  21054. "relevance_score": 0.34500000000000003,
  21055. "strategy": "高增益SUG",
  21056. "iteration": 2,
  21057. "is_selected": true,
  21058. "type_label": "",
  21059. "item_type": "sug",
  21060. "is_suggestion": true,
  21061. "suggestion_label": "[suggestion]"
  21062. },
  21063. "next_round_梗图模版表情包_r2_69": {
  21064. "type": "next_round_item",
  21065. "query": "[Q] 梗图模版表情包",
  21066. "level": 22,
  21067. "relevance_score": 0.33000000000000007,
  21068. "strategy": "高增益SUG",
  21069. "iteration": 2,
  21070. "is_selected": true,
  21071. "type_label": "",
  21072. "item_type": "sug",
  21073. "is_suggestion": true,
  21074. "suggestion_label": "[suggestion]"
  21075. },
  21076. "next_round_猫咪梗图伤感_r2_70": {
  21077. "type": "next_round_item",
  21078. "query": "[Q] 猫咪梗图伤感",
  21079. "level": 22,
  21080. "relevance_score": 0.33000000000000007,
  21081. "strategy": "高增益SUG",
  21082. "iteration": 2,
  21083. "is_selected": true,
  21084. "type_label": "",
  21085. "item_type": "sug",
  21086. "is_suggestion": true,
  21087. "suggestion_label": "[suggestion]"
  21088. },
  21089. "next_round_猫咪双标行为搞笑视频_r2_71": {
  21090. "type": "next_round_item",
  21091. "query": "[Q] 猫咪双标行为搞笑视频",
  21092. "level": 22,
  21093. "relevance_score": 0.33,
  21094. "strategy": "高增益SUG",
  21095. "iteration": 2,
  21096. "is_selected": true,
  21097. "type_label": "",
  21098. "item_type": "sug",
  21099. "is_suggestion": true,
  21100. "suggestion_label": "[suggestion]"
  21101. },
  21102. "next_round_猫咪梗图拍照_r2_72": {
  21103. "type": "next_round_item",
  21104. "query": "[Q] 猫咪梗图拍照",
  21105. "level": 22,
  21106. "relevance_score": 0.29999999999999993,
  21107. "strategy": "高增益SUG",
  21108. "iteration": 2,
  21109. "is_selected": true,
  21110. "type_label": "",
  21111. "item_type": "sug",
  21112. "is_suggestion": true,
  21113. "suggestion_label": "[suggestion]"
  21114. },
  21115. "next_round_双标搞笑图片_r2_73": {
  21116. "type": "next_round_item",
  21117. "query": "[Q] 双标搞笑图片",
  21118. "level": 22,
  21119. "relevance_score": 0.29000000000000004,
  21120. "strategy": "高增益SUG",
  21121. "iteration": 2,
  21122. "is_selected": true,
  21123. "type_label": "",
  21124. "item_type": "sug",
  21125. "is_suggestion": true,
  21126. "suggestion_label": "[suggestion]"
  21127. },
  21128. "next_round_猫咪梗图英文_r2_74": {
  21129. "type": "next_round_item",
  21130. "query": "[Q] 猫咪梗图英文",
  21131. "level": 22,
  21132. "relevance_score": 0.29000000000000004,
  21133. "strategy": "高增益SUG",
  21134. "iteration": 2,
  21135. "is_selected": true,
  21136. "type_label": "",
  21137. "item_type": "sug",
  21138. "is_suggestion": true,
  21139. "suggestion_label": "[suggestion]"
  21140. },
  21141. "next_round_梗图描改模板_r2_75": {
  21142. "type": "next_round_item",
  21143. "query": "[Q] 梗图描改模板",
  21144. "level": 22,
  21145. "relevance_score": 0.28500000000000003,
  21146. "strategy": "高增益SUG",
  21147. "iteration": 2,
  21148. "is_selected": true,
  21149. "type_label": "",
  21150. "item_type": "sug",
  21151. "is_suggestion": true,
  21152. "suggestion_label": "[suggestion]"
  21153. },
  21154. "next_round_双标梗_r2_76": {
  21155. "type": "next_round_item",
  21156. "query": "[Q] 双标梗",
  21157. "level": 22,
  21158. "relevance_score": 0.27999999999999997,
  21159. "strategy": "高增益SUG",
  21160. "iteration": 2,
  21161. "is_selected": true,
  21162. "type_label": "",
  21163. "item_type": "sug",
  21164. "is_suggestion": true,
  21165. "suggestion_label": "[suggestion]"
  21166. },
  21167. "next_round_暗示双标的图片_r2_77": {
  21168. "type": "next_round_item",
  21169. "query": "[Q] 暗示双标的图片",
  21170. "level": 22,
  21171. "relevance_score": 0.24999999999999997,
  21172. "strategy": "高增益SUG",
  21173. "iteration": 2,
  21174. "is_selected": true,
  21175. "type_label": "",
  21176. "item_type": "sug",
  21177. "is_suggestion": true,
  21178. "suggestion_label": "[suggestion]"
  21179. },
  21180. "next_round_meme梗图分享_r2_78": {
  21181. "type": "next_round_item",
  21182. "query": "[Q] meme梗图分享",
  21183. "level": 22,
  21184. "relevance_score": 0.21000000000000002,
  21185. "strategy": "高增益SUG",
  21186. "iteration": 2,
  21187. "is_selected": true,
  21188. "type_label": "",
  21189. "item_type": "sug",
  21190. "is_suggestion": true,
  21191. "suggestion_label": "[suggestion]"
  21192. },
  21193. "next_round_双标行为举例_r2_79": {
  21194. "type": "next_round_item",
  21195. "query": "[Q] 双标行为举例",
  21196. "level": 22,
  21197. "relevance_score": 0.21,
  21198. "strategy": "高增益SUG",
  21199. "iteration": 2,
  21200. "is_selected": true,
  21201. "type_label": "",
  21202. "item_type": "sug",
  21203. "is_suggestion": true,
  21204. "suggestion_label": "[suggestion]"
  21205. },
  21206. "next_round_双标_r2_80": {
  21207. "type": "next_round_item",
  21208. "query": "[Q] 双标",
  21209. "level": 22,
  21210. "relevance_score": 0.2,
  21211. "strategy": "高增益SUG",
  21212. "iteration": 2,
  21213. "is_selected": true,
  21214. "type_label": "",
  21215. "item_type": "sug",
  21216. "is_suggestion": true,
  21217. "suggestion_label": "[suggestion]"
  21218. },
  21219. "next_round_表情包图片大全素材_r2_81": {
  21220. "type": "next_round_item",
  21221. "query": "[Q] 表情包图片大全素材",
  21222. "level": 22,
  21223. "relevance_score": 0.19400000000000003,
  21224. "strategy": "高增益SUG",
  21225. "iteration": 2,
  21226. "is_selected": true,
  21227. "type_label": "",
  21228. "item_type": "sug",
  21229. "is_suggestion": true,
  21230. "suggestion_label": "[suggestion]"
  21231. }
  21232. },
  21233. "edges": [
  21234. {
  21235. "from": "root_o",
  21236. "to": "round_0",
  21237. "edge_type": "root_to_round",
  21238. "strategy": "初始化"
  21239. },
  21240. {
  21241. "from": "round_0",
  21242. "to": "step_seg_r0",
  21243. "edge_type": "round_to_step",
  21244. "strategy": "分段"
  21245. },
  21246. {
  21247. "from": "step_seg_r0",
  21248. "to": "segment_0_r0",
  21249. "edge_type": "step_to_segment",
  21250. "strategy": "疑问引导"
  21251. },
  21252. {
  21253. "from": "segment_0_r0",
  21254. "to": "word_如何_seg0_0",
  21255. "edge_type": "segment_to_word",
  21256. "strategy": "Word"
  21257. },
  21258. {
  21259. "from": "step_seg_r0",
  21260. "to": "segment_1_r0",
  21261. "edge_type": "step_to_segment",
  21262. "strategy": "核心动作"
  21263. },
  21264. {
  21265. "from": "segment_1_r0",
  21266. "to": "word_制作_seg1_0",
  21267. "edge_type": "segment_to_word",
  21268. "strategy": "Word"
  21269. },
  21270. {
  21271. "from": "step_seg_r0",
  21272. "to": "segment_2_r0",
  21273. "edge_type": "step_to_segment",
  21274. "strategy": "修饰短语"
  21275. },
  21276. {
  21277. "from": "segment_2_r0",
  21278. "to": "word_反映_seg2_0",
  21279. "edge_type": "segment_to_word",
  21280. "strategy": "Word"
  21281. },
  21282. {
  21283. "from": "segment_2_r0",
  21284. "to": "word_人类_seg2_1",
  21285. "edge_type": "segment_to_word",
  21286. "strategy": "Word"
  21287. },
  21288. {
  21289. "from": "segment_2_r0",
  21290. "to": "word_双标_seg2_2",
  21291. "edge_type": "segment_to_word",
  21292. "strategy": "Word"
  21293. },
  21294. {
  21295. "from": "segment_2_r0",
  21296. "to": "word_行为_seg2_3",
  21297. "edge_type": "segment_to_word",
  21298. "strategy": "Word"
  21299. },
  21300. {
  21301. "from": "step_seg_r0",
  21302. "to": "segment_3_r0",
  21303. "edge_type": "step_to_segment",
  21304. "strategy": "中心名词"
  21305. },
  21306. {
  21307. "from": "segment_3_r0",
  21308. "to": "word_猫咪_seg3_0",
  21309. "edge_type": "segment_to_word",
  21310. "strategy": "Word"
  21311. },
  21312. {
  21313. "from": "segment_3_r0",
  21314. "to": "word_表情包_seg3_1",
  21315. "edge_type": "segment_to_word",
  21316. "strategy": "Word"
  21317. },
  21318. {
  21319. "from": "segment_3_r0",
  21320. "to": "word_梗图_seg3_2",
  21321. "edge_type": "segment_to_word",
  21322. "strategy": "Word"
  21323. },
  21324. {
  21325. "from": "root_o",
  21326. "to": "round_1",
  21327. "edge_type": "root_to_round",
  21328. "strategy": "第1轮"
  21329. },
  21330. {
  21331. "from": "round_1",
  21332. "to": "step_sug_r1",
  21333. "edge_type": "round_to_step",
  21334. "strategy": "推荐词"
  21335. },
  21336. {
  21337. "from": "step_sug_r1",
  21338. "to": "q_如何_r1_0",
  21339. "edge_type": "step_to_q",
  21340. "strategy": "Query"
  21341. },
  21342. {
  21343. "from": "q_如何_r1_0",
  21344. "to": "sug_如何快速减肥_r1_q0_0",
  21345. "edge_type": "q_to_sug",
  21346. "strategy": "推荐词"
  21347. },
  21348. {
  21349. "from": "q_如何_r1_0",
  21350. "to": "sug_如何培养男人主动给你花钱_r1_q0_1",
  21351. "edge_type": "q_to_sug",
  21352. "strategy": "推荐词"
  21353. },
  21354. {
  21355. "from": "q_如何_r1_0",
  21356. "to": "sug_如何快速挣到钱_r1_q0_2",
  21357. "edge_type": "q_to_sug",
  21358. "strategy": "推荐词"
  21359. },
  21360. {
  21361. "from": "q_如何_r1_0",
  21362. "to": "sug_如何和女生聊天找话题_r1_q0_3",
  21363. "edge_type": "q_to_sug",
  21364. "strategy": "推荐词"
  21365. },
  21366. {
  21367. "from": "q_如何_r1_0",
  21368. "to": "sug_如何快速入睡_r1_q0_4",
  21369. "edge_type": "q_to_sug",
  21370. "strategy": "推荐词"
  21371. },
  21372. {
  21373. "from": "q_如何_r1_0",
  21374. "to": "sug_如何让男生持续上头_r1_q0_5",
  21375. "edge_type": "q_to_sug",
  21376. "strategy": "推荐词"
  21377. },
  21378. {
  21379. "from": "q_如何_r1_0",
  21380. "to": "sug_如何逼自己自律学习_r1_q0_6",
  21381. "edge_type": "q_to_sug",
  21382. "strategy": "推荐词"
  21383. },
  21384. {
  21385. "from": "q_如何_r1_0",
  21386. "to": "sug_如何连接别人家的加密wifi_r1_q0_7",
  21387. "edge_type": "q_to_sug",
  21388. "strategy": "推荐词"
  21389. },
  21390. {
  21391. "from": "q_如何_r1_0",
  21392. "to": "sug_如何养好头发_r1_q0_8",
  21393. "edge_type": "q_to_sug",
  21394. "strategy": "推荐词"
  21395. },
  21396. {
  21397. "from": "q_如何_r1_0",
  21398. "to": "sug_如何治疗早泻时间短_r1_q0_9",
  21399. "edge_type": "q_to_sug",
  21400. "strategy": "推荐词"
  21401. },
  21402. {
  21403. "from": "step_sug_r1",
  21404. "to": "q_制作_r1_1",
  21405. "edge_type": "step_to_q",
  21406. "strategy": "Query"
  21407. },
  21408. {
  21409. "from": "q_制作_r1_1",
  21410. "to": "sug_制作ppt_r1_q1_0",
  21411. "edge_type": "q_to_sug",
  21412. "strategy": "推荐词"
  21413. },
  21414. {
  21415. "from": "q_制作_r1_1",
  21416. "to": "sug_制作表情包_r1_q1_1",
  21417. "edge_type": "q_to_sug",
  21418. "strategy": "推荐词"
  21419. },
  21420. {
  21421. "from": "q_制作_r1_1",
  21422. "to": "sug_制作冰糖葫芦_r1_q1_2",
  21423. "edge_type": "q_to_sug",
  21424. "strategy": "推荐词"
  21425. },
  21426. {
  21427. "from": "q_制作_r1_1",
  21428. "to": "sug_制作ppt的ai软件_r1_q1_3",
  21429. "edge_type": "q_to_sug",
  21430. "strategy": "推荐词"
  21431. },
  21432. {
  21433. "from": "q_制作_r1_1",
  21434. "to": "sug_制作视频_r1_q1_4",
  21435. "edge_type": "q_to_sug",
  21436. "strategy": "推荐词"
  21437. },
  21438. {
  21439. "from": "q_制作_r1_1",
  21440. "to": "sug_制作美食_r1_q1_5",
  21441. "edge_type": "q_to_sug",
  21442. "strategy": "推荐词"
  21443. },
  21444. {
  21445. "from": "q_制作_r1_1",
  21446. "to": "sug_制作简历_r1_q1_6",
  21447. "edge_type": "q_to_sug",
  21448. "strategy": "推荐词"
  21449. },
  21450. {
  21451. "from": "q_制作_r1_1",
  21452. "to": "sug_制作饮品_r1_q1_7",
  21453. "edge_type": "q_to_sug",
  21454. "strategy": "推荐词"
  21455. },
  21456. {
  21457. "from": "q_制作_r1_1",
  21458. "to": "sug_制作小房子_r1_q1_8",
  21459. "edge_type": "q_to_sug",
  21460. "strategy": "推荐词"
  21461. },
  21462. {
  21463. "from": "q_制作_r1_1",
  21464. "to": "sug_制作表格_r1_q1_9",
  21465. "edge_type": "q_to_sug",
  21466. "strategy": "推荐词"
  21467. },
  21468. {
  21469. "from": "step_sug_r1",
  21470. "to": "q_反映_r1_2",
  21471. "edge_type": "step_to_q",
  21472. "strategy": "Query"
  21473. },
  21474. {
  21475. "from": "q_反映_r1_2",
  21476. "to": "sug_反映问题还是反应问题_r1_q2_0",
  21477. "edge_type": "q_to_sug",
  21478. "strategy": "推荐词"
  21479. },
  21480. {
  21481. "from": "q_反映_r1_2",
  21482. "to": "sug_反映和反应的区别_r1_q2_1",
  21483. "edge_type": "q_to_sug",
  21484. "strategy": "推荐词"
  21485. },
  21486. {
  21487. "from": "q_反映_r1_2",
  21488. "to": "sug_反映是什么意思_r1_q2_2",
  21489. "edge_type": "q_to_sug",
  21490. "strategy": "推荐词"
  21491. },
  21492. {
  21493. "from": "q_反映_r1_2",
  21494. "to": "sug_反映者_r1_q2_3",
  21495. "edge_type": "q_to_sug",
  21496. "strategy": "推荐词"
  21497. },
  21498. {
  21499. "from": "q_反映_r1_2",
  21500. "to": "sug_反应力小游戏_r1_q2_4",
  21501. "edge_type": "q_to_sug",
  21502. "strategy": "推荐词"
  21503. },
  21504. {
  21505. "from": "q_反映_r1_2",
  21506. "to": "sug_反应蛋白高是什么意思_r1_q2_5",
  21507. "edge_type": "q_to_sug",
  21508. "strategy": "推荐词"
  21509. },
  21510. {
  21511. "from": "q_反映_r1_2",
  21512. "to": "sug_反映拼音_r1_q2_6",
  21513. "edge_type": "q_to_sug",
  21514. "strategy": "推荐词"
  21515. },
  21516. {
  21517. "from": "q_反映_r1_2",
  21518. "to": "sug_反映财务状况的会计要素_r1_q2_7",
  21519. "edge_type": "q_to_sug",
  21520. "strategy": "推荐词"
  21521. },
  21522. {
  21523. "from": "q_反映_r1_2",
  21524. "to": "sug_反映的英语_r1_q2_8",
  21525. "edge_type": "q_to_sug",
  21526. "strategy": "推荐词"
  21527. },
  21528. {
  21529. "from": "q_反映_r1_2",
  21530. "to": "sug_反映事物间的互补关系_r1_q2_9",
  21531. "edge_type": "q_to_sug",
  21532. "strategy": "推荐词"
  21533. },
  21534. {
  21535. "from": "step_sug_r1",
  21536. "to": "q_人类_r1_3",
  21537. "edge_type": "step_to_q",
  21538. "strategy": "Query"
  21539. },
  21540. {
  21541. "from": "q_人类_r1_3",
  21542. "to": "sug_人类一败涂地_r1_q3_0",
  21543. "edge_type": "q_to_sug",
  21544. "strategy": "推荐词"
  21545. },
  21546. {
  21547. "from": "q_人类_r1_3",
  21548. "to": "sug_人类狗窝_r1_q3_1",
  21549. "edge_type": "q_to_sug",
  21550. "strategy": "推荐词"
  21551. },
  21552. {
  21553. "from": "q_人类_r1_3",
  21554. "to": "sug_人类幼崽陪伴指南_r1_q3_2",
  21555. "edge_type": "q_to_sug",
  21556. "strategy": "推荐词"
  21557. },
  21558. {
  21559. "from": "q_人类_r1_3",
  21560. "to": "sug_人类用沙想捏出梦里通天塔_r1_q3_3",
  21561. "edge_type": "q_to_sug",
  21562. "strategy": "推荐词"
  21563. },
  21564. {
  21565. "from": "q_人类_r1_3",
  21566. "to": "sug_人类幼仔_r1_q3_4",
  21567. "edge_type": "q_to_sug",
  21568. "strategy": "推荐词"
  21569. },
  21570. {
  21571. "from": "q_人类_r1_3",
  21572. "to": "sug_人类简史_r1_q3_5",
  21573. "edge_type": "q_to_sug",
  21574. "strategy": "推荐词"
  21575. },
  21576. {
  21577. "from": "q_人类_r1_3",
  21578. "to": "sug_人类进化史_r1_q3_6",
  21579. "edge_type": "q_to_sug",
  21580. "strategy": "推荐词"
  21581. },
  21582. {
  21583. "from": "q_人类_r1_3",
  21584. "to": "sug_人类跌落梦境_r1_q3_7",
  21585. "edge_type": "q_to_sug",
  21586. "strategy": "推荐词"
  21587. },
  21588. {
  21589. "from": "q_人类_r1_3",
  21590. "to": "sug_人类群星闪耀时_r1_q3_8",
  21591. "edge_type": "q_to_sug",
  21592. "strategy": "推荐词"
  21593. },
  21594. {
  21595. "from": "q_人类_r1_3",
  21596. "to": "sug_人类高质量男姓_r1_q3_9",
  21597. "edge_type": "q_to_sug",
  21598. "strategy": "推荐词"
  21599. },
  21600. {
  21601. "from": "step_sug_r1",
  21602. "to": "q_双标_r1_4",
  21603. "edge_type": "step_to_q",
  21604. "strategy": "Query"
  21605. },
  21606. {
  21607. "from": "q_双标_r1_4",
  21608. "to": "sug_双标是什么意思_r1_q4_0",
  21609. "edge_type": "q_to_sug",
  21610. "strategy": "推荐词"
  21611. },
  21612. {
  21613. "from": "q_双标_r1_4",
  21614. "to": "sug_讽刺双标的文案_r1_q4_1",
  21615. "edge_type": "q_to_sug",
  21616. "strategy": "推荐词"
  21617. },
  21618. {
  21619. "from": "q_双标_r1_4",
  21620. "to": "sug_双标的人是什么心理_r1_q4_2",
  21621. "edge_type": "q_to_sug",
  21622. "strategy": "推荐词"
  21623. },
  21624. {
  21625. "from": "q_双标_r1_4",
  21626. "to": "sug_双标文案_r1_q4_3",
  21627. "edge_type": "q_to_sug",
  21628. "strategy": "推荐词"
  21629. },
  21630. {
  21631. "from": "q_双标_r1_4",
  21632. "to": "sug_双标高爆卡点伴奏_r1_q4_4",
  21633. "edge_type": "q_to_sug",
  21634. "strategy": "推荐词"
  21635. },
  21636. {
  21637. "from": "q_双标_r1_4",
  21638. "to": "sug_双标信用卡_r1_q4_5",
  21639. "edge_type": "q_to_sug",
  21640. "strategy": "推荐词"
  21641. },
  21642. {
  21643. "from": "q_双标_r1_4",
  21644. "to": "sug_双椒兔做法_r1_q4_6",
  21645. "edge_type": "q_to_sug",
  21646. "strategy": "推荐词"
  21647. },
  21648. {
  21649. "from": "q_双标_r1_4",
  21650. "to": "sug_双标图片_r1_q4_7",
  21651. "edge_type": "q_to_sug",
  21652. "strategy": "推荐词"
  21653. },
  21654. {
  21655. "from": "q_双标_r1_4",
  21656. "to": "sug_双标表情包_r1_q4_8",
  21657. "edge_type": "q_to_sug",
  21658. "strategy": "推荐词"
  21659. },
  21660. {
  21661. "from": "q_双标_r1_4",
  21662. "to": "sug_双标的人_r1_q4_9",
  21663. "edge_type": "q_to_sug",
  21664. "strategy": "推荐词"
  21665. },
  21666. {
  21667. "from": "step_sug_r1",
  21668. "to": "q_行为_r1_5",
  21669. "edge_type": "step_to_q",
  21670. "strategy": "Query"
  21671. },
  21672. {
  21673. "from": "q_行为_r1_5",
  21674. "to": "sug_行为心理学_r1_q5_0",
  21675. "edge_type": "q_to_sug",
  21676. "strategy": "推荐词"
  21677. },
  21678. {
  21679. "from": "q_行为_r1_5",
  21680. "to": "sug_行为基础_r1_q5_1",
  21681. "edge_type": "q_to_sug",
  21682. "strategy": "推荐词"
  21683. },
  21684. {
  21685. "from": "q_行为_r1_5",
  21686. "to": "sug_行为规范手抄报_r1_q5_2",
  21687. "edge_type": "q_to_sug",
  21688. "strategy": "推荐词"
  21689. },
  21690. {
  21691. "from": "q_行为_r1_5",
  21692. "to": "sug_行为习惯手抄报_r1_q5_3",
  21693. "edge_type": "q_to_sug",
  21694. "strategy": "推荐词"
  21695. },
  21696. {
  21697. "from": "q_行为_r1_5",
  21698. "to": "sug_行为艺术_r1_q5_4",
  21699. "edge_type": "q_to_sug",
  21700. "strategy": "推荐词"
  21701. },
  21702. {
  21703. "from": "q_行为_r1_5",
  21704. "to": "sug_行为决定关系而非关系决定行为_r1_q5_5",
  21705. "edge_type": "q_to_sug",
  21706. "strategy": "推荐词"
  21707. },
  21708. {
  21709. "from": "q_行为_r1_5",
  21710. "to": "sug_行为违反腾讯用户协议_r1_q5_6",
  21711. "edge_type": "q_to_sug",
  21712. "strategy": "推荐词"
  21713. },
  21714. {
  21715. "from": "q_行为_r1_5",
  21716. "to": "sug_行为认知疗法_r1_q5_7",
  21717. "edge_type": "q_to_sug",
  21718. "strategy": "推荐词"
  21719. },
  21720. {
  21721. "from": "q_行为_r1_5",
  21722. "to": "sug_行为经济学_r1_q5_8",
  21723. "edge_type": "q_to_sug",
  21724. "strategy": "推荐词"
  21725. },
  21726. {
  21727. "from": "q_行为_r1_5",
  21728. "to": "sug_行为规范家_r1_q5_9",
  21729. "edge_type": "q_to_sug",
  21730. "strategy": "推荐词"
  21731. },
  21732. {
  21733. "from": "step_sug_r1",
  21734. "to": "q_猫咪_r1_6",
  21735. "edge_type": "step_to_q",
  21736. "strategy": "Query"
  21737. },
  21738. {
  21739. "from": "q_猫咪_r1_6",
  21740. "to": "sug_猫咪领养免费领养_r1_q6_0",
  21741. "edge_type": "q_to_sug",
  21742. "strategy": "推荐词"
  21743. },
  21744. {
  21745. "from": "q_猫咪_r1_6",
  21746. "to": "sug_猫咪叫声吸引小猫_r1_q6_1",
  21747. "edge_type": "q_to_sug",
  21748. "strategy": "推荐词"
  21749. },
  21750. {
  21751. "from": "q_猫咪_r1_6",
  21752. "to": "sug_猫咪呕吐_r1_q6_2",
  21753. "edge_type": "q_to_sug",
  21754. "strategy": "推荐词"
  21755. },
  21756. {
  21757. "from": "q_猫咪_r1_6",
  21758. "to": "sug_猫咪头像_r1_q6_3",
  21759. "edge_type": "q_to_sug",
  21760. "strategy": "推荐词"
  21761. },
  21762. {
  21763. "from": "q_猫咪_r1_6",
  21764. "to": "sug_猫咪取名_r1_q6_4",
  21765. "edge_type": "q_to_sug",
  21766. "strategy": "推荐词"
  21767. },
  21768. {
  21769. "from": "q_猫咪_r1_6",
  21770. "to": "sug_猫咪品种_r1_q6_5",
  21771. "edge_type": "q_to_sug",
  21772. "strategy": "推荐词"
  21773. },
  21774. {
  21775. "from": "q_猫咪_r1_6",
  21776. "to": "sug_猫咪搞笑视频_r1_q6_6",
  21777. "edge_type": "q_to_sug",
  21778. "strategy": "推荐词"
  21779. },
  21780. {
  21781. "from": "q_猫咪_r1_6",
  21782. "to": "sug_猫咪叫声_r1_q6_7",
  21783. "edge_type": "q_to_sug",
  21784. "strategy": "推荐词"
  21785. },
  21786. {
  21787. "from": "q_猫咪_r1_6",
  21788. "to": "sug_猫咪驱虫药推荐_r1_q6_8",
  21789. "edge_type": "q_to_sug",
  21790. "strategy": "推荐词"
  21791. },
  21792. {
  21793. "from": "q_猫咪_r1_6",
  21794. "to": "sug_猫咪黑下巴怎么处理_r1_q6_9",
  21795. "edge_type": "q_to_sug",
  21796. "strategy": "推荐词"
  21797. },
  21798. {
  21799. "from": "step_sug_r1",
  21800. "to": "q_表情包_r1_7",
  21801. "edge_type": "step_to_q",
  21802. "strategy": "Query"
  21803. },
  21804. {
  21805. "from": "q_表情包_r1_7",
  21806. "to": "sug_表情包抽象_r1_q7_0",
  21807. "edge_type": "q_to_sug",
  21808. "strategy": "推荐词"
  21809. },
  21810. {
  21811. "from": "q_表情包_r1_7",
  21812. "to": "sug_表情包怎么制作_r1_q7_1",
  21813. "edge_type": "q_to_sug",
  21814. "strategy": "推荐词"
  21815. },
  21816. {
  21817. "from": "q_表情包_r1_7",
  21818. "to": "sug_表情包可爱_r1_q7_2",
  21819. "edge_type": "q_to_sug",
  21820. "strategy": "推荐词"
  21821. },
  21822. {
  21823. "from": "q_表情包_r1_7",
  21824. "to": "sug_表情包图片大全_r1_q7_3",
  21825. "edge_type": "q_to_sug",
  21826. "strategy": "推荐词"
  21827. },
  21828. {
  21829. "from": "q_表情包_r1_7",
  21830. "to": "sug_表情包搞笑配文_r1_q7_4",
  21831. "edge_type": "q_to_sug",
  21832. "strategy": "推荐词"
  21833. },
  21834. {
  21835. "from": "q_表情包_r1_7",
  21836. "to": "sug_表情包发给女朋友_r1_q7_5",
  21837. "edge_type": "q_to_sug",
  21838. "strategy": "推荐词"
  21839. },
  21840. {
  21841. "from": "q_表情包_r1_7",
  21842. "to": "sug_表情包简笔画_r1_q7_6",
  21843. "edge_type": "q_to_sug",
  21844. "strategy": "推荐词"
  21845. },
  21846. {
  21847. "from": "q_表情包_r1_7",
  21848. "to": "sug_表情包模板_r1_q7_7",
  21849. "edge_type": "q_to_sug",
  21850. "strategy": "推荐词"
  21851. },
  21852. {
  21853. "from": "q_表情包_r1_7",
  21854. "to": "sug_表情包发给男朋友_r1_q7_8",
  21855. "edge_type": "q_to_sug",
  21856. "strategy": "推荐词"
  21857. },
  21858. {
  21859. "from": "q_表情包_r1_7",
  21860. "to": "sug_表情包制作赚钱_r1_q7_9",
  21861. "edge_type": "q_to_sug",
  21862. "strategy": "推荐词"
  21863. },
  21864. {
  21865. "from": "step_sug_r1",
  21866. "to": "q_梗图_r1_8",
  21867. "edge_type": "step_to_q",
  21868. "strategy": "Query"
  21869. },
  21870. {
  21871. "from": "q_梗图_r1_8",
  21872. "to": "sug_梗图素材_r1_q8_0",
  21873. "edge_type": "q_to_sug",
  21874. "strategy": "推荐词"
  21875. },
  21876. {
  21877. "from": "q_梗图_r1_8",
  21878. "to": "sug_梗图搞笑_r1_q8_1",
  21879. "edge_type": "q_to_sug",
  21880. "strategy": "推荐词"
  21881. },
  21882. {
  21883. "from": "q_梗图_r1_8",
  21884. "to": "sug_梗图精神状态_r1_q8_2",
  21885. "edge_type": "q_to_sug",
  21886. "strategy": "推荐词"
  21887. },
  21888. {
  21889. "from": "q_梗图_r1_8",
  21890. "to": "sug_梗图meme_r1_q8_3",
  21891. "edge_type": "q_to_sug",
  21892. "strategy": "推荐词"
  21893. },
  21894. {
  21895. "from": "q_梗图_r1_8",
  21896. "to": "sug_梗图双人_r1_q8_4",
  21897. "edge_type": "q_to_sug",
  21898. "strategy": "推荐词"
  21899. },
  21900. {
  21901. "from": "q_梗图_r1_8",
  21902. "to": "sug_梗图抽象_r1_q8_5",
  21903. "edge_type": "q_to_sug",
  21904. "strategy": "推荐词"
  21905. },
  21906. {
  21907. "from": "q_梗图_r1_8",
  21908. "to": "sug_梗图描改_r1_q8_6",
  21909. "edge_type": "q_to_sug",
  21910. "strategy": "推荐词"
  21911. },
  21912. {
  21913. "from": "q_梗图_r1_8",
  21914. "to": "sug_梗图模版_r1_q8_7",
  21915. "edge_type": "q_to_sug",
  21916. "strategy": "推荐词"
  21917. },
  21918. {
  21919. "from": "q_梗图_r1_8",
  21920. "to": "sug_梗图分享_r1_q8_8",
  21921. "edge_type": "q_to_sug",
  21922. "strategy": "推荐词"
  21923. },
  21924. {
  21925. "from": "q_梗图_r1_8",
  21926. "to": "sug_梗图大全_r1_q8_9",
  21927. "edge_type": "q_to_sug",
  21928. "strategy": "推荐词"
  21929. },
  21930. {
  21931. "from": "round_1",
  21932. "to": "step_comb_r1",
  21933. "edge_type": "round_to_step",
  21934. "strategy": "域内组词"
  21935. },
  21936. {
  21937. "from": "step_comb_r1",
  21938. "to": "comb_反映人类_r1_0",
  21939. "edge_type": "step_to_comb",
  21940. "strategy": "域内组合"
  21941. },
  21942. {
  21943. "from": "step_comb_r1",
  21944. "to": "comb_反映双标_r1_1",
  21945. "edge_type": "step_to_comb",
  21946. "strategy": "域内组合"
  21947. },
  21948. {
  21949. "from": "step_comb_r1",
  21950. "to": "comb_反映行为_r1_2",
  21951. "edge_type": "step_to_comb",
  21952. "strategy": "域内组合"
  21953. },
  21954. {
  21955. "from": "step_comb_r1",
  21956. "to": "comb_人类双标_r1_3",
  21957. "edge_type": "step_to_comb",
  21958. "strategy": "域内组合"
  21959. },
  21960. {
  21961. "from": "step_comb_r1",
  21962. "to": "comb_人类行为_r1_4",
  21963. "edge_type": "step_to_comb",
  21964. "strategy": "域内组合"
  21965. },
  21966. {
  21967. "from": "step_comb_r1",
  21968. "to": "comb_双标行为_r1_5",
  21969. "edge_type": "step_to_comb",
  21970. "strategy": "域内组合"
  21971. },
  21972. {
  21973. "from": "step_comb_r1",
  21974. "to": "comb_反映人类双标_r1_6",
  21975. "edge_type": "step_to_comb",
  21976. "strategy": "域内组合"
  21977. },
  21978. {
  21979. "from": "step_comb_r1",
  21980. "to": "comb_反映人类行为_r1_7",
  21981. "edge_type": "step_to_comb",
  21982. "strategy": "域内组合"
  21983. },
  21984. {
  21985. "from": "step_comb_r1",
  21986. "to": "comb_反映双标行为_r1_8",
  21987. "edge_type": "step_to_comb",
  21988. "strategy": "域内组合"
  21989. },
  21990. {
  21991. "from": "step_comb_r1",
  21992. "to": "comb_人类双标行为_r1_9",
  21993. "edge_type": "step_to_comb",
  21994. "strategy": "域内组合"
  21995. },
  21996. {
  21997. "from": "step_comb_r1",
  21998. "to": "comb_反映人类双标行为_r1_10",
  21999. "edge_type": "step_to_comb",
  22000. "strategy": "域内组合"
  22001. },
  22002. {
  22003. "from": "step_comb_r1",
  22004. "to": "comb_猫咪表情包_r1_11",
  22005. "edge_type": "step_to_comb",
  22006. "strategy": "域内组合"
  22007. },
  22008. {
  22009. "from": "step_comb_r1",
  22010. "to": "comb_猫咪梗图_r1_12",
  22011. "edge_type": "step_to_comb",
  22012. "strategy": "域内组合"
  22013. },
  22014. {
  22015. "from": "step_comb_r1",
  22016. "to": "comb_表情包梗图_r1_13",
  22017. "edge_type": "step_to_comb",
  22018. "strategy": "域内组合"
  22019. },
  22020. {
  22021. "from": "step_comb_r1",
  22022. "to": "comb_猫咪表情包梗图_r1_14",
  22023. "edge_type": "step_to_comb",
  22024. "strategy": "域内组合"
  22025. },
  22026. {
  22027. "from": "round_1",
  22028. "to": "step_search_r1",
  22029. "edge_type": "round_to_step",
  22030. "strategy": "搜索"
  22031. },
  22032. {
  22033. "from": "step_search_r1",
  22034. "to": "search_制作表情包_r1_0",
  22035. "edge_type": "step_to_search_word",
  22036. "strategy": "搜索词"
  22037. },
  22038. {
  22039. "from": "search_制作表情包_r1_0",
  22040. "to": "post_66f9046a000000002a033202_0_0",
  22041. "edge_type": "search_word_to_post",
  22042. "strategy": "搜索结果"
  22043. },
  22044. {
  22045. "from": "search_制作表情包_r1_0",
  22046. "to": "post_668e06cd00000000250145fe_0_1",
  22047. "edge_type": "search_word_to_post",
  22048. "strategy": "搜索结果"
  22049. },
  22050. {
  22051. "from": "search_制作表情包_r1_0",
  22052. "to": "post_68282bbd000000002001f349_0_2",
  22053. "edge_type": "search_word_to_post",
  22054. "strategy": "搜索结果"
  22055. },
  22056. {
  22057. "from": "search_制作表情包_r1_0",
  22058. "to": "post_67d1b6c9000000002802a550_0_3",
  22059. "edge_type": "search_word_to_post",
  22060. "strategy": "搜索结果"
  22061. },
  22062. {
  22063. "from": "search_制作表情包_r1_0",
  22064. "to": "post_68ef01ad000000000302f388_0_4",
  22065. "edge_type": "search_word_to_post",
  22066. "strategy": "搜索结果"
  22067. },
  22068. {
  22069. "from": "search_制作表情包_r1_0",
  22070. "to": "post_66ea4e30000000001e01964b_0_5",
  22071. "edge_type": "search_word_to_post",
  22072. "strategy": "搜索结果"
  22073. },
  22074. {
  22075. "from": "search_制作表情包_r1_0",
  22076. "to": "post_67c72549000000000602a376_0_6",
  22077. "edge_type": "search_word_to_post",
  22078. "strategy": "搜索结果"
  22079. },
  22080. {
  22081. "from": "search_制作表情包_r1_0",
  22082. "to": "post_6876f73f0000000011002f0c_0_7",
  22083. "edge_type": "search_word_to_post",
  22084. "strategy": "搜索结果"
  22085. },
  22086. {
  22087. "from": "search_制作表情包_r1_0",
  22088. "to": "post_6613c01f000000001b00820c_0_8",
  22089. "edge_type": "search_word_to_post",
  22090. "strategy": "搜索结果"
  22091. },
  22092. {
  22093. "from": "search_制作表情包_r1_0",
  22094. "to": "post_61b81195000000002103b7ab_0_9",
  22095. "edge_type": "search_word_to_post",
  22096. "strategy": "搜索结果"
  22097. },
  22098. {
  22099. "from": "step_search_r1",
  22100. "to": "search_表情包怎么制作_r1_1",
  22101. "edge_type": "step_to_search_word",
  22102. "strategy": "搜索词"
  22103. },
  22104. {
  22105. "from": "round_1",
  22106. "to": "step_next_round_r1",
  22107. "edge_type": "round_to_step",
  22108. "strategy": "构建下一轮"
  22109. },
  22110. {
  22111. "from": "step_next_round_r1",
  22112. "to": "next_round_猫咪表情包梗图_r1_0",
  22113. "edge_type": "step_to_next_round",
  22114. "strategy": "域内组合"
  22115. },
  22116. {
  22117. "from": "step_next_round_r1",
  22118. "to": "next_round_猫咪表情包_r1_1",
  22119. "edge_type": "step_to_next_round",
  22120. "strategy": "域内组合"
  22121. },
  22122. {
  22123. "from": "step_next_round_r1",
  22124. "to": "next_round_猫咪梗图_r1_2",
  22125. "edge_type": "step_to_next_round",
  22126. "strategy": "域内组合"
  22127. },
  22128. {
  22129. "from": "step_next_round_r1",
  22130. "to": "next_round_表情包梗图_r1_3",
  22131. "edge_type": "step_to_next_round",
  22132. "strategy": "域内组合"
  22133. },
  22134. {
  22135. "from": "step_next_round_r1",
  22136. "to": "next_round_反映人类双标_r1_4",
  22137. "edge_type": "step_to_next_round",
  22138. "strategy": "域内组合"
  22139. },
  22140. {
  22141. "from": "step_next_round_r1",
  22142. "to": "next_round_反映人类双标行为_r1_5",
  22143. "edge_type": "step_to_next_round",
  22144. "strategy": "域内组合"
  22145. },
  22146. {
  22147. "from": "step_next_round_r1",
  22148. "to": "next_round_反映双标_r1_6",
  22149. "edge_type": "step_to_next_round",
  22150. "strategy": "域内组合"
  22151. },
  22152. {
  22153. "from": "step_next_round_r1",
  22154. "to": "next_round_人类双标_r1_7",
  22155. "edge_type": "step_to_next_round",
  22156. "strategy": "域内组合"
  22157. },
  22158. {
  22159. "from": "step_next_round_r1",
  22160. "to": "next_round_人类双标行为_r1_8",
  22161. "edge_type": "step_to_next_round",
  22162. "strategy": "域内组合"
  22163. },
  22164. {
  22165. "from": "step_next_round_r1",
  22166. "to": "next_round_双标行为_r1_9",
  22167. "edge_type": "step_to_next_round",
  22168. "strategy": "域内组合"
  22169. },
  22170. {
  22171. "from": "step_next_round_r1",
  22172. "to": "next_round_反映双标行为_r1_10",
  22173. "edge_type": "step_to_next_round",
  22174. "strategy": "域内组合"
  22175. },
  22176. {
  22177. "from": "step_next_round_r1",
  22178. "to": "next_round_反映人类_r1_11",
  22179. "edge_type": "step_to_next_round",
  22180. "strategy": "域内组合"
  22181. },
  22182. {
  22183. "from": "step_next_round_r1",
  22184. "to": "next_round_反映人类行为_r1_12",
  22185. "edge_type": "step_to_next_round",
  22186. "strategy": "域内组合"
  22187. },
  22188. {
  22189. "from": "step_next_round_r1",
  22190. "to": "next_round_人类行为_r1_13",
  22191. "edge_type": "step_to_next_round",
  22192. "strategy": "域内组合"
  22193. },
  22194. {
  22195. "from": "step_next_round_r1",
  22196. "to": "next_round_制作表情包_r1_14",
  22197. "edge_type": "step_to_next_round",
  22198. "strategy": "SUG"
  22199. },
  22200. {
  22201. "from": "step_next_round_r1",
  22202. "to": "next_round_表情包怎么制作_r1_15",
  22203. "edge_type": "step_to_next_round",
  22204. "strategy": "SUG"
  22205. },
  22206. {
  22207. "from": "step_next_round_r1",
  22208. "to": "next_round_双标表情包_r1_16",
  22209. "edge_type": "step_to_next_round",
  22210. "strategy": "SUG"
  22211. },
  22212. {
  22213. "from": "step_next_round_r1",
  22214. "to": "next_round_梗图素材_r1_17",
  22215. "edge_type": "step_to_next_round",
  22216. "strategy": "SUG"
  22217. },
  22218. {
  22219. "from": "step_next_round_r1",
  22220. "to": "next_round_梗图模版_r1_18",
  22221. "edge_type": "step_to_next_round",
  22222. "strategy": "SUG"
  22223. },
  22224. {
  22225. "from": "step_next_round_r1",
  22226. "to": "next_round_梗图描改_r1_19",
  22227. "edge_type": "step_to_next_round",
  22228. "strategy": "SUG"
  22229. },
  22230. {
  22231. "from": "step_next_round_r1",
  22232. "to": "next_round_表情包简笔画_r1_20",
  22233. "edge_type": "step_to_next_round",
  22234. "strategy": "SUG"
  22235. },
  22236. {
  22237. "from": "step_next_round_r1",
  22238. "to": "next_round_双标图片_r1_21",
  22239. "edge_type": "step_to_next_round",
  22240. "strategy": "SUG"
  22241. },
  22242. {
  22243. "from": "step_next_round_r1",
  22244. "to": "next_round_表情包图片大全_r1_22",
  22245. "edge_type": "step_to_next_round",
  22246. "strategy": "SUG"
  22247. },
  22248. {
  22249. "from": "step_next_round_r1",
  22250. "to": "next_round_梗图meme_r1_23",
  22251. "edge_type": "step_to_next_round",
  22252. "strategy": "SUG"
  22253. },
  22254. {
  22255. "from": "step_next_round_r1",
  22256. "to": "next_round_梗图分享_r1_24",
  22257. "edge_type": "step_to_next_round",
  22258. "strategy": "SUG"
  22259. },
  22260. {
  22261. "from": "root_o",
  22262. "to": "round_2",
  22263. "edge_type": "root_to_round",
  22264. "strategy": "第2轮"
  22265. },
  22266. {
  22267. "from": "round_2",
  22268. "to": "step_sug_r2",
  22269. "edge_type": "round_to_step",
  22270. "strategy": "推荐词"
  22271. },
  22272. {
  22273. "from": "step_sug_r2",
  22274. "to": "q_制作表情包_r2_0",
  22275. "edge_type": "step_to_q",
  22276. "strategy": "Query"
  22277. },
  22278. {
  22279. "from": "q_制作表情包_r2_0",
  22280. "to": "sug_制作表情包用什么软件_r2_q0_0",
  22281. "edge_type": "q_to_sug",
  22282. "strategy": "推荐词"
  22283. },
  22284. {
  22285. "from": "q_制作表情包_r2_0",
  22286. "to": "sug_制作表情包微信_r2_q0_1",
  22287. "edge_type": "q_to_sug",
  22288. "strategy": "推荐词"
  22289. },
  22290. {
  22291. "from": "q_制作表情包_r2_0",
  22292. "to": "sug_制作表情包怎么赚钱_r2_q0_2",
  22293. "edge_type": "q_to_sug",
  22294. "strategy": "推荐词"
  22295. },
  22296. {
  22297. "from": "q_制作表情包_r2_0",
  22298. "to": "sug_制作表情包教程_r2_q0_3",
  22299. "edge_type": "q_to_sug",
  22300. "strategy": "推荐词"
  22301. },
  22302. {
  22303. "from": "q_制作表情包_r2_0",
  22304. "to": "sug_制作表情包软件_r2_q0_4",
  22305. "edge_type": "q_to_sug",
  22306. "strategy": "推荐词"
  22307. },
  22308. {
  22309. "from": "q_制作表情包_r2_0",
  22310. "to": "sug_制作表情包gif_r2_q0_5",
  22311. "edge_type": "q_to_sug",
  22312. "strategy": "推荐词"
  22313. },
  22314. {
  22315. "from": "q_制作表情包_r2_0",
  22316. "to": "sug_制作表情包动图_r2_q0_6",
  22317. "edge_type": "q_to_sug",
  22318. "strategy": "推荐词"
  22319. },
  22320. {
  22321. "from": "q_制作表情包_r2_0",
  22322. "to": "sug_视频制作表情包_r2_q0_7",
  22323. "edge_type": "q_to_sug",
  22324. "strategy": "推荐词"
  22325. },
  22326. {
  22327. "from": "q_制作表情包_r2_0",
  22328. "to": "sug_美图秀秀制作表情包图片_r2_q0_8",
  22329. "edge_type": "q_to_sug",
  22330. "strategy": "推荐词"
  22331. },
  22332. {
  22333. "from": "q_制作表情包_r2_0",
  22334. "to": "sug_制作表情包文字_r2_q0_9",
  22335. "edge_type": "q_to_sug",
  22336. "strategy": "推荐词"
  22337. },
  22338. {
  22339. "from": "step_sug_r2",
  22340. "to": "q_表情包怎么制作_r2_1",
  22341. "edge_type": "step_to_q",
  22342. "strategy": "Query"
  22343. },
  22344. {
  22345. "from": "q_表情包怎么制作_r2_1",
  22346. "to": "sug_表情包怎么制作gif_r2_q1_0",
  22347. "edge_type": "q_to_sug",
  22348. "strategy": "推荐词"
  22349. },
  22350. {
  22351. "from": "q_表情包怎么制作_r2_1",
  22352. "to": "sug_表情包怎么制作动态_r2_q1_1",
  22353. "edge_type": "q_to_sug",
  22354. "strategy": "推荐词"
  22355. },
  22356. {
  22357. "from": "q_表情包怎么制作_r2_1",
  22358. "to": "sug_表情包怎么制作微信_r2_q1_2",
  22359. "edge_type": "q_to_sug",
  22360. "strategy": "推荐词"
  22361. },
  22362. {
  22363. "from": "q_表情包怎么制作_r2_1",
  22364. "to": "sug_表情包怎么制作文字_r2_q1_3",
  22365. "edge_type": "q_to_sug",
  22366. "strategy": "推荐词"
  22367. },
  22368. {
  22369. "from": "q_表情包怎么制作_r2_1",
  22370. "to": "sug_小红书表情包怎么制作的_r2_q1_4",
  22371. "edge_type": "q_to_sug",
  22372. "strategy": "推荐词"
  22373. },
  22374. {
  22375. "from": "q_表情包怎么制作_r2_1",
  22376. "to": "sug_原创表情包怎么制作_r2_q1_5",
  22377. "edge_type": "q_to_sug",
  22378. "strategy": "推荐词"
  22379. },
  22380. {
  22381. "from": "q_表情包怎么制作_r2_1",
  22382. "to": "sug_表情包怎么制作视频_r2_q1_6",
  22383. "edge_type": "q_to_sug",
  22384. "strategy": "推荐词"
  22385. },
  22386. {
  22387. "from": "q_表情包怎么制作_r2_1",
  22388. "to": "sug_表情包怎么制作动态图_r2_q1_7",
  22389. "edge_type": "q_to_sug",
  22390. "strategy": "推荐词"
  22391. },
  22392. {
  22393. "from": "q_表情包怎么制作_r2_1",
  22394. "to": "sug_表情包怎么制作动图_r2_q1_8",
  22395. "edge_type": "q_to_sug",
  22396. "strategy": "推荐词"
  22397. },
  22398. {
  22399. "from": "q_表情包怎么制作_r2_1",
  22400. "to": "sug_制作表情包怎么赚钱_r2_q1_9",
  22401. "edge_type": "q_to_sug",
  22402. "strategy": "推荐词"
  22403. },
  22404. {
  22405. "from": "step_sug_r2",
  22406. "to": "q_双标表情包_r2_2",
  22407. "edge_type": "step_to_q",
  22408. "strategy": "Query"
  22409. },
  22410. {
  22411. "from": "q_双标表情包_r2_2",
  22412. "to": "sug_双标表情包内涵_r2_q2_0",
  22413. "edge_type": "q_to_sug",
  22414. "strategy": "推荐词"
  22415. },
  22416. {
  22417. "from": "q_双标表情包_r2_2",
  22418. "to": "sug_双标表情包图片_r2_q2_1",
  22419. "edge_type": "q_to_sug",
  22420. "strategy": "推荐词"
  22421. },
  22422. {
  22423. "from": "q_双标表情包_r2_2",
  22424. "to": "sug_怼双标的人表情包_r2_q2_2",
  22425. "edge_type": "q_to_sug",
  22426. "strategy": "推荐词"
  22427. },
  22428. {
  22429. "from": "q_双标表情包_r2_2",
  22430. "to": "sug_可爱又双标的表情包_r2_q2_3",
  22431. "edge_type": "q_to_sug",
  22432. "strategy": "推荐词"
  22433. },
  22434. {
  22435. "from": "q_双标表情包_r2_2",
  22436. "to": "sug_讽刺双标的图片_r2_q2_4",
  22437. "edge_type": "q_to_sug",
  22438. "strategy": "推荐词"
  22439. },
  22440. {
  22441. "from": "q_双标表情包_r2_2",
  22442. "to": "sug_双标梗图模板_r2_q2_5",
  22443. "edge_type": "q_to_sug",
  22444. "strategy": "推荐词"
  22445. },
  22446. {
  22447. "from": "q_双标表情包_r2_2",
  22448. "to": "sug_讽刺双标的人的文案_r2_q2_6",
  22449. "edge_type": "q_to_sug",
  22450. "strategy": "推荐词"
  22451. },
  22452. {
  22453. "from": "q_双标表情包_r2_2",
  22454. "to": "sug_很双标的朋友圈文案_r2_q2_7",
  22455. "edge_type": "q_to_sug",
  22456. "strategy": "推荐词"
  22457. },
  22458. {
  22459. "from": "q_双标表情包_r2_2",
  22460. "to": "sug_这可是要砍头的表情包_r2_q2_8",
  22461. "edge_type": "q_to_sug",
  22462. "strategy": "推荐词"
  22463. },
  22464. {
  22465. "from": "q_双标表情包_r2_2",
  22466. "to": "sug_双标的人怎么怼_r2_q2_9",
  22467. "edge_type": "q_to_sug",
  22468. "strategy": "推荐词"
  22469. },
  22470. {
  22471. "from": "step_sug_r2",
  22472. "to": "q_梗图素材_r2_3",
  22473. "edge_type": "step_to_q",
  22474. "strategy": "Query"
  22475. },
  22476. {
  22477. "from": "q_梗图素材_r2_3",
  22478. "to": "sug_梗图素材模板_r2_q3_0",
  22479. "edge_type": "q_to_sug",
  22480. "strategy": "推荐词"
  22481. },
  22482. {
  22483. "from": "q_梗图素材_r2_3",
  22484. "to": "sug_梗图素材抽象_r2_q3_1",
  22485. "edge_type": "q_to_sug",
  22486. "strategy": "推荐词"
  22487. },
  22488. {
  22489. "from": "q_梗图素材_r2_3",
  22490. "to": "sug_梗图素材双人_r2_q3_2",
  22491. "edge_type": "q_to_sug",
  22492. "strategy": "推荐词"
  22493. },
  22494. {
  22495. "from": "q_梗图素材_r2_3",
  22496. "to": "sug_梗图素材单人_r2_q3_3",
  22497. "edge_type": "q_to_sug",
  22498. "strategy": "推荐词"
  22499. },
  22500. {
  22501. "from": "q_梗图素材_r2_3",
  22502. "to": "sug_梗图素材原图_r2_q3_4",
  22503. "edge_type": "q_to_sug",
  22504. "strategy": "推荐词"
  22505. },
  22506. {
  22507. "from": "q_梗图素材_r2_3",
  22508. "to": "sug_梗图素材多人_r2_q3_5",
  22509. "edge_type": "q_to_sug",
  22510. "strategy": "推荐词"
  22511. },
  22512. {
  22513. "from": "q_梗图素材_r2_3",
  22514. "to": "sug_梗图素材画画_r2_q3_6",
  22515. "edge_type": "q_to_sug",
  22516. "strategy": "推荐词"
  22517. },
  22518. {
  22519. "from": "q_梗图素材_r2_3",
  22520. "to": "sug_梗图素材描改_r2_q3_7",
  22521. "edge_type": "q_to_sug",
  22522. "strategy": "推荐词"
  22523. },
  22524. {
  22525. "from": "q_梗图素材_r2_3",
  22526. "to": "sug_梗图素材表情包_r2_q3_8",
  22527. "edge_type": "q_to_sug",
  22528. "strategy": "推荐词"
  22529. },
  22530. {
  22531. "from": "q_梗图素材_r2_3",
  22532. "to": "sug_梗图素材聊天记录_r2_q3_9",
  22533. "edge_type": "q_to_sug",
  22534. "strategy": "推荐词"
  22535. },
  22536. {
  22537. "from": "step_sug_r2",
  22538. "to": "q_梗图模版_r2_4",
  22539. "edge_type": "step_to_q",
  22540. "strategy": "Query"
  22541. },
  22542. {
  22543. "from": "q_梗图模版_r2_4",
  22544. "to": "sug_梗图模版抽象_r2_q4_0",
  22545. "edge_type": "q_to_sug",
  22546. "strategy": "推荐词"
  22547. },
  22548. {
  22549. "from": "q_梗图模版_r2_4",
  22550. "to": "sug_梗图模版双人_r2_q4_1",
  22551. "edge_type": "q_to_sug",
  22552. "strategy": "推荐词"
  22553. },
  22554. {
  22555. "from": "q_梗图模版_r2_4",
  22556. "to": "sug_梗图模版单人_r2_q4_2",
  22557. "edge_type": "q_to_sug",
  22558. "strategy": "推荐词"
  22559. },
  22560. {
  22561. "from": "q_梗图模版_r2_4",
  22562. "to": "sug_梗图模板_r2_q4_3",
  22563. "edge_type": "q_to_sug",
  22564. "strategy": "推荐词"
  22565. },
  22566. {
  22567. "from": "q_梗图模版_r2_4",
  22568. "to": "sug_梗图模版三人_r2_q4_4",
  22569. "edge_type": "q_to_sug",
  22570. "strategy": "推荐词"
  22571. },
  22572. {
  22573. "from": "q_梗图模版_r2_4",
  22574. "to": "sug_梗图模版表情包_r2_q4_5",
  22575. "edge_type": "q_to_sug",
  22576. "strategy": "推荐词"
  22577. },
  22578. {
  22579. "from": "q_梗图模版_r2_4",
  22580. "to": "sug_梗图模版多人_r2_q4_6",
  22581. "edge_type": "q_to_sug",
  22582. "strategy": "推荐词"
  22583. },
  22584. {
  22585. "from": "q_梗图模版_r2_4",
  22586. "to": "sug_梗图模版四人_r2_q4_7",
  22587. "edge_type": "q_to_sug",
  22588. "strategy": "推荐词"
  22589. },
  22590. {
  22591. "from": "q_梗图模版_r2_4",
  22592. "to": "sug_双眼皮模版图_r2_q4_8",
  22593. "edge_type": "q_to_sug",
  22594. "strategy": "推荐词"
  22595. },
  22596. {
  22597. "from": "q_梗图模版_r2_4",
  22598. "to": "sug_梗图模版表格_r2_q4_9",
  22599. "edge_type": "q_to_sug",
  22600. "strategy": "推荐词"
  22601. },
  22602. {
  22603. "from": "step_sug_r2",
  22604. "to": "q_梗图描改_r2_5",
  22605. "edge_type": "step_to_q",
  22606. "strategy": "Query"
  22607. },
  22608. {
  22609. "from": "q_梗图描改_r2_5",
  22610. "to": "sug_梗图描改接稿_r2_q5_0",
  22611. "edge_type": "q_to_sug",
  22612. "strategy": "推荐词"
  22613. },
  22614. {
  22615. "from": "q_梗图描改_r2_5",
  22616. "to": "sug_梗图描改素材_r2_q5_1",
  22617. "edge_type": "q_to_sug",
  22618. "strategy": "推荐词"
  22619. },
  22620. {
  22621. "from": "q_梗图描改_r2_5",
  22622. "to": "sug_梗图描改教程_r2_q5_2",
  22623. "edge_type": "q_to_sug",
  22624. "strategy": "推荐词"
  22625. },
  22626. {
  22627. "from": "q_梗图描改_r2_5",
  22628. "to": "sug_梗图描改怎么画_r2_q5_3",
  22629. "edge_type": "q_to_sug",
  22630. "strategy": "推荐词"
  22631. },
  22632. {
  22633. "from": "q_梗图描改_r2_5",
  22634. "to": "sug_梗图描改模板_r2_q5_4",
  22635. "edge_type": "q_to_sug",
  22636. "strategy": "推荐词"
  22637. },
  22638. {
  22639. "from": "q_梗图描改_r2_5",
  22640. "to": "sug_梗图描改约稿_r2_q5_5",
  22641. "edge_type": "q_to_sug",
  22642. "strategy": "推荐词"
  22643. },
  22644. {
  22645. "from": "q_梗图描改_r2_5",
  22646. "to": "sug_梗图描改原图_r2_q5_6",
  22647. "edge_type": "q_to_sug",
  22648. "strategy": "推荐词"
  22649. },
  22650. {
  22651. "from": "q_梗图描改_r2_5",
  22652. "to": "sug_梗图描改鸡蛋_r2_q5_7",
  22653. "edge_type": "q_to_sug",
  22654. "strategy": "推荐词"
  22655. },
  22656. {
  22657. "from": "q_梗图描改_r2_5",
  22658. "to": "sug_抽象梗图描改_r2_q5_8",
  22659. "edge_type": "q_to_sug",
  22660. "strategy": "推荐词"
  22661. },
  22662. {
  22663. "from": "q_梗图描改_r2_5",
  22664. "to": "sug_梗图描改过程_r2_q5_9",
  22665. "edge_type": "q_to_sug",
  22666. "strategy": "推荐词"
  22667. },
  22668. {
  22669. "from": "step_sug_r2",
  22670. "to": "q_表情包简笔画_r2_6",
  22671. "edge_type": "step_to_q",
  22672. "strategy": "Query"
  22673. },
  22674. {
  22675. "from": "q_表情包简笔画_r2_6",
  22676. "to": "sug_表情包简笔画可爱_r2_q6_0",
  22677. "edge_type": "q_to_sug",
  22678. "strategy": "推荐词"
  22679. },
  22680. {
  22681. "from": "q_表情包简笔画_r2_6",
  22682. "to": "sug_表情包简笔画抽象_r2_q6_1",
  22683. "edge_type": "q_to_sug",
  22684. "strategy": "推荐词"
  22685. },
  22686. {
  22687. "from": "q_表情包简笔画_r2_6",
  22688. "to": "sug_表情包简笔画大全_r2_q6_2",
  22689. "edge_type": "q_to_sug",
  22690. "strategy": "推荐词"
  22691. },
  22692. {
  22693. "from": "q_表情包简笔画_r2_6",
  22694. "to": "sug_表情包简笔画哭_r2_q6_3",
  22695. "edge_type": "q_to_sug",
  22696. "strategy": "推荐词"
  22697. },
  22698. {
  22699. "from": "q_表情包简笔画_r2_6",
  22700. "to": "sug_表情包简笔画图片_r2_q6_4",
  22701. "edge_type": "q_to_sug",
  22702. "strategy": "推荐词"
  22703. },
  22704. {
  22705. "from": "q_表情包简笔画_r2_6",
  22706. "to": "sug_表情包简笔画人物_r2_q6_5",
  22707. "edge_type": "q_to_sug",
  22708. "strategy": "推荐词"
  22709. },
  22710. {
  22711. "from": "q_表情包简笔画_r2_6",
  22712. "to": "sug_表情包简笔画教程_r2_q6_6",
  22713. "edge_type": "q_to_sug",
  22714. "strategy": "推荐词"
  22715. },
  22716. {
  22717. "from": "q_表情包简笔画_r2_6",
  22718. "to": "sug_表情简笔画_r2_q6_7",
  22719. "edge_type": "q_to_sug",
  22720. "strategy": "推荐词"
  22721. },
  22722. {
  22723. "from": "q_表情包简笔画_r2_6",
  22724. "to": "sug_表情包简笔画加油_r2_q6_8",
  22725. "edge_type": "q_to_sug",
  22726. "strategy": "推荐词"
  22727. },
  22728. {
  22729. "from": "q_表情包简笔画_r2_6",
  22730. "to": "sug_表情包简笔画开心_r2_q6_9",
  22731. "edge_type": "q_to_sug",
  22732. "strategy": "推荐词"
  22733. },
  22734. {
  22735. "from": "step_sug_r2",
  22736. "to": "q_双标图片_r2_7",
  22737. "edge_type": "step_to_q",
  22738. "strategy": "Query"
  22739. },
  22740. {
  22741. "from": "q_双标图片_r2_7",
  22742. "to": "sug_讽刺双标的图片_r2_q7_0",
  22743. "edge_type": "q_to_sug",
  22744. "strategy": "推荐词"
  22745. },
  22746. {
  22747. "from": "q_双标图片_r2_7",
  22748. "to": "sug_暗示双标的图片_r2_q7_1",
  22749. "edge_type": "q_to_sug",
  22750. "strategy": "推荐词"
  22751. },
  22752. {
  22753. "from": "q_双标图片_r2_7",
  22754. "to": "sug_双标搞笑图片_r2_q7_2",
  22755. "edge_type": "q_to_sug",
  22756. "strategy": "推荐词"
  22757. },
  22758. {
  22759. "from": "q_双标图片_r2_7",
  22760. "to": "sug_讽刺双标的人的文案_r2_q7_3",
  22761. "edge_type": "q_to_sug",
  22762. "strategy": "推荐词"
  22763. },
  22764. {
  22765. "from": "q_双标图片_r2_7",
  22766. "to": "sug_双标梗_r2_q7_4",
  22767. "edge_type": "q_to_sug",
  22768. "strategy": "推荐词"
  22769. },
  22770. {
  22771. "from": "q_双标图片_r2_7",
  22772. "to": "sug_双标是什么意思_r2_q7_5",
  22773. "edge_type": "q_to_sug",
  22774. "strategy": "推荐词"
  22775. },
  22776. {
  22777. "from": "q_双标图片_r2_7",
  22778. "to": "sug_形容双标人的文案_r2_q7_6",
  22779. "edge_type": "q_to_sug",
  22780. "strategy": "推荐词"
  22781. },
  22782. {
  22783. "from": "q_双标图片_r2_7",
  22784. "to": "sug_内涵双标的文案_r2_q7_7",
  22785. "edge_type": "q_to_sug",
  22786. "strategy": "推荐词"
  22787. },
  22788. {
  22789. "from": "q_双标图片_r2_7",
  22790. "to": "sug_卡皮巴拉100种可爱图片_r2_q7_8",
  22791. "edge_type": "q_to_sug",
  22792. "strategy": "推荐词"
  22793. },
  22794. {
  22795. "from": "q_双标图片_r2_7",
  22796. "to": "sug_双标_r2_q7_9",
  22797. "edge_type": "q_to_sug",
  22798. "strategy": "推荐词"
  22799. },
  22800. {
  22801. "from": "step_sug_r2",
  22802. "to": "q_表情包图片大全_r2_8",
  22803. "edge_type": "step_to_q",
  22804. "strategy": "Query"
  22805. },
  22806. {
  22807. "from": "q_表情包图片大全_r2_8",
  22808. "to": "sug_表情包图片大全简笔画_r2_q8_0",
  22809. "edge_type": "q_to_sug",
  22810. "strategy": "推荐词"
  22811. },
  22812. {
  22813. "from": "q_表情包图片大全_r2_8",
  22814. "to": "sug_表情包图片大全微信_r2_q8_1",
  22815. "edge_type": "q_to_sug",
  22816. "strategy": "推荐词"
  22817. },
  22818. {
  22819. "from": "q_表情包图片大全_r2_8",
  22820. "to": "sug_表情包图片大全抽象_r2_q8_2",
  22821. "edge_type": "q_to_sug",
  22822. "strategy": "推荐词"
  22823. },
  22824. {
  22825. "from": "q_表情包图片大全_r2_8",
  22826. "to": "sug_表情包图片大全可爱_r2_q8_3",
  22827. "edge_type": "q_to_sug",
  22828. "strategy": "推荐词"
  22829. },
  22830. {
  22831. "from": "q_表情包图片大全_r2_8",
  22832. "to": "sug_表情包图片大全动态_r2_q8_4",
  22833. "edge_type": "q_to_sug",
  22834. "strategy": "推荐词"
  22835. },
  22836. {
  22837. "from": "q_表情包图片大全_r2_8",
  22838. "to": "sug_表情包图片大全素材_r2_q8_5",
  22839. "edge_type": "q_to_sug",
  22840. "strategy": "推荐词"
  22841. },
  22842. {
  22843. "from": "q_表情包图片大全_r2_8",
  22844. "to": "sug_表情包图片大全搞笑_r2_q8_6",
  22845. "edge_type": "q_to_sug",
  22846. "strategy": "推荐词"
  22847. },
  22848. {
  22849. "from": "q_表情包图片大全_r2_8",
  22850. "to": "sug_ch表情包图片大全_r2_q8_7",
  22851. "edge_type": "q_to_sug",
  22852. "strategy": "推荐词"
  22853. },
  22854. {
  22855. "from": "q_表情包图片大全_r2_8",
  22856. "to": "sug_开心表情包图片大全_r2_q8_8",
  22857. "edge_type": "q_to_sug",
  22858. "strategy": "推荐词"
  22859. },
  22860. {
  22861. "from": "q_表情包图片大全_r2_8",
  22862. "to": "sug_表情包图片大全打印素材_r2_q8_9",
  22863. "edge_type": "q_to_sug",
  22864. "strategy": "推荐词"
  22865. },
  22866. {
  22867. "from": "step_sug_r2",
  22868. "to": "q_梗图meme_r2_9",
  22869. "edge_type": "step_to_q",
  22870. "strategy": "Query"
  22871. },
  22872. {
  22873. "from": "q_梗图meme_r2_9",
  22874. "to": "sug_梗图meme双人_r2_q9_0",
  22875. "edge_type": "q_to_sug",
  22876. "strategy": "推荐词"
  22877. },
  22878. {
  22879. "from": "q_梗图meme_r2_9",
  22880. "to": "sug_梗图meme模板_r2_q9_1",
  22881. "edge_type": "q_to_sug",
  22882. "strategy": "推荐词"
  22883. },
  22884. {
  22885. "from": "q_梗图meme_r2_9",
  22886. "to": "sug_心理疾病meme梗图_r2_q9_2",
  22887. "edge_type": "q_to_sug",
  22888. "strategy": "推荐词"
  22889. },
  22890. {
  22891. "from": "q_梗图meme_r2_9",
  22892. "to": "sug_梗图meme素材_r2_q9_3",
  22893. "edge_type": "q_to_sug",
  22894. "strategy": "推荐词"
  22895. },
  22896. {
  22897. "from": "q_梗图meme_r2_9",
  22898. "to": "sug_梗图meme悲伤自嘲_r2_q9_4",
  22899. "edge_type": "q_to_sug",
  22900. "strategy": "推荐词"
  22901. },
  22902. {
  22903. "from": "q_梗图meme_r2_9",
  22904. "to": "sug_梗图meme代餐_r2_q9_5",
  22905. "edge_type": "q_to_sug",
  22906. "strategy": "推荐词"
  22907. },
  22908. {
  22909. "from": "q_梗图meme_r2_9",
  22910. "to": "sug_梗图meme学习_r2_q9_6",
  22911. "edge_type": "q_to_sug",
  22912. "strategy": "推荐词"
  22913. },
  22914. {
  22915. "from": "q_梗图meme_r2_9",
  22916. "to": "sug_焦虑症meme梗图_r2_q9_7",
  22917. "edge_type": "q_to_sug",
  22918. "strategy": "推荐词"
  22919. },
  22920. {
  22921. "from": "q_梗图meme_r2_9",
  22922. "to": "sug_精神疾病meme梗图_r2_q9_8",
  22923. "edge_type": "q_to_sug",
  22924. "strategy": "推荐词"
  22925. },
  22926. {
  22927. "from": "q_梗图meme_r2_9",
  22928. "to": "sug_梗图meme原创_r2_q9_9",
  22929. "edge_type": "q_to_sug",
  22930. "strategy": "推荐词"
  22931. },
  22932. {
  22933. "from": "step_sug_r2",
  22934. "to": "q_梗图分享_r2_10",
  22935. "edge_type": "step_to_q",
  22936. "strategy": "Query"
  22937. },
  22938. {
  22939. "from": "q_梗图分享_r2_10",
  22940. "to": "sug_恋与深空同人图资源分享_r2_q10_0",
  22941. "edge_type": "q_to_sug",
  22942. "strategy": "推荐词"
  22943. },
  22944. {
  22945. "from": "q_梗图分享_r2_10",
  22946. "to": "sug_早安分享图片_r2_q10_1",
  22947. "edge_type": "q_to_sug",
  22948. "strategy": "推荐词"
  22949. },
  22950. {
  22951. "from": "q_梗图分享_r2_10",
  22952. "to": "sug_定制分享图_r2_q10_2",
  22953. "edge_type": "q_to_sug",
  22954. "strategy": "推荐词"
  22955. },
  22956. {
  22957. "from": "q_梗图分享_r2_10",
  22958. "to": "sug_图纸分享_r2_q10_3",
  22959. "edge_type": "q_to_sug",
  22960. "strategy": "推荐词"
  22961. },
  22962. {
  22963. "from": "q_梗图分享_r2_10",
  22964. "to": "sug_meme梗图分享_r2_q10_4",
  22965. "edge_type": "q_to_sug",
  22966. "strategy": "推荐词"
  22967. },
  22968. {
  22969. "from": "q_梗图分享_r2_10",
  22970. "to": "sug_拼豆豆图纸分享_r2_q10_5",
  22971. "edge_type": "q_to_sug",
  22972. "strategy": "推荐词"
  22973. },
  22974. {
  22975. "from": "q_梗图分享_r2_10",
  22976. "to": "sug_买断图分享_r2_q10_6",
  22977. "edge_type": "q_to_sug",
  22978. "strategy": "推荐词"
  22979. },
  22980. {
  22981. "from": "q_梗图分享_r2_10",
  22982. "to": "sug_拼豆图纸分享_r2_q10_7",
  22983. "edge_type": "q_to_sug",
  22984. "strategy": "推荐词"
  22985. },
  22986. {
  22987. "from": "q_梗图分享_r2_10",
  22988. "to": "sug_日常分享图片_r2_q10_8",
  22989. "edge_type": "q_to_sug",
  22990. "strategy": "推荐词"
  22991. },
  22992. {
  22993. "from": "q_梗图分享_r2_10",
  22994. "to": "sug_自截分享图_r2_q10_9",
  22995. "edge_type": "q_to_sug",
  22996. "strategy": "推荐词"
  22997. },
  22998. {
  22999. "from": "step_sug_r2",
  23000. "to": "q_猫咪表情包梗图_r2_11",
  23001. "edge_type": "step_to_q",
  23002. "strategy": "Query"
  23003. },
  23004. {
  23005. "from": "q_猫咪表情包梗图_r2_11",
  23006. "to": "sug_猫咪表情包_r2_q11_0",
  23007. "edge_type": "q_to_sug",
  23008. "strategy": "推荐词"
  23009. },
  23010. {
  23011. "from": "q_猫咪表情包梗图_r2_11",
  23012. "to": "sug_猫咪表情包图片_r2_q11_1",
  23013. "edge_type": "q_to_sug",
  23014. "strategy": "推荐词"
  23015. },
  23016. {
  23017. "from": "q_猫咪表情包梗图_r2_11",
  23018. "to": "sug_猫咪咪表情包图片_r2_q11_2",
  23019. "edge_type": "q_to_sug",
  23020. "strategy": "推荐词"
  23021. },
  23022. {
  23023. "from": "q_猫咪表情包梗图_r2_11",
  23024. "to": "sug_猫咪搞笑表情包_r2_q11_3",
  23025. "edge_type": "q_to_sug",
  23026. "strategy": "推荐词"
  23027. },
  23028. {
  23029. "from": "q_猫咪表情包梗图_r2_11",
  23030. "to": "sug_猫咪表情包梗图搞笑_r2_q11_4",
  23031. "edge_type": "q_to_sug",
  23032. "strategy": "推荐词"
  23033. },
  23034. {
  23035. "from": "step_sug_r2",
  23036. "to": "q_猫咪表情包_r2_12",
  23037. "edge_type": "step_to_q",
  23038. "strategy": "Query"
  23039. },
  23040. {
  23041. "from": "q_猫咪表情包_r2_12",
  23042. "to": "sug_猫咪表情包抽象_r2_q12_0",
  23043. "edge_type": "q_to_sug",
  23044. "strategy": "推荐词"
  23045. },
  23046. {
  23047. "from": "q_猫咪表情包_r2_12",
  23048. "to": "sug_猫meme表情包动图_r2_q12_1",
  23049. "edge_type": "q_to_sug",
  23050. "strategy": "推荐词"
  23051. },
  23052. {
  23053. "from": "q_猫咪表情包_r2_12",
  23054. "to": "sug_猫咪表情包配文_r2_q12_2",
  23055. "edge_type": "q_to_sug",
  23056. "strategy": "推荐词"
  23057. },
  23058. {
  23059. "from": "q_猫咪表情包_r2_12",
  23060. "to": "sug_猫咪表情包动图_r2_q12_3",
  23061. "edge_type": "q_to_sug",
  23062. "strategy": "推荐词"
  23063. },
  23064. {
  23065. "from": "q_猫咪表情包_r2_12",
  23066. "to": "sug_猫咪表情包制作_r2_q12_4",
  23067. "edge_type": "q_to_sug",
  23068. "strategy": "推荐词"
  23069. },
  23070. {
  23071. "from": "q_猫咪表情包_r2_12",
  23072. "to": "sug_猫咪表情包可爱_r2_q12_5",
  23073. "edge_type": "q_to_sug",
  23074. "strategy": "推荐词"
  23075. },
  23076. {
  23077. "from": "q_猫咪表情包_r2_12",
  23078. "to": "sug_猫咪表情符号_r2_q12_6",
  23079. "edge_type": "q_to_sug",
  23080. "strategy": "推荐词"
  23081. },
  23082. {
  23083. "from": "q_猫咪表情包_r2_12",
  23084. "to": "sug_猫咪表情包叫什么_r2_q12_7",
  23085. "edge_type": "q_to_sug",
  23086. "strategy": "推荐词"
  23087. },
  23088. {
  23089. "from": "q_猫咪表情包_r2_12",
  23090. "to": "sug_猫咪表情包图片_r2_q12_8",
  23091. "edge_type": "q_to_sug",
  23092. "strategy": "推荐词"
  23093. },
  23094. {
  23095. "from": "q_猫咪表情包_r2_12",
  23096. "to": "sug_猫咪表情包视频_r2_q12_9",
  23097. "edge_type": "q_to_sug",
  23098. "strategy": "推荐词"
  23099. },
  23100. {
  23101. "from": "step_sug_r2",
  23102. "to": "q_猫咪梗图_r2_13",
  23103. "edge_type": "step_to_q",
  23104. "strategy": "Query"
  23105. },
  23106. {
  23107. "from": "q_猫咪梗图_r2_13",
  23108. "to": "sug_猫咪梗图素材_r2_q13_0",
  23109. "edge_type": "q_to_sug",
  23110. "strategy": "推荐词"
  23111. },
  23112. {
  23113. "from": "q_猫咪梗图_r2_13",
  23114. "to": "sug_猫咪梗图模板_r2_q13_1",
  23115. "edge_type": "q_to_sug",
  23116. "strategy": "推荐词"
  23117. },
  23118. {
  23119. "from": "q_猫咪梗图_r2_13",
  23120. "to": "sug_猫咪梗图骂人_r2_q13_2",
  23121. "edge_type": "q_to_sug",
  23122. "strategy": "推荐词"
  23123. },
  23124. {
  23125. "from": "q_猫咪梗图_r2_13",
  23126. "to": "sug_猫咪梗图恋爱_r2_q13_3",
  23127. "edge_type": "q_to_sug",
  23128. "strategy": "推荐词"
  23129. },
  23130. {
  23131. "from": "q_猫咪梗图_r2_13",
  23132. "to": "sug_猫咪梗图伤感_r2_q13_4",
  23133. "edge_type": "q_to_sug",
  23134. "strategy": "推荐词"
  23135. },
  23136. {
  23137. "from": "q_猫咪梗图_r2_13",
  23138. "to": "sug_猫咪梗图睡觉_r2_q13_5",
  23139. "edge_type": "q_to_sug",
  23140. "strategy": "推荐词"
  23141. },
  23142. {
  23143. "from": "q_猫咪梗图_r2_13",
  23144. "to": "sug_猫咪梗图英文_r2_q13_6",
  23145. "edge_type": "q_to_sug",
  23146. "strategy": "推荐词"
  23147. },
  23148. {
  23149. "from": "q_猫咪梗图_r2_13",
  23150. "to": "sug_猫咪梗图塔牌_r2_q13_7",
  23151. "edge_type": "q_to_sug",
  23152. "strategy": "推荐词"
  23153. },
  23154. {
  23155. "from": "q_猫咪梗图_r2_13",
  23156. "to": "sug_猫咪梗图拍照_r2_q13_8",
  23157. "edge_type": "q_to_sug",
  23158. "strategy": "推荐词"
  23159. },
  23160. {
  23161. "from": "q_猫咪梗图_r2_13",
  23162. "to": "sug_猫咪梗图上帝_r2_q13_9",
  23163. "edge_type": "q_to_sug",
  23164. "strategy": "推荐词"
  23165. },
  23166. {
  23167. "from": "step_sug_r2",
  23168. "to": "q_表情包梗图_r2_14",
  23169. "edge_type": "step_to_q",
  23170. "strategy": "Query"
  23171. },
  23172. {
  23173. "from": "q_表情包梗图_r2_14",
  23174. "to": "sug_表情包梗图模板_r2_q14_0",
  23175. "edge_type": "q_to_sug",
  23176. "strategy": "推荐词"
  23177. },
  23178. {
  23179. "from": "q_表情包梗图_r2_14",
  23180. "to": "sug_表情包梗图抽象_r2_q14_1",
  23181. "edge_type": "q_to_sug",
  23182. "strategy": "推荐词"
  23183. },
  23184. {
  23185. "from": "q_表情包梗图_r2_14",
  23186. "to": "sug_jojo表情包梗图_r2_q14_2",
  23187. "edge_type": "q_to_sug",
  23188. "strategy": "推荐词"
  23189. },
  23190. {
  23191. "from": "q_表情包梗图_r2_14",
  23192. "to": "sug_表情包梗图学习_r2_q14_3",
  23193. "edge_type": "q_to_sug",
  23194. "strategy": "推荐词"
  23195. },
  23196. {
  23197. "from": "q_表情包梗图_r2_14",
  23198. "to": "sug_表情包梗图动图_r2_q14_4",
  23199. "edge_type": "q_to_sug",
  23200. "strategy": "推荐词"
  23201. },
  23202. {
  23203. "from": "q_表情包梗图_r2_14",
  23204. "to": "sug_表情包梗图cp_r2_q14_5",
  23205. "edge_type": "q_to_sug",
  23206. "strategy": "推荐词"
  23207. },
  23208. {
  23209. "from": "q_表情包梗图_r2_14",
  23210. "to": "sug_重返未来表情包梗图_r2_q14_6",
  23211. "edge_type": "q_to_sug",
  23212. "strategy": "推荐词"
  23213. },
  23214. {
  23215. "from": "q_表情包梗图_r2_14",
  23216. "to": "sug_表情包梗图可爱_r2_q14_7",
  23217. "edge_type": "q_to_sug",
  23218. "strategy": "推荐词"
  23219. },
  23220. {
  23221. "from": "q_表情包梗图_r2_14",
  23222. "to": "sug_表情包梗图恶俗_r2_q14_8",
  23223. "edge_type": "q_to_sug",
  23224. "strategy": "推荐词"
  23225. },
  23226. {
  23227. "from": "q_表情包梗图_r2_14",
  23228. "to": "sug_表情包梗图开心_r2_q14_9",
  23229. "edge_type": "q_to_sug",
  23230. "strategy": "推荐词"
  23231. },
  23232. {
  23233. "from": "step_sug_r2",
  23234. "to": "q_反映人类双标_r2_15",
  23235. "edge_type": "step_to_q",
  23236. "strategy": "Query"
  23237. },
  23238. {
  23239. "from": "q_反映人类双标_r2_15",
  23240. "to": "sug_反映人类双胞胎基因变异_r2_q15_0",
  23241. "edge_type": "q_to_sug",
  23242. "strategy": "推荐词"
  23243. },
  23244. {
  23245. "from": "step_sug_r2",
  23246. "to": "q_反映人类双标行为_r2_16",
  23247. "edge_type": "step_to_q",
  23248. "strategy": "Query"
  23249. },
  23250. {
  23251. "from": "q_反映人类双标行为_r2_16",
  23252. "to": "sug_反映人类双标行为的图片_r2_q16_0",
  23253. "edge_type": "q_to_sug",
  23254. "strategy": "推荐词"
  23255. },
  23256. {
  23257. "from": "step_sug_r2",
  23258. "to": "q_人类双标行为_r2_17",
  23259. "edge_type": "step_to_q",
  23260. "strategy": "Query"
  23261. },
  23262. {
  23263. "from": "q_人类双标行为_r2_17",
  23264. "to": "sug_人类双标行为是什么意思_r2_q17_0",
  23265. "edge_type": "q_to_sug",
  23266. "strategy": "推荐词"
  23267. },
  23268. {
  23269. "from": "step_sug_r2",
  23270. "to": "q_双标行为_r2_18",
  23271. "edge_type": "step_to_q",
  23272. "strategy": "Query"
  23273. },
  23274. {
  23275. "from": "q_双标行为_r2_18",
  23276. "to": "sug_双标行为举例_r2_q18_0",
  23277. "edge_type": "q_to_sug",
  23278. "strategy": "推荐词"
  23279. },
  23280. {
  23281. "from": "q_双标行为_r2_18",
  23282. "to": "sug_双标行为内涵是什么_r2_q18_1",
  23283. "edge_type": "q_to_sug",
  23284. "strategy": "推荐词"
  23285. },
  23286. {
  23287. "from": "q_双标行为_r2_18",
  23288. "to": "sug_讽刺双标的文案_r2_q18_2",
  23289. "edge_type": "q_to_sug",
  23290. "strategy": "推荐词"
  23291. },
  23292. {
  23293. "from": "q_双标行为_r2_18",
  23294. "to": "sug_王楚钦双标行为_r2_q18_3",
  23295. "edge_type": "q_to_sug",
  23296. "strategy": "推荐词"
  23297. },
  23298. {
  23299. "from": "q_双标行为_r2_18",
  23300. "to": "sug_猫咪为什么会出现双标行为_r2_q18_4",
  23301. "edge_type": "q_to_sug",
  23302. "strategy": "推荐词"
  23303. },
  23304. {
  23305. "from": "q_双标行为_r2_18",
  23306. "to": "sug_双标男友的典型表现_r2_q18_5",
  23307. "edge_type": "q_to_sug",
  23308. "strategy": "推荐词"
  23309. },
  23310. {
  23311. "from": "q_双标行为_r2_18",
  23312. "to": "sug_猫咪双标行为搞笑视频_r2_q18_6",
  23313. "edge_type": "q_to_sug",
  23314. "strategy": "推荐词"
  23315. },
  23316. {
  23317. "from": "q_双标行为_r2_18",
  23318. "to": "sug_猫咪双标行为_r2_q18_7",
  23319. "edge_type": "q_to_sug",
  23320. "strategy": "推荐词"
  23321. },
  23322. {
  23323. "from": "q_双标行为_r2_18",
  23324. "to": "sug_双标是什么意思啊_r2_q18_8",
  23325. "edge_type": "q_to_sug",
  23326. "strategy": "推荐词"
  23327. },
  23328. {
  23329. "from": "q_双标行为_r2_18",
  23330. "to": "sug_双标的人怎么怼_r2_q18_9",
  23331. "edge_type": "q_to_sug",
  23332. "strategy": "推荐词"
  23333. },
  23334. {
  23335. "from": "step_sug_r2",
  23336. "to": "q_反映人类_r2_19",
  23337. "edge_type": "step_to_q",
  23338. "strategy": "Query"
  23339. },
  23340. {
  23341. "from": "q_反映人类_r2_19",
  23342. "to": "sug_反映人类社会发展进步的价值理念_r2_q19_0",
  23343. "edge_type": "q_to_sug",
  23344. "strategy": "推荐词"
  23345. },
  23346. {
  23347. "from": "q_反映人类_r2_19",
  23348. "to": "sug_人类图反映者_r2_q19_1",
  23349. "edge_type": "q_to_sug",
  23350. "strategy": "推荐词"
  23351. },
  23352. {
  23353. "from": "q_反映人类_r2_19",
  23354. "to": "sug_怎么识别人类图中的反映者_r2_q19_2",
  23355. "edge_type": "q_to_sug",
  23356. "strategy": "推荐词"
  23357. },
  23358. {
  23359. "from": "q_反映人类_r2_19",
  23360. "to": "sug_人类图显示者_r2_q19_3",
  23361. "edge_type": "q_to_sug",
  23362. "strategy": "推荐词"
  23363. },
  23364. {
  23365. "from": "q_反映人类_r2_19",
  23366. "to": "sug_人类图解读_r2_q19_4",
  23367. "edge_type": "q_to_sug",
  23368. "strategy": "推荐词"
  23369. },
  23370. {
  23371. "from": "q_反映人类_r2_19",
  23372. "to": "sug_人类图是什么_r2_q19_5",
  23373. "edge_type": "q_to_sug",
  23374. "strategy": "推荐词"
  23375. },
  23376. {
  23377. "from": "q_反映人类_r2_19",
  23378. "to": "sug_反映者适合什么工作_r2_q19_6",
  23379. "edge_type": "q_to_sug",
  23380. "strategy": "推荐词"
  23381. },
  23382. {
  23383. "from": "q_反映人类_r2_19",
  23384. "to": "sug_人类图投射者_r2_q19_7",
  23385. "edge_type": "q_to_sug",
  23386. "strategy": "推荐词"
  23387. },
  23388. {
  23389. "from": "q_反映人类_r2_19",
  23390. "to": "sug_反映者的代表人物_r2_q19_8",
  23391. "edge_type": "q_to_sug",
  23392. "strategy": "推荐词"
  23393. },
  23394. {
  23395. "from": "q_反映人类_r2_19",
  23396. "to": "sug_人类图测试_r2_q19_9",
  23397. "edge_type": "q_to_sug",
  23398. "strategy": "推荐词"
  23399. },
  23400. {
  23401. "from": "step_sug_r2",
  23402. "to": "q_反映人类行为_r2_20",
  23403. "edge_type": "step_to_q",
  23404. "strategy": "Query"
  23405. },
  23406. {
  23407. "from": "q_反映人类行为_r2_20",
  23408. "to": "sug_反映人类行为的环境问题_r2_q20_0",
  23409. "edge_type": "q_to_sug",
  23410. "strategy": "推荐词"
  23411. },
  23412. {
  23413. "from": "step_sug_r2",
  23414. "to": "q_人类行为_r2_21",
  23415. "edge_type": "step_to_q",
  23416. "strategy": "Query"
  23417. },
  23418. {
  23419. "from": "q_人类行为_r2_21",
  23420. "to": "sug_人类行为与社会环境_r2_q21_0",
  23421. "edge_type": "q_to_sug",
  23422. "strategy": "推荐词"
  23423. },
  23424. {
  23425. "from": "q_人类行为_r2_21",
  23426. "to": "sug_人类行为设计师-小周_r2_q21_1",
  23427. "edge_type": "q_to_sug",
  23428. "strategy": "推荐词"
  23429. },
  23430. {
  23431. "from": "q_人类行为_r2_21",
  23432. "to": "sug_人类行为与社会环境重点_r2_q21_2",
  23433. "edge_type": "q_to_sug",
  23434. "strategy": "推荐词"
  23435. },
  23436. {
  23437. "from": "q_人类行为_r2_21",
  23438. "to": "sug_人类行为与社会环境笔记_r2_q21_3",
  23439. "edge_type": "q_to_sug",
  23440. "strategy": "推荐词"
  23441. },
  23442. {
  23443. "from": "q_人类行为_r2_21",
  23444. "to": "sug_人类行为矫正教育漫画_r2_q21_4",
  23445. "edge_type": "q_to_sug",
  23446. "strategy": "推荐词"
  23447. },
  23448. {
  23449. "from": "q_人类行为_r2_21",
  23450. "to": "sug_人类行为与社会环境第三版_r2_q21_5",
  23451. "edge_type": "q_to_sug",
  23452. "strategy": "推荐词"
  23453. },
  23454. {
  23455. "from": "q_人类行为_r2_21",
  23456. "to": "sug_人类行为矫正教育_r2_q21_6",
  23457. "edge_type": "q_to_sug",
  23458. "strategy": "推荐词"
  23459. },
  23460. {
  23461. "from": "q_人类行为_r2_21",
  23462. "to": "sug_人类行为心理学_r2_q21_7",
  23463. "edge_type": "q_to_sug",
  23464. "strategy": "推荐词"
  23465. },
  23466. {
  23467. "from": "q_人类行为_r2_21",
  23468. "to": "sug_人类行为观察员_r2_q21_8",
  23469. "edge_type": "q_to_sug",
  23470. "strategy": "推荐词"
  23471. },
  23472. {
  23473. "from": "q_人类行为_r2_21",
  23474. "to": "sug_人类行为艺术_r2_q21_9",
  23475. "edge_type": "q_to_sug",
  23476. "strategy": "推荐词"
  23477. },
  23478. {
  23479. "from": "round_2",
  23480. "to": "step_comb_r2",
  23481. "edge_type": "round_to_step",
  23482. "strategy": "域内组词"
  23483. },
  23484. {
  23485. "from": "step_comb_r2",
  23486. "to": "comb_如何反映_r2_0",
  23487. "edge_type": "step_to_comb",
  23488. "strategy": "域内组合"
  23489. },
  23490. {
  23491. "from": "step_comb_r2",
  23492. "to": "comb_如何人类_r2_1",
  23493. "edge_type": "step_to_comb",
  23494. "strategy": "域内组合"
  23495. },
  23496. {
  23497. "from": "step_comb_r2",
  23498. "to": "comb_如何双标_r2_2",
  23499. "edge_type": "step_to_comb",
  23500. "strategy": "域内组合"
  23501. },
  23502. {
  23503. "from": "step_comb_r2",
  23504. "to": "comb_如何行为_r2_3",
  23505. "edge_type": "step_to_comb",
  23506. "strategy": "域内组合"
  23507. },
  23508. {
  23509. "from": "step_comb_r2",
  23510. "to": "comb_如何反映人类_r2_4",
  23511. "edge_type": "step_to_comb",
  23512. "strategy": "域内组合"
  23513. },
  23514. {
  23515. "from": "step_comb_r2",
  23516. "to": "comb_如何反映双标_r2_5",
  23517. "edge_type": "step_to_comb",
  23518. "strategy": "域内组合"
  23519. },
  23520. {
  23521. "from": "step_comb_r2",
  23522. "to": "comb_如何反映行为_r2_6",
  23523. "edge_type": "step_to_comb",
  23524. "strategy": "域内组合"
  23525. },
  23526. {
  23527. "from": "step_comb_r2",
  23528. "to": "comb_如何人类双标_r2_7",
  23529. "edge_type": "step_to_comb",
  23530. "strategy": "域内组合"
  23531. },
  23532. {
  23533. "from": "step_comb_r2",
  23534. "to": "comb_如何人类行为_r2_8",
  23535. "edge_type": "step_to_comb",
  23536. "strategy": "域内组合"
  23537. },
  23538. {
  23539. "from": "step_comb_r2",
  23540. "to": "comb_如何双标行为_r2_9",
  23541. "edge_type": "step_to_comb",
  23542. "strategy": "域内组合"
  23543. },
  23544. {
  23545. "from": "step_comb_r2",
  23546. "to": "comb_如何反映人类双标_r2_10",
  23547. "edge_type": "step_to_comb",
  23548. "strategy": "域内组合"
  23549. },
  23550. {
  23551. "from": "step_comb_r2",
  23552. "to": "comb_如何反映人类行为_r2_11",
  23553. "edge_type": "step_to_comb",
  23554. "strategy": "域内组合"
  23555. },
  23556. {
  23557. "from": "step_comb_r2",
  23558. "to": "comb_如何反映双标行为_r2_12",
  23559. "edge_type": "step_to_comb",
  23560. "strategy": "域内组合"
  23561. },
  23562. {
  23563. "from": "step_comb_r2",
  23564. "to": "comb_如何人类双标行为_r2_13",
  23565. "edge_type": "step_to_comb",
  23566. "strategy": "域内组合"
  23567. },
  23568. {
  23569. "from": "step_comb_r2",
  23570. "to": "comb_如何反映人类双标行为_r2_14",
  23571. "edge_type": "step_to_comb",
  23572. "strategy": "域内组合"
  23573. },
  23574. {
  23575. "from": "step_comb_r2",
  23576. "to": "comb_如何猫咪_r2_15",
  23577. "edge_type": "step_to_comb",
  23578. "strategy": "域内组合"
  23579. },
  23580. {
  23581. "from": "step_comb_r2",
  23582. "to": "comb_如何表情包_r2_16",
  23583. "edge_type": "step_to_comb",
  23584. "strategy": "域内组合"
  23585. },
  23586. {
  23587. "from": "step_comb_r2",
  23588. "to": "comb_如何梗图_r2_17",
  23589. "edge_type": "step_to_comb",
  23590. "strategy": "域内组合"
  23591. },
  23592. {
  23593. "from": "step_comb_r2",
  23594. "to": "comb_如何猫咪表情包_r2_18",
  23595. "edge_type": "step_to_comb",
  23596. "strategy": "域内组合"
  23597. },
  23598. {
  23599. "from": "step_comb_r2",
  23600. "to": "comb_如何猫咪梗图_r2_19",
  23601. "edge_type": "step_to_comb",
  23602. "strategy": "域内组合"
  23603. },
  23604. {
  23605. "from": "step_comb_r2",
  23606. "to": "comb_如何表情包梗图_r2_20",
  23607. "edge_type": "step_to_comb",
  23608. "strategy": "域内组合"
  23609. },
  23610. {
  23611. "from": "step_comb_r2",
  23612. "to": "comb_如何猫咪表情包梗图_r2_21",
  23613. "edge_type": "step_to_comb",
  23614. "strategy": "域内组合"
  23615. },
  23616. {
  23617. "from": "step_comb_r2",
  23618. "to": "comb_制作反映_r2_22",
  23619. "edge_type": "step_to_comb",
  23620. "strategy": "域内组合"
  23621. },
  23622. {
  23623. "from": "step_comb_r2",
  23624. "to": "comb_制作人类_r2_23",
  23625. "edge_type": "step_to_comb",
  23626. "strategy": "域内组合"
  23627. },
  23628. {
  23629. "from": "step_comb_r2",
  23630. "to": "comb_制作双标_r2_24",
  23631. "edge_type": "step_to_comb",
  23632. "strategy": "域内组合"
  23633. },
  23634. {
  23635. "from": "step_comb_r2",
  23636. "to": "comb_制作行为_r2_25",
  23637. "edge_type": "step_to_comb",
  23638. "strategy": "域内组合"
  23639. },
  23640. {
  23641. "from": "step_comb_r2",
  23642. "to": "comb_制作反映人类_r2_26",
  23643. "edge_type": "step_to_comb",
  23644. "strategy": "域内组合"
  23645. },
  23646. {
  23647. "from": "step_comb_r2",
  23648. "to": "comb_制作反映双标_r2_27",
  23649. "edge_type": "step_to_comb",
  23650. "strategy": "域内组合"
  23651. },
  23652. {
  23653. "from": "step_comb_r2",
  23654. "to": "comb_制作反映行为_r2_28",
  23655. "edge_type": "step_to_comb",
  23656. "strategy": "域内组合"
  23657. },
  23658. {
  23659. "from": "step_comb_r2",
  23660. "to": "comb_制作人类双标_r2_29",
  23661. "edge_type": "step_to_comb",
  23662. "strategy": "域内组合"
  23663. },
  23664. {
  23665. "from": "step_comb_r2",
  23666. "to": "comb_制作人类行为_r2_30",
  23667. "edge_type": "step_to_comb",
  23668. "strategy": "域内组合"
  23669. },
  23670. {
  23671. "from": "step_comb_r2",
  23672. "to": "comb_制作双标行为_r2_31",
  23673. "edge_type": "step_to_comb",
  23674. "strategy": "域内组合"
  23675. },
  23676. {
  23677. "from": "step_comb_r2",
  23678. "to": "comb_制作反映人类双标_r2_32",
  23679. "edge_type": "step_to_comb",
  23680. "strategy": "域内组合"
  23681. },
  23682. {
  23683. "from": "step_comb_r2",
  23684. "to": "comb_制作反映人类行为_r2_33",
  23685. "edge_type": "step_to_comb",
  23686. "strategy": "域内组合"
  23687. },
  23688. {
  23689. "from": "step_comb_r2",
  23690. "to": "comb_制作反映双标行为_r2_34",
  23691. "edge_type": "step_to_comb",
  23692. "strategy": "域内组合"
  23693. },
  23694. {
  23695. "from": "step_comb_r2",
  23696. "to": "comb_制作人类双标行为_r2_35",
  23697. "edge_type": "step_to_comb",
  23698. "strategy": "域内组合"
  23699. },
  23700. {
  23701. "from": "step_comb_r2",
  23702. "to": "comb_制作反映人类双标行为_r2_36",
  23703. "edge_type": "step_to_comb",
  23704. "strategy": "域内组合"
  23705. },
  23706. {
  23707. "from": "step_comb_r2",
  23708. "to": "comb_制作猫咪_r2_37",
  23709. "edge_type": "step_to_comb",
  23710. "strategy": "域内组合"
  23711. },
  23712. {
  23713. "from": "step_comb_r2",
  23714. "to": "comb_制作表情包_r2_38",
  23715. "edge_type": "step_to_comb",
  23716. "strategy": "域内组合"
  23717. },
  23718. {
  23719. "from": "step_comb_r2",
  23720. "to": "comb_制作梗图_r2_39",
  23721. "edge_type": "step_to_comb",
  23722. "strategy": "域内组合"
  23723. },
  23724. {
  23725. "from": "step_comb_r2",
  23726. "to": "comb_制作猫咪表情包_r2_40",
  23727. "edge_type": "step_to_comb",
  23728. "strategy": "域内组合"
  23729. },
  23730. {
  23731. "from": "step_comb_r2",
  23732. "to": "comb_制作猫咪梗图_r2_41",
  23733. "edge_type": "step_to_comb",
  23734. "strategy": "域内组合"
  23735. },
  23736. {
  23737. "from": "step_comb_r2",
  23738. "to": "comb_制作表情包梗图_r2_42",
  23739. "edge_type": "step_to_comb",
  23740. "strategy": "域内组合"
  23741. },
  23742. {
  23743. "from": "step_comb_r2",
  23744. "to": "comb_制作猫咪表情包梗图_r2_43",
  23745. "edge_type": "step_to_comb",
  23746. "strategy": "域内组合"
  23747. },
  23748. {
  23749. "from": "step_comb_r2",
  23750. "to": "comb_反映猫咪_r2_44",
  23751. "edge_type": "step_to_comb",
  23752. "strategy": "域内组合"
  23753. },
  23754. {
  23755. "from": "step_comb_r2",
  23756. "to": "comb_反映表情包_r2_45",
  23757. "edge_type": "step_to_comb",
  23758. "strategy": "域内组合"
  23759. },
  23760. {
  23761. "from": "step_comb_r2",
  23762. "to": "comb_反映梗图_r2_46",
  23763. "edge_type": "step_to_comb",
  23764. "strategy": "域内组合"
  23765. },
  23766. {
  23767. "from": "step_comb_r2",
  23768. "to": "comb_反映猫咪表情包_r2_47",
  23769. "edge_type": "step_to_comb",
  23770. "strategy": "域内组合"
  23771. },
  23772. {
  23773. "from": "step_comb_r2",
  23774. "to": "comb_反映猫咪梗图_r2_48",
  23775. "edge_type": "step_to_comb",
  23776. "strategy": "域内组合"
  23777. },
  23778. {
  23779. "from": "step_comb_r2",
  23780. "to": "comb_反映表情包梗图_r2_49",
  23781. "edge_type": "step_to_comb",
  23782. "strategy": "域内组合"
  23783. },
  23784. {
  23785. "from": "step_comb_r2",
  23786. "to": "comb_反映猫咪表情包梗图_r2_50",
  23787. "edge_type": "step_to_comb",
  23788. "strategy": "域内组合"
  23789. },
  23790. {
  23791. "from": "step_comb_r2",
  23792. "to": "comb_人类猫咪_r2_51",
  23793. "edge_type": "step_to_comb",
  23794. "strategy": "域内组合"
  23795. },
  23796. {
  23797. "from": "step_comb_r2",
  23798. "to": "comb_人类表情包_r2_52",
  23799. "edge_type": "step_to_comb",
  23800. "strategy": "域内组合"
  23801. },
  23802. {
  23803. "from": "step_comb_r2",
  23804. "to": "comb_人类梗图_r2_53",
  23805. "edge_type": "step_to_comb",
  23806. "strategy": "域内组合"
  23807. },
  23808. {
  23809. "from": "step_comb_r2",
  23810. "to": "comb_人类猫咪表情包_r2_54",
  23811. "edge_type": "step_to_comb",
  23812. "strategy": "域内组合"
  23813. },
  23814. {
  23815. "from": "step_comb_r2",
  23816. "to": "comb_人类猫咪梗图_r2_55",
  23817. "edge_type": "step_to_comb",
  23818. "strategy": "域内组合"
  23819. },
  23820. {
  23821. "from": "step_comb_r2",
  23822. "to": "comb_人类表情包梗图_r2_56",
  23823. "edge_type": "step_to_comb",
  23824. "strategy": "域内组合"
  23825. },
  23826. {
  23827. "from": "step_comb_r2",
  23828. "to": "comb_人类猫咪表情包梗图_r2_57",
  23829. "edge_type": "step_to_comb",
  23830. "strategy": "域内组合"
  23831. },
  23832. {
  23833. "from": "step_comb_r2",
  23834. "to": "comb_双标猫咪_r2_58",
  23835. "edge_type": "step_to_comb",
  23836. "strategy": "域内组合"
  23837. },
  23838. {
  23839. "from": "step_comb_r2",
  23840. "to": "comb_双标表情包_r2_59",
  23841. "edge_type": "step_to_comb",
  23842. "strategy": "域内组合"
  23843. },
  23844. {
  23845. "from": "step_comb_r2",
  23846. "to": "comb_双标梗图_r2_60",
  23847. "edge_type": "step_to_comb",
  23848. "strategy": "域内组合"
  23849. },
  23850. {
  23851. "from": "step_comb_r2",
  23852. "to": "comb_双标猫咪表情包_r2_61",
  23853. "edge_type": "step_to_comb",
  23854. "strategy": "域内组合"
  23855. },
  23856. {
  23857. "from": "step_comb_r2",
  23858. "to": "comb_双标猫咪梗图_r2_62",
  23859. "edge_type": "step_to_comb",
  23860. "strategy": "域内组合"
  23861. },
  23862. {
  23863. "from": "step_comb_r2",
  23864. "to": "comb_双标表情包梗图_r2_63",
  23865. "edge_type": "step_to_comb",
  23866. "strategy": "域内组合"
  23867. },
  23868. {
  23869. "from": "step_comb_r2",
  23870. "to": "comb_双标猫咪表情包梗图_r2_64",
  23871. "edge_type": "step_to_comb",
  23872. "strategy": "域内组合"
  23873. },
  23874. {
  23875. "from": "step_comb_r2",
  23876. "to": "comb_行为猫咪_r2_65",
  23877. "edge_type": "step_to_comb",
  23878. "strategy": "域内组合"
  23879. },
  23880. {
  23881. "from": "step_comb_r2",
  23882. "to": "comb_行为表情包_r2_66",
  23883. "edge_type": "step_to_comb",
  23884. "strategy": "域内组合"
  23885. },
  23886. {
  23887. "from": "step_comb_r2",
  23888. "to": "comb_行为梗图_r2_67",
  23889. "edge_type": "step_to_comb",
  23890. "strategy": "域内组合"
  23891. },
  23892. {
  23893. "from": "step_comb_r2",
  23894. "to": "comb_行为猫咪表情包_r2_68",
  23895. "edge_type": "step_to_comb",
  23896. "strategy": "域内组合"
  23897. },
  23898. {
  23899. "from": "step_comb_r2",
  23900. "to": "comb_行为猫咪梗图_r2_69",
  23901. "edge_type": "step_to_comb",
  23902. "strategy": "域内组合"
  23903. },
  23904. {
  23905. "from": "step_comb_r2",
  23906. "to": "comb_行为表情包梗图_r2_70",
  23907. "edge_type": "step_to_comb",
  23908. "strategy": "域内组合"
  23909. },
  23910. {
  23911. "from": "step_comb_r2",
  23912. "to": "comb_行为猫咪表情包梗图_r2_71",
  23913. "edge_type": "step_to_comb",
  23914. "strategy": "域内组合"
  23915. },
  23916. {
  23917. "from": "step_comb_r2",
  23918. "to": "comb_反映人类猫咪_r2_72",
  23919. "edge_type": "step_to_comb",
  23920. "strategy": "域内组合"
  23921. },
  23922. {
  23923. "from": "step_comb_r2",
  23924. "to": "comb_反映人类表情包_r2_73",
  23925. "edge_type": "step_to_comb",
  23926. "strategy": "域内组合"
  23927. },
  23928. {
  23929. "from": "step_comb_r2",
  23930. "to": "comb_反映人类梗图_r2_74",
  23931. "edge_type": "step_to_comb",
  23932. "strategy": "域内组合"
  23933. },
  23934. {
  23935. "from": "step_comb_r2",
  23936. "to": "comb_反映人类猫咪表情包_r2_75",
  23937. "edge_type": "step_to_comb",
  23938. "strategy": "域内组合"
  23939. },
  23940. {
  23941. "from": "step_comb_r2",
  23942. "to": "comb_反映人类猫咪梗图_r2_76",
  23943. "edge_type": "step_to_comb",
  23944. "strategy": "域内组合"
  23945. },
  23946. {
  23947. "from": "step_comb_r2",
  23948. "to": "comb_反映人类表情包梗图_r2_77",
  23949. "edge_type": "step_to_comb",
  23950. "strategy": "域内组合"
  23951. },
  23952. {
  23953. "from": "step_comb_r2",
  23954. "to": "comb_反映人类猫咪表情包梗图_r2_78",
  23955. "edge_type": "step_to_comb",
  23956. "strategy": "域内组合"
  23957. },
  23958. {
  23959. "from": "step_comb_r2",
  23960. "to": "comb_反映双标猫咪_r2_79",
  23961. "edge_type": "step_to_comb",
  23962. "strategy": "域内组合"
  23963. },
  23964. {
  23965. "from": "step_comb_r2",
  23966. "to": "comb_反映双标表情包_r2_80",
  23967. "edge_type": "step_to_comb",
  23968. "strategy": "域内组合"
  23969. },
  23970. {
  23971. "from": "step_comb_r2",
  23972. "to": "comb_反映双标梗图_r2_81",
  23973. "edge_type": "step_to_comb",
  23974. "strategy": "域内组合"
  23975. },
  23976. {
  23977. "from": "step_comb_r2",
  23978. "to": "comb_反映双标猫咪表情包_r2_82",
  23979. "edge_type": "step_to_comb",
  23980. "strategy": "域内组合"
  23981. },
  23982. {
  23983. "from": "step_comb_r2",
  23984. "to": "comb_反映双标猫咪梗图_r2_83",
  23985. "edge_type": "step_to_comb",
  23986. "strategy": "域内组合"
  23987. },
  23988. {
  23989. "from": "step_comb_r2",
  23990. "to": "comb_反映双标表情包梗图_r2_84",
  23991. "edge_type": "step_to_comb",
  23992. "strategy": "域内组合"
  23993. },
  23994. {
  23995. "from": "step_comb_r2",
  23996. "to": "comb_反映双标猫咪表情包梗图_r2_85",
  23997. "edge_type": "step_to_comb",
  23998. "strategy": "域内组合"
  23999. },
  24000. {
  24001. "from": "step_comb_r2",
  24002. "to": "comb_反映行为猫咪_r2_86",
  24003. "edge_type": "step_to_comb",
  24004. "strategy": "域内组合"
  24005. },
  24006. {
  24007. "from": "step_comb_r2",
  24008. "to": "comb_反映行为表情包_r2_87",
  24009. "edge_type": "step_to_comb",
  24010. "strategy": "域内组合"
  24011. },
  24012. {
  24013. "from": "step_comb_r2",
  24014. "to": "comb_反映行为梗图_r2_88",
  24015. "edge_type": "step_to_comb",
  24016. "strategy": "域内组合"
  24017. },
  24018. {
  24019. "from": "step_comb_r2",
  24020. "to": "comb_反映行为猫咪表情包_r2_89",
  24021. "edge_type": "step_to_comb",
  24022. "strategy": "域内组合"
  24023. },
  24024. {
  24025. "from": "step_comb_r2",
  24026. "to": "comb_反映行为猫咪梗图_r2_90",
  24027. "edge_type": "step_to_comb",
  24028. "strategy": "域内组合"
  24029. },
  24030. {
  24031. "from": "step_comb_r2",
  24032. "to": "comb_反映行为表情包梗图_r2_91",
  24033. "edge_type": "step_to_comb",
  24034. "strategy": "域内组合"
  24035. },
  24036. {
  24037. "from": "step_comb_r2",
  24038. "to": "comb_反映行为猫咪表情包梗图_r2_92",
  24039. "edge_type": "step_to_comb",
  24040. "strategy": "域内组合"
  24041. },
  24042. {
  24043. "from": "step_comb_r2",
  24044. "to": "comb_人类双标猫咪_r2_93",
  24045. "edge_type": "step_to_comb",
  24046. "strategy": "域内组合"
  24047. },
  24048. {
  24049. "from": "step_comb_r2",
  24050. "to": "comb_人类双标表情包_r2_94",
  24051. "edge_type": "step_to_comb",
  24052. "strategy": "域内组合"
  24053. },
  24054. {
  24055. "from": "step_comb_r2",
  24056. "to": "comb_人类双标梗图_r2_95",
  24057. "edge_type": "step_to_comb",
  24058. "strategy": "域内组合"
  24059. },
  24060. {
  24061. "from": "step_comb_r2",
  24062. "to": "comb_人类双标猫咪表情包_r2_96",
  24063. "edge_type": "step_to_comb",
  24064. "strategy": "域内组合"
  24065. },
  24066. {
  24067. "from": "step_comb_r2",
  24068. "to": "comb_人类双标猫咪梗图_r2_97",
  24069. "edge_type": "step_to_comb",
  24070. "strategy": "域内组合"
  24071. },
  24072. {
  24073. "from": "step_comb_r2",
  24074. "to": "comb_人类双标表情包梗图_r2_98",
  24075. "edge_type": "step_to_comb",
  24076. "strategy": "域内组合"
  24077. },
  24078. {
  24079. "from": "step_comb_r2",
  24080. "to": "comb_人类双标猫咪表情包梗图_r2_99",
  24081. "edge_type": "step_to_comb",
  24082. "strategy": "域内组合"
  24083. },
  24084. {
  24085. "from": "step_comb_r2",
  24086. "to": "comb_人类行为猫咪_r2_100",
  24087. "edge_type": "step_to_comb",
  24088. "strategy": "域内组合"
  24089. },
  24090. {
  24091. "from": "step_comb_r2",
  24092. "to": "comb_人类行为表情包_r2_101",
  24093. "edge_type": "step_to_comb",
  24094. "strategy": "域内组合"
  24095. },
  24096. {
  24097. "from": "step_comb_r2",
  24098. "to": "comb_人类行为梗图_r2_102",
  24099. "edge_type": "step_to_comb",
  24100. "strategy": "域内组合"
  24101. },
  24102. {
  24103. "from": "step_comb_r2",
  24104. "to": "comb_人类行为猫咪表情包_r2_103",
  24105. "edge_type": "step_to_comb",
  24106. "strategy": "域内组合"
  24107. },
  24108. {
  24109. "from": "step_comb_r2",
  24110. "to": "comb_人类行为猫咪梗图_r2_104",
  24111. "edge_type": "step_to_comb",
  24112. "strategy": "域内组合"
  24113. },
  24114. {
  24115. "from": "step_comb_r2",
  24116. "to": "comb_人类行为表情包梗图_r2_105",
  24117. "edge_type": "step_to_comb",
  24118. "strategy": "域内组合"
  24119. },
  24120. {
  24121. "from": "step_comb_r2",
  24122. "to": "comb_人类行为猫咪表情包梗图_r2_106",
  24123. "edge_type": "step_to_comb",
  24124. "strategy": "域内组合"
  24125. },
  24126. {
  24127. "from": "step_comb_r2",
  24128. "to": "comb_双标行为猫咪_r2_107",
  24129. "edge_type": "step_to_comb",
  24130. "strategy": "域内组合"
  24131. },
  24132. {
  24133. "from": "step_comb_r2",
  24134. "to": "comb_双标行为表情包_r2_108",
  24135. "edge_type": "step_to_comb",
  24136. "strategy": "域内组合"
  24137. },
  24138. {
  24139. "from": "step_comb_r2",
  24140. "to": "comb_双标行为梗图_r2_109",
  24141. "edge_type": "step_to_comb",
  24142. "strategy": "域内组合"
  24143. },
  24144. {
  24145. "from": "step_comb_r2",
  24146. "to": "comb_双标行为猫咪表情包_r2_110",
  24147. "edge_type": "step_to_comb",
  24148. "strategy": "域内组合"
  24149. },
  24150. {
  24151. "from": "step_comb_r2",
  24152. "to": "comb_双标行为猫咪梗图_r2_111",
  24153. "edge_type": "step_to_comb",
  24154. "strategy": "域内组合"
  24155. },
  24156. {
  24157. "from": "step_comb_r2",
  24158. "to": "comb_双标行为表情包梗图_r2_112",
  24159. "edge_type": "step_to_comb",
  24160. "strategy": "域内组合"
  24161. },
  24162. {
  24163. "from": "step_comb_r2",
  24164. "to": "comb_双标行为猫咪表情包梗图_r2_113",
  24165. "edge_type": "step_to_comb",
  24166. "strategy": "域内组合"
  24167. },
  24168. {
  24169. "from": "step_comb_r2",
  24170. "to": "comb_反映人类双标猫咪_r2_114",
  24171. "edge_type": "step_to_comb",
  24172. "strategy": "域内组合"
  24173. },
  24174. {
  24175. "from": "step_comb_r2",
  24176. "to": "comb_反映人类双标表情包_r2_115",
  24177. "edge_type": "step_to_comb",
  24178. "strategy": "域内组合"
  24179. },
  24180. {
  24181. "from": "step_comb_r2",
  24182. "to": "comb_反映人类双标梗图_r2_116",
  24183. "edge_type": "step_to_comb",
  24184. "strategy": "域内组合"
  24185. },
  24186. {
  24187. "from": "step_comb_r2",
  24188. "to": "comb_反映人类双标猫咪表情包_r2_117",
  24189. "edge_type": "step_to_comb",
  24190. "strategy": "域内组合"
  24191. },
  24192. {
  24193. "from": "step_comb_r2",
  24194. "to": "comb_反映人类双标猫咪梗图_r2_118",
  24195. "edge_type": "step_to_comb",
  24196. "strategy": "域内组合"
  24197. },
  24198. {
  24199. "from": "step_comb_r2",
  24200. "to": "comb_反映人类双标表情包梗图_r2_119",
  24201. "edge_type": "step_to_comb",
  24202. "strategy": "域内组合"
  24203. },
  24204. {
  24205. "from": "step_comb_r2",
  24206. "to": "comb_反映人类双标猫咪表情包梗图_r2_120",
  24207. "edge_type": "step_to_comb",
  24208. "strategy": "域内组合"
  24209. },
  24210. {
  24211. "from": "step_comb_r2",
  24212. "to": "comb_反映人类行为猫咪_r2_121",
  24213. "edge_type": "step_to_comb",
  24214. "strategy": "域内组合"
  24215. },
  24216. {
  24217. "from": "step_comb_r2",
  24218. "to": "comb_反映人类行为表情包_r2_122",
  24219. "edge_type": "step_to_comb",
  24220. "strategy": "域内组合"
  24221. },
  24222. {
  24223. "from": "step_comb_r2",
  24224. "to": "comb_反映人类行为梗图_r2_123",
  24225. "edge_type": "step_to_comb",
  24226. "strategy": "域内组合"
  24227. },
  24228. {
  24229. "from": "step_comb_r2",
  24230. "to": "comb_反映人类行为猫咪表情包_r2_124",
  24231. "edge_type": "step_to_comb",
  24232. "strategy": "域内组合"
  24233. },
  24234. {
  24235. "from": "step_comb_r2",
  24236. "to": "comb_反映人类行为猫咪梗图_r2_125",
  24237. "edge_type": "step_to_comb",
  24238. "strategy": "域内组合"
  24239. },
  24240. {
  24241. "from": "step_comb_r2",
  24242. "to": "comb_反映人类行为表情包梗图_r2_126",
  24243. "edge_type": "step_to_comb",
  24244. "strategy": "域内组合"
  24245. },
  24246. {
  24247. "from": "step_comb_r2",
  24248. "to": "comb_反映人类行为猫咪表情包梗图_r2_127",
  24249. "edge_type": "step_to_comb",
  24250. "strategy": "域内组合"
  24251. },
  24252. {
  24253. "from": "step_comb_r2",
  24254. "to": "comb_反映双标行为猫咪_r2_128",
  24255. "edge_type": "step_to_comb",
  24256. "strategy": "域内组合"
  24257. },
  24258. {
  24259. "from": "step_comb_r2",
  24260. "to": "comb_反映双标行为表情包_r2_129",
  24261. "edge_type": "step_to_comb",
  24262. "strategy": "域内组合"
  24263. },
  24264. {
  24265. "from": "step_comb_r2",
  24266. "to": "comb_反映双标行为梗图_r2_130",
  24267. "edge_type": "step_to_comb",
  24268. "strategy": "域内组合"
  24269. },
  24270. {
  24271. "from": "step_comb_r2",
  24272. "to": "comb_反映双标行为猫咪表情包_r2_131",
  24273. "edge_type": "step_to_comb",
  24274. "strategy": "域内组合"
  24275. },
  24276. {
  24277. "from": "step_comb_r2",
  24278. "to": "comb_反映双标行为猫咪梗图_r2_132",
  24279. "edge_type": "step_to_comb",
  24280. "strategy": "域内组合"
  24281. },
  24282. {
  24283. "from": "step_comb_r2",
  24284. "to": "comb_反映双标行为表情包梗图_r2_133",
  24285. "edge_type": "step_to_comb",
  24286. "strategy": "域内组合"
  24287. },
  24288. {
  24289. "from": "step_comb_r2",
  24290. "to": "comb_反映双标行为猫咪表情包梗图_r2_134",
  24291. "edge_type": "step_to_comb",
  24292. "strategy": "域内组合"
  24293. },
  24294. {
  24295. "from": "step_comb_r2",
  24296. "to": "comb_人类双标行为猫咪_r2_135",
  24297. "edge_type": "step_to_comb",
  24298. "strategy": "域内组合"
  24299. },
  24300. {
  24301. "from": "step_comb_r2",
  24302. "to": "comb_人类双标行为表情包_r2_136",
  24303. "edge_type": "step_to_comb",
  24304. "strategy": "域内组合"
  24305. },
  24306. {
  24307. "from": "step_comb_r2",
  24308. "to": "comb_人类双标行为梗图_r2_137",
  24309. "edge_type": "step_to_comb",
  24310. "strategy": "域内组合"
  24311. },
  24312. {
  24313. "from": "step_comb_r2",
  24314. "to": "comb_人类双标行为猫咪表情包_r2_138",
  24315. "edge_type": "step_to_comb",
  24316. "strategy": "域内组合"
  24317. },
  24318. {
  24319. "from": "step_comb_r2",
  24320. "to": "comb_人类双标行为猫咪梗图_r2_139",
  24321. "edge_type": "step_to_comb",
  24322. "strategy": "域内组合"
  24323. },
  24324. {
  24325. "from": "step_comb_r2",
  24326. "to": "comb_人类双标行为表情包梗图_r2_140",
  24327. "edge_type": "step_to_comb",
  24328. "strategy": "域内组合"
  24329. },
  24330. {
  24331. "from": "step_comb_r2",
  24332. "to": "comb_人类双标行为猫咪表情包梗图_r2_141",
  24333. "edge_type": "step_to_comb",
  24334. "strategy": "域内组合"
  24335. },
  24336. {
  24337. "from": "step_comb_r2",
  24338. "to": "comb_反映人类双标行为猫咪_r2_142",
  24339. "edge_type": "step_to_comb",
  24340. "strategy": "域内组合"
  24341. },
  24342. {
  24343. "from": "step_comb_r2",
  24344. "to": "comb_反映人类双标行为表情包_r2_143",
  24345. "edge_type": "step_to_comb",
  24346. "strategy": "域内组合"
  24347. },
  24348. {
  24349. "from": "step_comb_r2",
  24350. "to": "comb_反映人类双标行为梗图_r2_144",
  24351. "edge_type": "step_to_comb",
  24352. "strategy": "域内组合"
  24353. },
  24354. {
  24355. "from": "step_comb_r2",
  24356. "to": "comb_反映人类双标行为猫咪表情包_r2_145",
  24357. "edge_type": "step_to_comb",
  24358. "strategy": "域内组合"
  24359. },
  24360. {
  24361. "from": "step_comb_r2",
  24362. "to": "comb_反映人类双标行为猫咪梗图_r2_146",
  24363. "edge_type": "step_to_comb",
  24364. "strategy": "域内组合"
  24365. },
  24366. {
  24367. "from": "step_comb_r2",
  24368. "to": "comb_反映人类双标行为表情包梗图_r2_147",
  24369. "edge_type": "step_to_comb",
  24370. "strategy": "域内组合"
  24371. },
  24372. {
  24373. "from": "step_comb_r2",
  24374. "to": "comb_反映人类双标行为猫咪表情包梗图_r2_148",
  24375. "edge_type": "step_to_comb",
  24376. "strategy": "域内组合"
  24377. },
  24378. {
  24379. "from": "round_2",
  24380. "to": "step_search_r2",
  24381. "edge_type": "round_to_step",
  24382. "strategy": "搜索"
  24383. },
  24384. {
  24385. "from": "step_search_r2",
  24386. "to": "search_制作表情包教程_r2_0",
  24387. "edge_type": "step_to_search_word",
  24388. "strategy": "搜索词"
  24389. },
  24390. {
  24391. "from": "search_制作表情包教程_r2_0",
  24392. "to": "post_66f9046a000000002a033202_0_0",
  24393. "edge_type": "search_word_to_post",
  24394. "strategy": "搜索结果"
  24395. },
  24396. {
  24397. "from": "search_制作表情包教程_r2_0",
  24398. "to": "post_668e06cd00000000250145fe_0_1",
  24399. "edge_type": "search_word_to_post",
  24400. "strategy": "搜索结果"
  24401. },
  24402. {
  24403. "from": "search_制作表情包教程_r2_0",
  24404. "to": "post_67dc1a58000000001d0232da_0_2",
  24405. "edge_type": "search_word_to_post",
  24406. "strategy": "搜索结果"
  24407. },
  24408. {
  24409. "from": "search_制作表情包教程_r2_0",
  24410. "to": "post_68282bbd000000002001f349_0_3",
  24411. "edge_type": "search_word_to_post",
  24412. "strategy": "搜索结果"
  24413. },
  24414. {
  24415. "from": "search_制作表情包教程_r2_0",
  24416. "to": "post_66ea4e30000000001e01964b_0_4",
  24417. "edge_type": "search_word_to_post",
  24418. "strategy": "搜索结果"
  24419. },
  24420. {
  24421. "from": "search_制作表情包教程_r2_0",
  24422. "to": "post_6690ebe500000000250153e5_0_5",
  24423. "edge_type": "search_word_to_post",
  24424. "strategy": "搜索结果"
  24425. },
  24426. {
  24427. "from": "search_制作表情包教程_r2_0",
  24428. "to": "post_671d9a72000000001402e50f_0_6",
  24429. "edge_type": "search_word_to_post",
  24430. "strategy": "搜索结果"
  24431. },
  24432. {
  24433. "from": "search_制作表情包教程_r2_0",
  24434. "to": "post_668f5479000000000d00ebc2_0_7",
  24435. "edge_type": "search_word_to_post",
  24436. "strategy": "搜索结果"
  24437. },
  24438. {
  24439. "from": "search_制作表情包教程_r2_0",
  24440. "to": "post_680054bc000000001d014b19_0_8",
  24441. "edge_type": "search_word_to_post",
  24442. "strategy": "搜索结果"
  24443. },
  24444. {
  24445. "from": "search_制作表情包教程_r2_0",
  24446. "to": "post_690818e70000000003011fa5_0_9",
  24447. "edge_type": "search_word_to_post",
  24448. "strategy": "搜索结果"
  24449. },
  24450. {
  24451. "from": "step_search_r2",
  24452. "to": "search_怼双标的人表情包_r2_1",
  24453. "edge_type": "step_to_search_word",
  24454. "strategy": "搜索词"
  24455. },
  24456. {
  24457. "from": "search_怼双标的人表情包_r2_1",
  24458. "to": "post_66af92ad0000000005038228_1_0",
  24459. "edge_type": "search_word_to_post",
  24460. "strategy": "搜索结果"
  24461. },
  24462. {
  24463. "from": "search_怼双标的人表情包_r2_1",
  24464. "to": "post_68597fed000000001202d443_1_1",
  24465. "edge_type": "search_word_to_post",
  24466. "strategy": "搜索结果"
  24467. },
  24468. {
  24469. "from": "search_怼双标的人表情包_r2_1",
  24470. "to": "post_6541e7fb000000002303bfea_1_2",
  24471. "edge_type": "search_word_to_post",
  24472. "strategy": "搜索结果"
  24473. },
  24474. {
  24475. "from": "search_怼双标的人表情包_r2_1",
  24476. "to": "post_67bb4d7d000000002903d2fb_1_3",
  24477. "edge_type": "search_word_to_post",
  24478. "strategy": "搜索结果"
  24479. },
  24480. {
  24481. "from": "search_怼双标的人表情包_r2_1",
  24482. "to": "post_6791c3e600000000170392b9_1_4",
  24483. "edge_type": "search_word_to_post",
  24484. "strategy": "搜索结果"
  24485. },
  24486. {
  24487. "from": "search_怼双标的人表情包_r2_1",
  24488. "to": "post_69080c43000000000402bb4b_1_5",
  24489. "edge_type": "search_word_to_post",
  24490. "strategy": "搜索结果"
  24491. },
  24492. {
  24493. "from": "search_怼双标的人表情包_r2_1",
  24494. "to": "post_66791a5f000000001c027fab_1_6",
  24495. "edge_type": "search_word_to_post",
  24496. "strategy": "搜索结果"
  24497. },
  24498. {
  24499. "from": "search_怼双标的人表情包_r2_1",
  24500. "to": "post_66e0e9b900000000270026f2_1_7",
  24501. "edge_type": "search_word_to_post",
  24502. "strategy": "搜索结果"
  24503. },
  24504. {
  24505. "from": "search_怼双标的人表情包_r2_1",
  24506. "to": "post_67db7618000000001c008ddb_1_8",
  24507. "edge_type": "search_word_to_post",
  24508. "strategy": "搜索结果"
  24509. },
  24510. {
  24511. "from": "search_怼双标的人表情包_r2_1",
  24512. "to": "post_66caccf2000000001f03bcee_1_9",
  24513. "edge_type": "search_word_to_post",
  24514. "strategy": "搜索结果"
  24515. },
  24516. {
  24517. "from": "step_search_r2",
  24518. "to": "search_可爱又双标的表情包_r2_2",
  24519. "edge_type": "step_to_search_word",
  24520. "strategy": "搜索词"
  24521. },
  24522. {
  24523. "from": "search_可爱又双标的表情包_r2_2",
  24524. "to": "post_690ec7070000000004022819_2_0",
  24525. "edge_type": "search_word_to_post",
  24526. "strategy": "搜索结果"
  24527. },
  24528. {
  24529. "from": "search_可爱又双标的表情包_r2_2",
  24530. "to": "post_66877a00000000000a0073d7_2_1",
  24531. "edge_type": "search_word_to_post",
  24532. "strategy": "搜索结果"
  24533. },
  24534. {
  24535. "from": "search_可爱又双标的表情包_r2_2",
  24536. "to": "post_68ae7e48000000001c004610_2_2",
  24537. "edge_type": "search_word_to_post",
  24538. "strategy": "搜索结果"
  24539. },
  24540. {
  24541. "from": "search_可爱又双标的表情包_r2_2",
  24542. "to": "post_6697b8310000000025003164_2_3",
  24543. "edge_type": "search_word_to_post",
  24544. "strategy": "搜索结果"
  24545. },
  24546. {
  24547. "from": "search_可爱又双标的表情包_r2_2",
  24548. "to": "post_68626478000000000d019251_2_4",
  24549. "edge_type": "search_word_to_post",
  24550. "strategy": "搜索结果"
  24551. },
  24552. {
  24553. "from": "search_可爱又双标的表情包_r2_2",
  24554. "to": "post_68dde20600000000070173ef_2_5",
  24555. "edge_type": "search_word_to_post",
  24556. "strategy": "搜索结果"
  24557. },
  24558. {
  24559. "from": "search_可爱又双标的表情包_r2_2",
  24560. "to": "post_67dd3945000000001d02d900_2_6",
  24561. "edge_type": "search_word_to_post",
  24562. "strategy": "搜索结果"
  24563. },
  24564. {
  24565. "from": "search_可爱又双标的表情包_r2_2",
  24566. "to": "post_6907666b0000000004022dbb_2_7",
  24567. "edge_type": "search_word_to_post",
  24568. "strategy": "搜索结果"
  24569. },
  24570. {
  24571. "from": "search_可爱又双标的表情包_r2_2",
  24572. "to": "post_68a43430000000001d0027d6_2_8",
  24573. "edge_type": "search_word_to_post",
  24574. "strategy": "搜索结果"
  24575. },
  24576. {
  24577. "from": "search_可爱又双标的表情包_r2_2",
  24578. "to": "post_67d2e30d000000000603eb03_2_9",
  24579. "edge_type": "search_word_to_post",
  24580. "strategy": "搜索结果"
  24581. },
  24582. {
  24583. "from": "step_search_r2",
  24584. "to": "search_梗图描改教程_r2_3",
  24585. "edge_type": "step_to_search_word",
  24586. "strategy": "搜索词"
  24587. },
  24588. {
  24589. "from": "search_梗图描改教程_r2_3",
  24590. "to": "post_68ef8753000000000301d581_3_0",
  24591. "edge_type": "search_word_to_post",
  24592. "strategy": "搜索结果"
  24593. },
  24594. {
  24595. "from": "search_梗图描改教程_r2_3",
  24596. "to": "post_6882582c000000000d018245_3_1",
  24597. "edge_type": "search_word_to_post",
  24598. "strategy": "搜索结果"
  24599. },
  24600. {
  24601. "from": "search_梗图描改教程_r2_3",
  24602. "to": "post_689937da0000000022023e1e_3_2",
  24603. "edge_type": "search_word_to_post",
  24604. "strategy": "搜索结果"
  24605. },
  24606. {
  24607. "from": "search_梗图描改教程_r2_3",
  24608. "to": "post_68fdde910000000003018b60_3_3",
  24609. "edge_type": "search_word_to_post",
  24610. "strategy": "搜索结果"
  24611. },
  24612. {
  24613. "from": "search_梗图描改教程_r2_3",
  24614. "to": "post_63cfabdd000000001b0173d5_3_4",
  24615. "edge_type": "search_word_to_post",
  24616. "strategy": "搜索结果"
  24617. },
  24618. {
  24619. "from": "search_梗图描改教程_r2_3",
  24620. "to": "post_62e4f79a000000000e0308ed_3_5",
  24621. "edge_type": "search_word_to_post",
  24622. "strategy": "搜索结果"
  24623. },
  24624. {
  24625. "from": "search_梗图描改教程_r2_3",
  24626. "to": "post_68429814000000002001dfc8_3_6",
  24627. "edge_type": "search_word_to_post",
  24628. "strategy": "搜索结果"
  24629. },
  24630. {
  24631. "from": "search_梗图描改教程_r2_3",
  24632. "to": "post_68f485a60000000003010182_3_7",
  24633. "edge_type": "search_word_to_post",
  24634. "strategy": "搜索结果"
  24635. },
  24636. {
  24637. "from": "search_梗图描改教程_r2_3",
  24638. "to": "post_682b5cc3000000000f031bf9_3_8",
  24639. "edge_type": "search_word_to_post",
  24640. "strategy": "搜索结果"
  24641. },
  24642. {
  24643. "from": "search_梗图描改教程_r2_3",
  24644. "to": "post_681c78d50000000020028a5c_3_9",
  24645. "edge_type": "search_word_to_post",
  24646. "strategy": "搜索结果"
  24647. },
  24648. {
  24649. "from": "step_search_r2",
  24650. "to": "search_梗图meme原创_r2_4",
  24651. "edge_type": "step_to_search_word",
  24652. "strategy": "搜索词"
  24653. },
  24654. {
  24655. "from": "search_梗图meme原创_r2_4",
  24656. "to": "post_68e06587000000000401467d_4_0",
  24657. "edge_type": "search_word_to_post",
  24658. "strategy": "搜索结果"
  24659. },
  24660. {
  24661. "from": "search_梗图meme原创_r2_4",
  24662. "to": "post_690a02720000000005002039_4_1",
  24663. "edge_type": "search_word_to_post",
  24664. "strategy": "搜索结果"
  24665. },
  24666. {
  24667. "from": "search_梗图meme原创_r2_4",
  24668. "to": "post_68b27225000000001b03e3a4_4_2",
  24669. "edge_type": "search_word_to_post",
  24670. "strategy": "搜索结果"
  24671. },
  24672. {
  24673. "from": "search_梗图meme原创_r2_4",
  24674. "to": "post_677e6b540000000001000781_4_3",
  24675. "edge_type": "search_word_to_post",
  24676. "strategy": "搜索结果"
  24677. },
  24678. {
  24679. "from": "search_梗图meme原创_r2_4",
  24680. "to": "post_6640beca000000001e023a10_4_4",
  24681. "edge_type": "search_word_to_post",
  24682. "strategy": "搜索结果"
  24683. },
  24684. {
  24685. "from": "search_梗图meme原创_r2_4",
  24686. "to": "post_67a38120000000001801354d_4_5",
  24687. "edge_type": "search_word_to_post",
  24688. "strategy": "搜索结果"
  24689. },
  24690. {
  24691. "from": "search_梗图meme原创_r2_4",
  24692. "to": "post_66f6d0df000000002c029dc7_4_6",
  24693. "edge_type": "search_word_to_post",
  24694. "strategy": "搜索结果"
  24695. },
  24696. {
  24697. "from": "search_梗图meme原创_r2_4",
  24698. "to": "post_686cfdf60000000023005633_4_7",
  24699. "edge_type": "search_word_to_post",
  24700. "strategy": "搜索结果"
  24701. },
  24702. {
  24703. "from": "search_梗图meme原创_r2_4",
  24704. "to": "post_674db30c00000000070278f1_4_8",
  24705. "edge_type": "search_word_to_post",
  24706. "strategy": "搜索结果"
  24707. },
  24708. {
  24709. "from": "search_梗图meme原创_r2_4",
  24710. "to": "post_6913214e0000000003034f7f_4_9",
  24711. "edge_type": "search_word_to_post",
  24712. "strategy": "搜索结果"
  24713. },
  24714. {
  24715. "from": "step_search_r2",
  24716. "to": "search_猫咪表情包梗图搞笑_r2_5",
  24717. "edge_type": "step_to_search_word",
  24718. "strategy": "搜索词"
  24719. },
  24720. {
  24721. "from": "search_猫咪表情包梗图搞笑_r2_5",
  24722. "to": "post_67d2310a000000001d026c02_5_0",
  24723. "edge_type": "search_word_to_post",
  24724. "strategy": "搜索结果"
  24725. },
  24726. {
  24727. "from": "search_猫咪表情包梗图搞笑_r2_5",
  24728. "to": "post_68d8bddf000000000e031155_5_1",
  24729. "edge_type": "search_word_to_post",
  24730. "strategy": "搜索结果"
  24731. },
  24732. {
  24733. "from": "search_猫咪表情包梗图搞笑_r2_5",
  24734. "to": "post_6710c5a7000000001402dc9f_5_2",
  24735. "edge_type": "search_word_to_post",
  24736. "strategy": "搜索结果"
  24737. },
  24738. {
  24739. "from": "search_猫咪表情包梗图搞笑_r2_5",
  24740. "to": "post_6731806d000000001b02cf7f_5_3",
  24741. "edge_type": "search_word_to_post",
  24742. "strategy": "搜索结果"
  24743. },
  24744. {
  24745. "from": "search_猫咪表情包梗图搞笑_r2_5",
  24746. "to": "post_66505e0c000000001401add3_5_4",
  24747. "edge_type": "search_word_to_post",
  24748. "strategy": "搜索结果"
  24749. },
  24750. {
  24751. "from": "search_猫咪表情包梗图搞笑_r2_5",
  24752. "to": "post_6629f62a00000000030233d9_5_5",
  24753. "edge_type": "search_word_to_post",
  24754. "strategy": "搜索结果"
  24755. },
  24756. {
  24757. "from": "search_猫咪表情包梗图搞笑_r2_5",
  24758. "to": "post_68e71e340000000007002e56_5_6",
  24759. "edge_type": "search_word_to_post",
  24760. "strategy": "搜索结果"
  24761. },
  24762. {
  24763. "from": "search_猫咪表情包梗图搞笑_r2_5",
  24764. "to": "post_67cbe638000000001203e839_5_7",
  24765. "edge_type": "search_word_to_post",
  24766. "strategy": "搜索结果"
  24767. },
  24768. {
  24769. "from": "search_猫咪表情包梗图搞笑_r2_5",
  24770. "to": "post_6826f7b7000000002202a171_5_8",
  24771. "edge_type": "search_word_to_post",
  24772. "strategy": "搜索结果"
  24773. },
  24774. {
  24775. "from": "search_猫咪表情包梗图搞笑_r2_5",
  24776. "to": "post_666d59f2000000000e032b89_5_9",
  24777. "edge_type": "search_word_to_post",
  24778. "strategy": "搜索结果"
  24779. },
  24780. {
  24781. "from": "step_search_r2",
  24782. "to": "search_猫咪表情包制作_r2_6",
  24783. "edge_type": "step_to_search_word",
  24784. "strategy": "搜索词"
  24785. },
  24786. {
  24787. "from": "search_猫咪表情包制作_r2_6",
  24788. "to": "post_660581800000000012023abc_6_0",
  24789. "edge_type": "search_word_to_post",
  24790. "strategy": "搜索结果"
  24791. },
  24792. {
  24793. "from": "search_猫咪表情包制作_r2_6",
  24794. "to": "post_678c8258000000001b00b500_6_1",
  24795. "edge_type": "search_word_to_post",
  24796. "strategy": "搜索结果"
  24797. },
  24798. {
  24799. "from": "search_猫咪表情包制作_r2_6",
  24800. "to": "post_67f60c23000000001c03e8b0_6_2",
  24801. "edge_type": "search_word_to_post",
  24802. "strategy": "搜索结果"
  24803. },
  24804. {
  24805. "from": "search_猫咪表情包制作_r2_6",
  24806. "to": "post_6618ef8a000000001b00815c_6_3",
  24807. "edge_type": "search_word_to_post",
  24808. "strategy": "搜索结果"
  24809. },
  24810. {
  24811. "from": "search_猫咪表情包制作_r2_6",
  24812. "to": "post_68650c0e000000002400ec34_6_4",
  24813. "edge_type": "search_word_to_post",
  24814. "strategy": "搜索结果"
  24815. },
  24816. {
  24817. "from": "search_猫咪表情包制作_r2_6",
  24818. "to": "post_67541e26000000000800553c_6_5",
  24819. "edge_type": "search_word_to_post",
  24820. "strategy": "搜索结果"
  24821. },
  24822. {
  24823. "from": "search_猫咪表情包制作_r2_6",
  24824. "to": "post_68ee4f9400000000050318ba_6_6",
  24825. "edge_type": "search_word_to_post",
  24826. "strategy": "搜索结果"
  24827. },
  24828. {
  24829. "from": "search_猫咪表情包制作_r2_6",
  24830. "to": "post_6803ae1a000000001c036da7_6_7",
  24831. "edge_type": "search_word_to_post",
  24832. "strategy": "搜索结果"
  24833. },
  24834. {
  24835. "from": "search_猫咪表情包制作_r2_6",
  24836. "to": "post_66209a4c00000000040180ad_6_8",
  24837. "edge_type": "search_word_to_post",
  24838. "strategy": "搜索结果"
  24839. },
  24840. {
  24841. "from": "search_猫咪表情包制作_r2_6",
  24842. "to": "post_618ff44f0000000001029e17_6_9",
  24843. "edge_type": "search_word_to_post",
  24844. "strategy": "搜索结果"
  24845. },
  24846. {
  24847. "from": "round_2",
  24848. "to": "step_next_round_r2",
  24849. "edge_type": "round_to_step",
  24850. "strategy": "构建下一轮"
  24851. },
  24852. {
  24853. "from": "step_next_round_r2",
  24854. "to": "next_round_制作猫咪表情包梗图_r2_0",
  24855. "edge_type": "step_to_next_round",
  24856. "strategy": "域内组合"
  24857. },
  24858. {
  24859. "from": "step_next_round_r2",
  24860. "to": "next_round_制作猫咪表情包_r2_1",
  24861. "edge_type": "step_to_next_round",
  24862. "strategy": "域内组合"
  24863. },
  24864. {
  24865. "from": "step_next_round_r2",
  24866. "to": "next_round_制作猫咪梗图_r2_2",
  24867. "edge_type": "step_to_next_round",
  24868. "strategy": "域内组合"
  24869. },
  24870. {
  24871. "from": "step_next_round_r2",
  24872. "to": "next_round_制作表情包梗图_r2_3",
  24873. "edge_type": "step_to_next_round",
  24874. "strategy": "域内组合"
  24875. },
  24876. {
  24877. "from": "step_next_round_r2",
  24878. "to": "next_round_制作表情包_r2_4",
  24879. "edge_type": "step_to_next_round",
  24880. "strategy": "域内组合"
  24881. },
  24882. {
  24883. "from": "step_next_round_r2",
  24884. "to": "next_round_制作反映人类双标行为_r2_5",
  24885. "edge_type": "step_to_next_round",
  24886. "strategy": "域内组合"
  24887. },
  24888. {
  24889. "from": "step_next_round_r2",
  24890. "to": "next_round_制作反映人类双标_r2_6",
  24891. "edge_type": "step_to_next_round",
  24892. "strategy": "域内组合"
  24893. },
  24894. {
  24895. "from": "step_next_round_r2",
  24896. "to": "next_round_制作人类双标_r2_7",
  24897. "edge_type": "step_to_next_round",
  24898. "strategy": "域内组合"
  24899. },
  24900. {
  24901. "from": "step_next_round_r2",
  24902. "to": "next_round_制作人类双标行为_r2_8",
  24903. "edge_type": "step_to_next_round",
  24904. "strategy": "域内组合"
  24905. },
  24906. {
  24907. "from": "step_next_round_r2",
  24908. "to": "next_round_制作反映双标_r2_9",
  24909. "edge_type": "step_to_next_round",
  24910. "strategy": "域内组合"
  24911. },
  24912. {
  24913. "from": "step_next_round_r2",
  24914. "to": "next_round_制作反映双标行为_r2_10",
  24915. "edge_type": "step_to_next_round",
  24916. "strategy": "域内组合"
  24917. },
  24918. {
  24919. "from": "step_next_round_r2",
  24920. "to": "next_round_制作双标行为_r2_11",
  24921. "edge_type": "step_to_next_round",
  24922. "strategy": "域内组合"
  24923. },
  24924. {
  24925. "from": "step_next_round_r2",
  24926. "to": "next_round_制作反映人类行为_r2_12",
  24927. "edge_type": "step_to_next_round",
  24928. "strategy": "域内组合"
  24929. },
  24930. {
  24931. "from": "step_next_round_r2",
  24932. "to": "next_round_反映人类双标猫咪表情包_r2_13",
  24933. "edge_type": "step_to_next_round",
  24934. "strategy": "域内组合"
  24935. },
  24936. {
  24937. "from": "step_next_round_r2",
  24938. "to": "next_round_反映双标猫咪梗图_r2_14",
  24939. "edge_type": "step_to_next_round",
  24940. "strategy": "域内组合"
  24941. },
  24942. {
  24943. "from": "step_next_round_r2",
  24944. "to": "next_round_如何猫咪表情包梗图_r2_15",
  24945. "edge_type": "step_to_next_round",
  24946. "strategy": "域内组合"
  24947. },
  24948. {
  24949. "from": "step_next_round_r2",
  24950. "to": "next_round_反映人类双标行为表情包梗图_r2_16",
  24951. "edge_type": "step_to_next_round",
  24952. "strategy": "域内组合"
  24953. },
  24954. {
  24955. "from": "step_next_round_r2",
  24956. "to": "next_round_如何猫咪表情包_r2_17",
  24957. "edge_type": "step_to_next_round",
  24958. "strategy": "域内组合"
  24959. },
  24960. {
  24961. "from": "step_next_round_r2",
  24962. "to": "next_round_如何猫咪梗图_r2_18",
  24963. "edge_type": "step_to_next_round",
  24964. "strategy": "域内组合"
  24965. },
  24966. {
  24967. "from": "step_next_round_r2",
  24968. "to": "next_round_反映双标行为表情包梗图_r2_19",
  24969. "edge_type": "step_to_next_round",
  24970. "strategy": "域内组合"
  24971. },
  24972. {
  24973. "from": "step_next_round_r2",
  24974. "to": "next_round_反映行为猫咪梗图_r2_20",
  24975. "edge_type": "step_to_next_round",
  24976. "strategy": "域内组合"
  24977. },
  24978. {
  24979. "from": "step_next_round_r2",
  24980. "to": "next_round_如何表情包梗图_r2_21",
  24981. "edge_type": "step_to_next_round",
  24982. "strategy": "域内组合"
  24983. },
  24984. {
  24985. "from": "step_next_round_r2",
  24986. "to": "next_round_反映行为表情包梗图_r2_22",
  24987. "edge_type": "step_to_next_round",
  24988. "strategy": "域内组合"
  24989. },
  24990. {
  24991. "from": "step_next_round_r2",
  24992. "to": "next_round_如何反映人类双标行为_r2_23",
  24993. "edge_type": "step_to_next_round",
  24994. "strategy": "域内组合"
  24995. },
  24996. {
  24997. "from": "step_next_round_r2",
  24998. "to": "next_round_如何反映人类双标_r2_24",
  24999. "edge_type": "step_to_next_round",
  25000. "strategy": "域内组合"
  25001. },
  25002. {
  25003. "from": "step_next_round_r2",
  25004. "to": "next_round_如何反映双标_r2_25",
  25005. "edge_type": "step_to_next_round",
  25006. "strategy": "域内组合"
  25007. },
  25008. {
  25009. "from": "step_next_round_r2",
  25010. "to": "next_round_如何反映双标行为_r2_26",
  25011. "edge_type": "step_to_next_round",
  25012. "strategy": "域内组合"
  25013. },
  25014. {
  25015. "from": "step_next_round_r2",
  25016. "to": "next_round_如何反映人类行为_r2_27",
  25017. "edge_type": "step_to_next_round",
  25018. "strategy": "域内组合"
  25019. },
  25020. {
  25021. "from": "step_next_round_r2",
  25022. "to": "next_round_如何反映_r2_28",
  25023. "edge_type": "step_to_next_round",
  25024. "strategy": "域内组合"
  25025. },
  25026. {
  25027. "from": "step_next_round_r2",
  25028. "to": "next_round_如何梗图_r2_29",
  25029. "edge_type": "step_to_next_round",
  25030. "strategy": "域内组合"
  25031. },
  25032. {
  25033. "from": "step_next_round_r2",
  25034. "to": "next_round_如何人类双标行为_r2_30",
  25035. "edge_type": "step_to_next_round",
  25036. "strategy": "域内组合"
  25037. },
  25038. {
  25039. "from": "step_next_round_r2",
  25040. "to": "next_round_如何反映行为_r2_31",
  25041. "edge_type": "step_to_next_round",
  25042. "strategy": "域内组合"
  25043. },
  25044. {
  25045. "from": "step_next_round_r2",
  25046. "to": "next_round_如何人类双标_r2_32",
  25047. "edge_type": "step_to_next_round",
  25048. "strategy": "域内组合"
  25049. },
  25050. {
  25051. "from": "step_next_round_r2",
  25052. "to": "next_round_反映人类双标梗图_r2_33",
  25053. "edge_type": "step_to_next_round",
  25054. "strategy": "域内组合"
  25055. },
  25056. {
  25057. "from": "step_next_round_r2",
  25058. "to": "next_round_反映人类双标行为梗图_r2_34",
  25059. "edge_type": "step_to_next_round",
  25060. "strategy": "域内组合"
  25061. },
  25062. {
  25063. "from": "step_next_round_r2",
  25064. "to": "next_round_反映双标梗图_r2_35",
  25065. "edge_type": "step_to_next_round",
  25066. "strategy": "域内组合"
  25067. },
  25068. {
  25069. "from": "step_next_round_r2",
  25070. "to": "next_round_人类双标梗图_r2_36",
  25071. "edge_type": "step_to_next_round",
  25072. "strategy": "域内组合"
  25073. },
  25074. {
  25075. "from": "step_next_round_r2",
  25076. "to": "next_round_人类双标行为梗图_r2_37",
  25077. "edge_type": "step_to_next_round",
  25078. "strategy": "域内组合"
  25079. },
  25080. {
  25081. "from": "step_next_round_r2",
  25082. "to": "next_round_猫咪表情包制作_r2_38",
  25083. "edge_type": "step_to_next_round",
  25084. "strategy": "SUG"
  25085. },
  25086. {
  25087. "from": "step_next_round_r2",
  25088. "to": "next_round_梗图描改教程_r2_39",
  25089. "edge_type": "step_to_next_round",
  25090. "strategy": "SUG"
  25091. },
  25092. {
  25093. "from": "step_next_round_r2",
  25094. "to": "next_round_可爱又双标的表情包_r2_40",
  25095. "edge_type": "step_to_next_round",
  25096. "strategy": "SUG"
  25097. },
  25098. {
  25099. "from": "step_next_round_r2",
  25100. "to": "next_round_怼双标的人表情包_r2_41",
  25101. "edge_type": "step_to_next_round",
  25102. "strategy": "SUG"
  25103. },
  25104. {
  25105. "from": "step_next_round_r2",
  25106. "to": "next_round_梗图meme原创_r2_42",
  25107. "edge_type": "step_to_next_round",
  25108. "strategy": "SUG"
  25109. },
  25110. {
  25111. "from": "step_next_round_r2",
  25112. "to": "next_round_猫咪表情包梗图搞笑_r2_43",
  25113. "edge_type": "step_to_next_round",
  25114. "strategy": "SUG"
  25115. },
  25116. {
  25117. "from": "step_next_round_r2",
  25118. "to": "next_round_猫咪表情包图片_r2_44",
  25119. "edge_type": "step_to_next_round",
  25120. "strategy": "SUG"
  25121. },
  25122. {
  25123. "from": "step_next_round_r2",
  25124. "to": "next_round_猫咪表情包图片_r2_45",
  25125. "edge_type": "step_to_next_round",
  25126. "strategy": "SUG"
  25127. },
  25128. {
  25129. "from": "step_next_round_r2",
  25130. "to": "next_round_讽刺双标的图片_r2_46",
  25131. "edge_type": "step_to_next_round",
  25132. "strategy": "SUG"
  25133. },
  25134. {
  25135. "from": "step_next_round_r2",
  25136. "to": "next_round_讽刺双标的图片_r2_47",
  25137. "edge_type": "step_to_next_round",
  25138. "strategy": "SUG"
  25139. },
  25140. {
  25141. "from": "step_next_round_r2",
  25142. "to": "next_round_双标表情包图片_r2_48",
  25143. "edge_type": "step_to_next_round",
  25144. "strategy": "SUG"
  25145. },
  25146. {
  25147. "from": "step_next_round_r2",
  25148. "to": "next_round_猫咪表情包_r2_49",
  25149. "edge_type": "step_to_next_round",
  25150. "strategy": "SUG"
  25151. },
  25152. {
  25153. "from": "step_next_round_r2",
  25154. "to": "next_round_梗图描改过程_r2_50",
  25155. "edge_type": "step_to_next_round",
  25156. "strategy": "SUG"
  25157. },
  25158. {
  25159. "from": "step_next_round_r2",
  25160. "to": "next_round_猫咪表情包视频_r2_51",
  25161. "edge_type": "step_to_next_round",
  25162. "strategy": "SUG"
  25163. },
  25164. {
  25165. "from": "step_next_round_r2",
  25166. "to": "next_round_猫咪搞笑表情包_r2_52",
  25167. "edge_type": "step_to_next_round",
  25168. "strategy": "SUG"
  25169. },
  25170. {
  25171. "from": "step_next_round_r2",
  25172. "to": "next_round_反映人类双标行为的图片_r2_53",
  25173. "edge_type": "step_to_next_round",
  25174. "strategy": "SUG"
  25175. },
  25176. {
  25177. "from": "step_next_round_r2",
  25178. "to": "next_round_猫咪双标行为_r2_54",
  25179. "edge_type": "step_to_next_round",
  25180. "strategy": "SUG"
  25181. },
  25182. {
  25183. "from": "step_next_round_r2",
  25184. "to": "next_round_梗图素材抽象_r2_55",
  25185. "edge_type": "step_to_next_round",
  25186. "strategy": "SUG"
  25187. },
  25188. {
  25189. "from": "step_next_round_r2",
  25190. "to": "next_round_猫咪咪表情包图片_r2_56",
  25191. "edge_type": "step_to_next_round",
  25192. "strategy": "SUG"
  25193. },
  25194. {
  25195. "from": "step_next_round_r2",
  25196. "to": "next_round_猫咪表情包动图_r2_57",
  25197. "edge_type": "step_to_next_round",
  25198. "strategy": "SUG"
  25199. },
  25200. {
  25201. "from": "step_next_round_r2",
  25202. "to": "next_round_表情包梗图动图_r2_58",
  25203. "edge_type": "step_to_next_round",
  25204. "strategy": "SUG"
  25205. },
  25206. {
  25207. "from": "step_next_round_r2",
  25208. "to": "next_round_梗图素材表情包_r2_59",
  25209. "edge_type": "step_to_next_round",
  25210. "strategy": "SUG"
  25211. },
  25212. {
  25213. "from": "step_next_round_r2",
  25214. "to": "next_round_猫咪梗图素材_r2_60",
  25215. "edge_type": "step_to_next_round",
  25216. "strategy": "SUG"
  25217. },
  25218. {
  25219. "from": "step_next_round_r2",
  25220. "to": "next_round_猫咪梗图模板_r2_61",
  25221. "edge_type": "step_to_next_round",
  25222. "strategy": "SUG"
  25223. },
  25224. {
  25225. "from": "step_next_round_r2",
  25226. "to": "next_round_表情包梗图学习_r2_62",
  25227. "edge_type": "step_to_next_round",
  25228. "strategy": "SUG"
  25229. },
  25230. {
  25231. "from": "step_next_round_r2",
  25232. "to": "next_round_猫咪表情包配文_r2_63",
  25233. "edge_type": "step_to_next_round",
  25234. "strategy": "SUG"
  25235. },
  25236. {
  25237. "from": "step_next_round_r2",
  25238. "to": "next_round_梗图meme素材_r2_64",
  25239. "edge_type": "step_to_next_round",
  25240. "strategy": "SUG"
  25241. },
  25242. {
  25243. "from": "step_next_round_r2",
  25244. "to": "next_round_猫咪表情包可爱_r2_65",
  25245. "edge_type": "step_to_next_round",
  25246. "strategy": "SUG"
  25247. },
  25248. {
  25249. "from": "step_next_round_r2",
  25250. "to": "next_round_表情包梗图抽象_r2_66",
  25251. "edge_type": "step_to_next_round",
  25252. "strategy": "SUG"
  25253. },
  25254. {
  25255. "from": "step_next_round_r2",
  25256. "to": "next_round_猫meme表情包动图_r2_67",
  25257. "edge_type": "step_to_next_round",
  25258. "strategy": "SUG"
  25259. },
  25260. {
  25261. "from": "step_next_round_r2",
  25262. "to": "next_round_猫咪梗图骂人_r2_68",
  25263. "edge_type": "step_to_next_round",
  25264. "strategy": "SUG"
  25265. },
  25266. {
  25267. "from": "step_next_round_r2",
  25268. "to": "next_round_梗图模版表情包_r2_69",
  25269. "edge_type": "step_to_next_round",
  25270. "strategy": "SUG"
  25271. },
  25272. {
  25273. "from": "step_next_round_r2",
  25274. "to": "next_round_猫咪梗图伤感_r2_70",
  25275. "edge_type": "step_to_next_round",
  25276. "strategy": "SUG"
  25277. },
  25278. {
  25279. "from": "step_next_round_r2",
  25280. "to": "next_round_猫咪双标行为搞笑视频_r2_71",
  25281. "edge_type": "step_to_next_round",
  25282. "strategy": "SUG"
  25283. },
  25284. {
  25285. "from": "step_next_round_r2",
  25286. "to": "next_round_猫咪梗图拍照_r2_72",
  25287. "edge_type": "step_to_next_round",
  25288. "strategy": "SUG"
  25289. },
  25290. {
  25291. "from": "step_next_round_r2",
  25292. "to": "next_round_双标搞笑图片_r2_73",
  25293. "edge_type": "step_to_next_round",
  25294. "strategy": "SUG"
  25295. },
  25296. {
  25297. "from": "step_next_round_r2",
  25298. "to": "next_round_猫咪梗图英文_r2_74",
  25299. "edge_type": "step_to_next_round",
  25300. "strategy": "SUG"
  25301. },
  25302. {
  25303. "from": "step_next_round_r2",
  25304. "to": "next_round_梗图描改模板_r2_75",
  25305. "edge_type": "step_to_next_round",
  25306. "strategy": "SUG"
  25307. },
  25308. {
  25309. "from": "step_next_round_r2",
  25310. "to": "next_round_双标梗_r2_76",
  25311. "edge_type": "step_to_next_round",
  25312. "strategy": "SUG"
  25313. },
  25314. {
  25315. "from": "step_next_round_r2",
  25316. "to": "next_round_暗示双标的图片_r2_77",
  25317. "edge_type": "step_to_next_round",
  25318. "strategy": "SUG"
  25319. },
  25320. {
  25321. "from": "step_next_round_r2",
  25322. "to": "next_round_meme梗图分享_r2_78",
  25323. "edge_type": "step_to_next_round",
  25324. "strategy": "SUG"
  25325. },
  25326. {
  25327. "from": "step_next_round_r2",
  25328. "to": "next_round_双标行为举例_r2_79",
  25329. "edge_type": "step_to_next_round",
  25330. "strategy": "SUG"
  25331. },
  25332. {
  25333. "from": "step_next_round_r2",
  25334. "to": "next_round_双标_r2_80",
  25335. "edge_type": "step_to_next_round",
  25336. "strategy": "SUG"
  25337. },
  25338. {
  25339. "from": "step_next_round_r2",
  25340. "to": "next_round_表情包图片大全素材_r2_81",
  25341. "edge_type": "step_to_next_round",
  25342. "strategy": "SUG"
  25343. }
  25344. ],
  25345. "iterations": {
  25346. "0": [
  25347. "root_o",
  25348. "round_0"
  25349. ],
  25350. "1": [
  25351. "step_seg_r0"
  25352. ],
  25353. "2": [
  25354. "segment_0_r0",
  25355. "segment_1_r0",
  25356. "segment_2_r0",
  25357. "segment_3_r0"
  25358. ],
  25359. "3": [
  25360. "word_如何_seg0_0",
  25361. "word_制作_seg1_0",
  25362. "word_反映_seg2_0",
  25363. "word_人类_seg2_1",
  25364. "word_双标_seg2_2",
  25365. "word_行为_seg2_3",
  25366. "word_猫咪_seg3_0",
  25367. "word_表情包_seg3_1",
  25368. "word_梗图_seg3_2"
  25369. ],
  25370. "10": [
  25371. "round_1",
  25372. "step_sug_r1",
  25373. "step_comb_r1",
  25374. "step_search_r1",
  25375. "step_next_round_r1"
  25376. ],
  25377. "12": [
  25378. "q_如何_r1_0",
  25379. "q_制作_r1_1",
  25380. "q_反映_r1_2",
  25381. "q_人类_r1_3",
  25382. "q_双标_r1_4",
  25383. "q_行为_r1_5",
  25384. "q_猫咪_r1_6",
  25385. "q_表情包_r1_7",
  25386. "q_梗图_r1_8",
  25387. "comb_反映人类_r1_0",
  25388. "comb_反映双标_r1_1",
  25389. "comb_反映行为_r1_2",
  25390. "comb_人类双标_r1_3",
  25391. "comb_人类行为_r1_4",
  25392. "comb_双标行为_r1_5",
  25393. "comb_反映人类双标_r1_6",
  25394. "comb_反映人类行为_r1_7",
  25395. "comb_反映双标行为_r1_8",
  25396. "comb_人类双标行为_r1_9",
  25397. "comb_反映人类双标行为_r1_10",
  25398. "comb_猫咪表情包_r1_11",
  25399. "comb_猫咪梗图_r1_12",
  25400. "comb_表情包梗图_r1_13",
  25401. "comb_猫咪表情包梗图_r1_14",
  25402. "search_制作表情包_r1_0",
  25403. "search_表情包怎么制作_r1_1",
  25404. "next_round_猫咪表情包梗图_r1_0",
  25405. "next_round_猫咪表情包_r1_1",
  25406. "next_round_猫咪梗图_r1_2",
  25407. "next_round_表情包梗图_r1_3",
  25408. "next_round_反映人类双标_r1_4",
  25409. "next_round_反映人类双标行为_r1_5",
  25410. "next_round_反映双标_r1_6",
  25411. "next_round_人类双标_r1_7",
  25412. "next_round_人类双标行为_r1_8",
  25413. "next_round_双标行为_r1_9",
  25414. "next_round_反映双标行为_r1_10",
  25415. "next_round_反映人类_r1_11",
  25416. "next_round_反映人类行为_r1_12",
  25417. "next_round_人类行为_r1_13",
  25418. "next_round_制作表情包_r1_14",
  25419. "next_round_表情包怎么制作_r1_15",
  25420. "next_round_双标表情包_r1_16",
  25421. "next_round_梗图素材_r1_17",
  25422. "next_round_梗图模版_r1_18",
  25423. "next_round_梗图描改_r1_19",
  25424. "next_round_表情包简笔画_r1_20",
  25425. "next_round_双标图片_r1_21",
  25426. "next_round_表情包图片大全_r1_22",
  25427. "next_round_梗图meme_r1_23",
  25428. "next_round_梗图分享_r1_24"
  25429. ],
  25430. "13": [
  25431. "sug_如何快速减肥_r1_q0_0",
  25432. "sug_如何培养男人主动给你花钱_r1_q0_1",
  25433. "sug_如何快速挣到钱_r1_q0_2",
  25434. "sug_如何和女生聊天找话题_r1_q0_3",
  25435. "sug_如何快速入睡_r1_q0_4",
  25436. "sug_如何让男生持续上头_r1_q0_5",
  25437. "sug_如何逼自己自律学习_r1_q0_6",
  25438. "sug_如何连接别人家的加密wifi_r1_q0_7",
  25439. "sug_如何养好头发_r1_q0_8",
  25440. "sug_如何治疗早泻时间短_r1_q0_9",
  25441. "sug_制作ppt_r1_q1_0",
  25442. "sug_制作表情包_r1_q1_1",
  25443. "sug_制作冰糖葫芦_r1_q1_2",
  25444. "sug_制作ppt的ai软件_r1_q1_3",
  25445. "sug_制作视频_r1_q1_4",
  25446. "sug_制作美食_r1_q1_5",
  25447. "sug_制作简历_r1_q1_6",
  25448. "sug_制作饮品_r1_q1_7",
  25449. "sug_制作小房子_r1_q1_8",
  25450. "sug_制作表格_r1_q1_9",
  25451. "sug_反映问题还是反应问题_r1_q2_0",
  25452. "sug_反映和反应的区别_r1_q2_1",
  25453. "sug_反映是什么意思_r1_q2_2",
  25454. "sug_反映者_r1_q2_3",
  25455. "sug_反应力小游戏_r1_q2_4",
  25456. "sug_反应蛋白高是什么意思_r1_q2_5",
  25457. "sug_反映拼音_r1_q2_6",
  25458. "sug_反映财务状况的会计要素_r1_q2_7",
  25459. "sug_反映的英语_r1_q2_8",
  25460. "sug_反映事物间的互补关系_r1_q2_9",
  25461. "sug_人类一败涂地_r1_q3_0",
  25462. "sug_人类狗窝_r1_q3_1",
  25463. "sug_人类幼崽陪伴指南_r1_q3_2",
  25464. "sug_人类用沙想捏出梦里通天塔_r1_q3_3",
  25465. "sug_人类幼仔_r1_q3_4",
  25466. "sug_人类简史_r1_q3_5",
  25467. "sug_人类进化史_r1_q3_6",
  25468. "sug_人类跌落梦境_r1_q3_7",
  25469. "sug_人类群星闪耀时_r1_q3_8",
  25470. "sug_人类高质量男姓_r1_q3_9",
  25471. "sug_双标是什么意思_r1_q4_0",
  25472. "sug_讽刺双标的文案_r1_q4_1",
  25473. "sug_双标的人是什么心理_r1_q4_2",
  25474. "sug_双标文案_r1_q4_3",
  25475. "sug_双标高爆卡点伴奏_r1_q4_4",
  25476. "sug_双标信用卡_r1_q4_5",
  25477. "sug_双椒兔做法_r1_q4_6",
  25478. "sug_双标图片_r1_q4_7",
  25479. "sug_双标表情包_r1_q4_8",
  25480. "sug_双标的人_r1_q4_9",
  25481. "sug_行为心理学_r1_q5_0",
  25482. "sug_行为基础_r1_q5_1",
  25483. "sug_行为规范手抄报_r1_q5_2",
  25484. "sug_行为习惯手抄报_r1_q5_3",
  25485. "sug_行为艺术_r1_q5_4",
  25486. "sug_行为决定关系而非关系决定行为_r1_q5_5",
  25487. "sug_行为违反腾讯用户协议_r1_q5_6",
  25488. "sug_行为认知疗法_r1_q5_7",
  25489. "sug_行为经济学_r1_q5_8",
  25490. "sug_行为规范家_r1_q5_9",
  25491. "sug_猫咪领养免费领养_r1_q6_0",
  25492. "sug_猫咪叫声吸引小猫_r1_q6_1",
  25493. "sug_猫咪呕吐_r1_q6_2",
  25494. "sug_猫咪头像_r1_q6_3",
  25495. "sug_猫咪取名_r1_q6_4",
  25496. "sug_猫咪品种_r1_q6_5",
  25497. "sug_猫咪搞笑视频_r1_q6_6",
  25498. "sug_猫咪叫声_r1_q6_7",
  25499. "sug_猫咪驱虫药推荐_r1_q6_8",
  25500. "sug_猫咪黑下巴怎么处理_r1_q6_9",
  25501. "sug_表情包抽象_r1_q7_0",
  25502. "sug_表情包怎么制作_r1_q7_1",
  25503. "sug_表情包可爱_r1_q7_2",
  25504. "sug_表情包图片大全_r1_q7_3",
  25505. "sug_表情包搞笑配文_r1_q7_4",
  25506. "sug_表情包发给女朋友_r1_q7_5",
  25507. "sug_表情包简笔画_r1_q7_6",
  25508. "sug_表情包模板_r1_q7_7",
  25509. "sug_表情包发给男朋友_r1_q7_8",
  25510. "sug_表情包制作赚钱_r1_q7_9",
  25511. "sug_梗图素材_r1_q8_0",
  25512. "sug_梗图搞笑_r1_q8_1",
  25513. "sug_梗图精神状态_r1_q8_2",
  25514. "sug_梗图meme_r1_q8_3",
  25515. "sug_梗图双人_r1_q8_4",
  25516. "sug_梗图抽象_r1_q8_5",
  25517. "sug_梗图描改_r1_q8_6",
  25518. "sug_梗图模版_r1_q8_7",
  25519. "sug_梗图分享_r1_q8_8",
  25520. "sug_梗图大全_r1_q8_9",
  25521. "post_66f9046a000000002a033202_0_0",
  25522. "post_668e06cd00000000250145fe_0_1",
  25523. "post_68282bbd000000002001f349_0_2",
  25524. "post_67d1b6c9000000002802a550_0_3",
  25525. "post_68ef01ad000000000302f388_0_4",
  25526. "post_66ea4e30000000001e01964b_0_5",
  25527. "post_67c72549000000000602a376_0_6",
  25528. "post_6876f73f0000000011002f0c_0_7",
  25529. "post_6613c01f000000001b00820c_0_8",
  25530. "post_61b81195000000002103b7ab_0_9"
  25531. ],
  25532. "20": [
  25533. "round_2",
  25534. "step_sug_r2",
  25535. "step_comb_r2",
  25536. "step_search_r2",
  25537. "step_next_round_r2"
  25538. ],
  25539. "22": [
  25540. "q_制作表情包_r2_0",
  25541. "q_表情包怎么制作_r2_1",
  25542. "q_双标表情包_r2_2",
  25543. "q_梗图素材_r2_3",
  25544. "q_梗图模版_r2_4",
  25545. "q_梗图描改_r2_5",
  25546. "q_表情包简笔画_r2_6",
  25547. "q_双标图片_r2_7",
  25548. "q_表情包图片大全_r2_8",
  25549. "q_梗图meme_r2_9",
  25550. "q_梗图分享_r2_10",
  25551. "q_猫咪表情包梗图_r2_11",
  25552. "q_猫咪表情包_r2_12",
  25553. "q_猫咪梗图_r2_13",
  25554. "q_表情包梗图_r2_14",
  25555. "q_反映人类双标_r2_15",
  25556. "q_反映人类双标行为_r2_16",
  25557. "q_人类双标行为_r2_17",
  25558. "q_双标行为_r2_18",
  25559. "q_反映人类_r2_19",
  25560. "q_反映人类行为_r2_20",
  25561. "q_人类行为_r2_21",
  25562. "comb_如何反映_r2_0",
  25563. "comb_如何人类_r2_1",
  25564. "comb_如何双标_r2_2",
  25565. "comb_如何行为_r2_3",
  25566. "comb_如何反映人类_r2_4",
  25567. "comb_如何反映双标_r2_5",
  25568. "comb_如何反映行为_r2_6",
  25569. "comb_如何人类双标_r2_7",
  25570. "comb_如何人类行为_r2_8",
  25571. "comb_如何双标行为_r2_9",
  25572. "comb_如何反映人类双标_r2_10",
  25573. "comb_如何反映人类行为_r2_11",
  25574. "comb_如何反映双标行为_r2_12",
  25575. "comb_如何人类双标行为_r2_13",
  25576. "comb_如何反映人类双标行为_r2_14",
  25577. "comb_如何猫咪_r2_15",
  25578. "comb_如何表情包_r2_16",
  25579. "comb_如何梗图_r2_17",
  25580. "comb_如何猫咪表情包_r2_18",
  25581. "comb_如何猫咪梗图_r2_19",
  25582. "comb_如何表情包梗图_r2_20",
  25583. "comb_如何猫咪表情包梗图_r2_21",
  25584. "comb_制作反映_r2_22",
  25585. "comb_制作人类_r2_23",
  25586. "comb_制作双标_r2_24",
  25587. "comb_制作行为_r2_25",
  25588. "comb_制作反映人类_r2_26",
  25589. "comb_制作反映双标_r2_27",
  25590. "comb_制作反映行为_r2_28",
  25591. "comb_制作人类双标_r2_29",
  25592. "comb_制作人类行为_r2_30",
  25593. "comb_制作双标行为_r2_31",
  25594. "comb_制作反映人类双标_r2_32",
  25595. "comb_制作反映人类行为_r2_33",
  25596. "comb_制作反映双标行为_r2_34",
  25597. "comb_制作人类双标行为_r2_35",
  25598. "comb_制作反映人类双标行为_r2_36",
  25599. "comb_制作猫咪_r2_37",
  25600. "comb_制作表情包_r2_38",
  25601. "comb_制作梗图_r2_39",
  25602. "comb_制作猫咪表情包_r2_40",
  25603. "comb_制作猫咪梗图_r2_41",
  25604. "comb_制作表情包梗图_r2_42",
  25605. "comb_制作猫咪表情包梗图_r2_43",
  25606. "comb_反映猫咪_r2_44",
  25607. "comb_反映表情包_r2_45",
  25608. "comb_反映梗图_r2_46",
  25609. "comb_反映猫咪表情包_r2_47",
  25610. "comb_反映猫咪梗图_r2_48",
  25611. "comb_反映表情包梗图_r2_49",
  25612. "comb_反映猫咪表情包梗图_r2_50",
  25613. "comb_人类猫咪_r2_51",
  25614. "comb_人类表情包_r2_52",
  25615. "comb_人类梗图_r2_53",
  25616. "comb_人类猫咪表情包_r2_54",
  25617. "comb_人类猫咪梗图_r2_55",
  25618. "comb_人类表情包梗图_r2_56",
  25619. "comb_人类猫咪表情包梗图_r2_57",
  25620. "comb_双标猫咪_r2_58",
  25621. "comb_双标表情包_r2_59",
  25622. "comb_双标梗图_r2_60",
  25623. "comb_双标猫咪表情包_r2_61",
  25624. "comb_双标猫咪梗图_r2_62",
  25625. "comb_双标表情包梗图_r2_63",
  25626. "comb_双标猫咪表情包梗图_r2_64",
  25627. "comb_行为猫咪_r2_65",
  25628. "comb_行为表情包_r2_66",
  25629. "comb_行为梗图_r2_67",
  25630. "comb_行为猫咪表情包_r2_68",
  25631. "comb_行为猫咪梗图_r2_69",
  25632. "comb_行为表情包梗图_r2_70",
  25633. "comb_行为猫咪表情包梗图_r2_71",
  25634. "comb_反映人类猫咪_r2_72",
  25635. "comb_反映人类表情包_r2_73",
  25636. "comb_反映人类梗图_r2_74",
  25637. "comb_反映人类猫咪表情包_r2_75",
  25638. "comb_反映人类猫咪梗图_r2_76",
  25639. "comb_反映人类表情包梗图_r2_77",
  25640. "comb_反映人类猫咪表情包梗图_r2_78",
  25641. "comb_反映双标猫咪_r2_79",
  25642. "comb_反映双标表情包_r2_80",
  25643. "comb_反映双标梗图_r2_81",
  25644. "comb_反映双标猫咪表情包_r2_82",
  25645. "comb_反映双标猫咪梗图_r2_83",
  25646. "comb_反映双标表情包梗图_r2_84",
  25647. "comb_反映双标猫咪表情包梗图_r2_85",
  25648. "comb_反映行为猫咪_r2_86",
  25649. "comb_反映行为表情包_r2_87",
  25650. "comb_反映行为梗图_r2_88",
  25651. "comb_反映行为猫咪表情包_r2_89",
  25652. "comb_反映行为猫咪梗图_r2_90",
  25653. "comb_反映行为表情包梗图_r2_91",
  25654. "comb_反映行为猫咪表情包梗图_r2_92",
  25655. "comb_人类双标猫咪_r2_93",
  25656. "comb_人类双标表情包_r2_94",
  25657. "comb_人类双标梗图_r2_95",
  25658. "comb_人类双标猫咪表情包_r2_96",
  25659. "comb_人类双标猫咪梗图_r2_97",
  25660. "comb_人类双标表情包梗图_r2_98",
  25661. "comb_人类双标猫咪表情包梗图_r2_99",
  25662. "comb_人类行为猫咪_r2_100",
  25663. "comb_人类行为表情包_r2_101",
  25664. "comb_人类行为梗图_r2_102",
  25665. "comb_人类行为猫咪表情包_r2_103",
  25666. "comb_人类行为猫咪梗图_r2_104",
  25667. "comb_人类行为表情包梗图_r2_105",
  25668. "comb_人类行为猫咪表情包梗图_r2_106",
  25669. "comb_双标行为猫咪_r2_107",
  25670. "comb_双标行为表情包_r2_108",
  25671. "comb_双标行为梗图_r2_109",
  25672. "comb_双标行为猫咪表情包_r2_110",
  25673. "comb_双标行为猫咪梗图_r2_111",
  25674. "comb_双标行为表情包梗图_r2_112",
  25675. "comb_双标行为猫咪表情包梗图_r2_113",
  25676. "comb_反映人类双标猫咪_r2_114",
  25677. "comb_反映人类双标表情包_r2_115",
  25678. "comb_反映人类双标梗图_r2_116",
  25679. "comb_反映人类双标猫咪表情包_r2_117",
  25680. "comb_反映人类双标猫咪梗图_r2_118",
  25681. "comb_反映人类双标表情包梗图_r2_119",
  25682. "comb_反映人类双标猫咪表情包梗图_r2_120",
  25683. "comb_反映人类行为猫咪_r2_121",
  25684. "comb_反映人类行为表情包_r2_122",
  25685. "comb_反映人类行为梗图_r2_123",
  25686. "comb_反映人类行为猫咪表情包_r2_124",
  25687. "comb_反映人类行为猫咪梗图_r2_125",
  25688. "comb_反映人类行为表情包梗图_r2_126",
  25689. "comb_反映人类行为猫咪表情包梗图_r2_127",
  25690. "comb_反映双标行为猫咪_r2_128",
  25691. "comb_反映双标行为表情包_r2_129",
  25692. "comb_反映双标行为梗图_r2_130",
  25693. "comb_反映双标行为猫咪表情包_r2_131",
  25694. "comb_反映双标行为猫咪梗图_r2_132",
  25695. "comb_反映双标行为表情包梗图_r2_133",
  25696. "comb_反映双标行为猫咪表情包梗图_r2_134",
  25697. "comb_人类双标行为猫咪_r2_135",
  25698. "comb_人类双标行为表情包_r2_136",
  25699. "comb_人类双标行为梗图_r2_137",
  25700. "comb_人类双标行为猫咪表情包_r2_138",
  25701. "comb_人类双标行为猫咪梗图_r2_139",
  25702. "comb_人类双标行为表情包梗图_r2_140",
  25703. "comb_人类双标行为猫咪表情包梗图_r2_141",
  25704. "comb_反映人类双标行为猫咪_r2_142",
  25705. "comb_反映人类双标行为表情包_r2_143",
  25706. "comb_反映人类双标行为梗图_r2_144",
  25707. "comb_反映人类双标行为猫咪表情包_r2_145",
  25708. "comb_反映人类双标行为猫咪梗图_r2_146",
  25709. "comb_反映人类双标行为表情包梗图_r2_147",
  25710. "comb_反映人类双标行为猫咪表情包梗图_r2_148",
  25711. "search_制作表情包教程_r2_0",
  25712. "search_怼双标的人表情包_r2_1",
  25713. "search_可爱又双标的表情包_r2_2",
  25714. "search_梗图描改教程_r2_3",
  25715. "search_梗图meme原创_r2_4",
  25716. "search_猫咪表情包梗图搞笑_r2_5",
  25717. "search_猫咪表情包制作_r2_6",
  25718. "next_round_制作猫咪表情包梗图_r2_0",
  25719. "next_round_制作猫咪表情包_r2_1",
  25720. "next_round_制作猫咪梗图_r2_2",
  25721. "next_round_制作表情包梗图_r2_3",
  25722. "next_round_制作表情包_r2_4",
  25723. "next_round_制作反映人类双标行为_r2_5",
  25724. "next_round_制作反映人类双标_r2_6",
  25725. "next_round_制作人类双标_r2_7",
  25726. "next_round_制作人类双标行为_r2_8",
  25727. "next_round_制作反映双标_r2_9",
  25728. "next_round_制作反映双标行为_r2_10",
  25729. "next_round_制作双标行为_r2_11",
  25730. "next_round_制作反映人类行为_r2_12",
  25731. "next_round_反映人类双标猫咪表情包_r2_13",
  25732. "next_round_反映双标猫咪梗图_r2_14",
  25733. "next_round_如何猫咪表情包梗图_r2_15",
  25734. "next_round_反映人类双标行为表情包梗图_r2_16",
  25735. "next_round_如何猫咪表情包_r2_17",
  25736. "next_round_如何猫咪梗图_r2_18",
  25737. "next_round_反映双标行为表情包梗图_r2_19",
  25738. "next_round_反映行为猫咪梗图_r2_20",
  25739. "next_round_如何表情包梗图_r2_21",
  25740. "next_round_反映行为表情包梗图_r2_22",
  25741. "next_round_如何反映人类双标行为_r2_23",
  25742. "next_round_如何反映人类双标_r2_24",
  25743. "next_round_如何反映双标_r2_25",
  25744. "next_round_如何反映双标行为_r2_26",
  25745. "next_round_如何反映人类行为_r2_27",
  25746. "next_round_如何反映_r2_28",
  25747. "next_round_如何梗图_r2_29",
  25748. "next_round_如何人类双标行为_r2_30",
  25749. "next_round_如何反映行为_r2_31",
  25750. "next_round_如何人类双标_r2_32",
  25751. "next_round_反映人类双标梗图_r2_33",
  25752. "next_round_反映人类双标行为梗图_r2_34",
  25753. "next_round_反映双标梗图_r2_35",
  25754. "next_round_人类双标梗图_r2_36",
  25755. "next_round_人类双标行为梗图_r2_37",
  25756. "next_round_猫咪表情包制作_r2_38",
  25757. "next_round_梗图描改教程_r2_39",
  25758. "next_round_可爱又双标的表情包_r2_40",
  25759. "next_round_怼双标的人表情包_r2_41",
  25760. "next_round_梗图meme原创_r2_42",
  25761. "next_round_猫咪表情包梗图搞笑_r2_43",
  25762. "next_round_猫咪表情包图片_r2_44",
  25763. "next_round_猫咪表情包图片_r2_45",
  25764. "next_round_讽刺双标的图片_r2_46",
  25765. "next_round_讽刺双标的图片_r2_47",
  25766. "next_round_双标表情包图片_r2_48",
  25767. "next_round_猫咪表情包_r2_49",
  25768. "next_round_梗图描改过程_r2_50",
  25769. "next_round_猫咪表情包视频_r2_51",
  25770. "next_round_猫咪搞笑表情包_r2_52",
  25771. "next_round_反映人类双标行为的图片_r2_53",
  25772. "next_round_猫咪双标行为_r2_54",
  25773. "next_round_梗图素材抽象_r2_55",
  25774. "next_round_猫咪咪表情包图片_r2_56",
  25775. "next_round_猫咪表情包动图_r2_57",
  25776. "next_round_表情包梗图动图_r2_58",
  25777. "next_round_梗图素材表情包_r2_59",
  25778. "next_round_猫咪梗图素材_r2_60",
  25779. "next_round_猫咪梗图模板_r2_61",
  25780. "next_round_表情包梗图学习_r2_62",
  25781. "next_round_猫咪表情包配文_r2_63",
  25782. "next_round_梗图meme素材_r2_64",
  25783. "next_round_猫咪表情包可爱_r2_65",
  25784. "next_round_表情包梗图抽象_r2_66",
  25785. "next_round_猫meme表情包动图_r2_67",
  25786. "next_round_猫咪梗图骂人_r2_68",
  25787. "next_round_梗图模版表情包_r2_69",
  25788. "next_round_猫咪梗图伤感_r2_70",
  25789. "next_round_猫咪双标行为搞笑视频_r2_71",
  25790. "next_round_猫咪梗图拍照_r2_72",
  25791. "next_round_双标搞笑图片_r2_73",
  25792. "next_round_猫咪梗图英文_r2_74",
  25793. "next_round_梗图描改模板_r2_75",
  25794. "next_round_双标梗_r2_76",
  25795. "next_round_暗示双标的图片_r2_77",
  25796. "next_round_meme梗图分享_r2_78",
  25797. "next_round_双标行为举例_r2_79",
  25798. "next_round_双标_r2_80",
  25799. "next_round_表情包图片大全素材_r2_81"
  25800. ],
  25801. "23": [
  25802. "sug_制作表情包用什么软件_r2_q0_0",
  25803. "sug_制作表情包微信_r2_q0_1",
  25804. "sug_制作表情包怎么赚钱_r2_q0_2",
  25805. "sug_制作表情包教程_r2_q0_3",
  25806. "sug_制作表情包软件_r2_q0_4",
  25807. "sug_制作表情包gif_r2_q0_5",
  25808. "sug_制作表情包动图_r2_q0_6",
  25809. "sug_视频制作表情包_r2_q0_7",
  25810. "sug_美图秀秀制作表情包图片_r2_q0_8",
  25811. "sug_制作表情包文字_r2_q0_9",
  25812. "sug_表情包怎么制作gif_r2_q1_0",
  25813. "sug_表情包怎么制作动态_r2_q1_1",
  25814. "sug_表情包怎么制作微信_r2_q1_2",
  25815. "sug_表情包怎么制作文字_r2_q1_3",
  25816. "sug_小红书表情包怎么制作的_r2_q1_4",
  25817. "sug_原创表情包怎么制作_r2_q1_5",
  25818. "sug_表情包怎么制作视频_r2_q1_6",
  25819. "sug_表情包怎么制作动态图_r2_q1_7",
  25820. "sug_表情包怎么制作动图_r2_q1_8",
  25821. "sug_制作表情包怎么赚钱_r2_q1_9",
  25822. "sug_双标表情包内涵_r2_q2_0",
  25823. "sug_双标表情包图片_r2_q2_1",
  25824. "sug_怼双标的人表情包_r2_q2_2",
  25825. "sug_可爱又双标的表情包_r2_q2_3",
  25826. "sug_讽刺双标的图片_r2_q2_4",
  25827. "sug_双标梗图模板_r2_q2_5",
  25828. "sug_讽刺双标的人的文案_r2_q2_6",
  25829. "sug_很双标的朋友圈文案_r2_q2_7",
  25830. "sug_这可是要砍头的表情包_r2_q2_8",
  25831. "sug_双标的人怎么怼_r2_q2_9",
  25832. "sug_梗图素材模板_r2_q3_0",
  25833. "sug_梗图素材抽象_r2_q3_1",
  25834. "sug_梗图素材双人_r2_q3_2",
  25835. "sug_梗图素材单人_r2_q3_3",
  25836. "sug_梗图素材原图_r2_q3_4",
  25837. "sug_梗图素材多人_r2_q3_5",
  25838. "sug_梗图素材画画_r2_q3_6",
  25839. "sug_梗图素材描改_r2_q3_7",
  25840. "sug_梗图素材表情包_r2_q3_8",
  25841. "sug_梗图素材聊天记录_r2_q3_9",
  25842. "sug_梗图模版抽象_r2_q4_0",
  25843. "sug_梗图模版双人_r2_q4_1",
  25844. "sug_梗图模版单人_r2_q4_2",
  25845. "sug_梗图模板_r2_q4_3",
  25846. "sug_梗图模版三人_r2_q4_4",
  25847. "sug_梗图模版表情包_r2_q4_5",
  25848. "sug_梗图模版多人_r2_q4_6",
  25849. "sug_梗图模版四人_r2_q4_7",
  25850. "sug_双眼皮模版图_r2_q4_8",
  25851. "sug_梗图模版表格_r2_q4_9",
  25852. "sug_梗图描改接稿_r2_q5_0",
  25853. "sug_梗图描改素材_r2_q5_1",
  25854. "sug_梗图描改教程_r2_q5_2",
  25855. "sug_梗图描改怎么画_r2_q5_3",
  25856. "sug_梗图描改模板_r2_q5_4",
  25857. "sug_梗图描改约稿_r2_q5_5",
  25858. "sug_梗图描改原图_r2_q5_6",
  25859. "sug_梗图描改鸡蛋_r2_q5_7",
  25860. "sug_抽象梗图描改_r2_q5_8",
  25861. "sug_梗图描改过程_r2_q5_9",
  25862. "sug_表情包简笔画可爱_r2_q6_0",
  25863. "sug_表情包简笔画抽象_r2_q6_1",
  25864. "sug_表情包简笔画大全_r2_q6_2",
  25865. "sug_表情包简笔画哭_r2_q6_3",
  25866. "sug_表情包简笔画图片_r2_q6_4",
  25867. "sug_表情包简笔画人物_r2_q6_5",
  25868. "sug_表情包简笔画教程_r2_q6_6",
  25869. "sug_表情简笔画_r2_q6_7",
  25870. "sug_表情包简笔画加油_r2_q6_8",
  25871. "sug_表情包简笔画开心_r2_q6_9",
  25872. "sug_讽刺双标的图片_r2_q7_0",
  25873. "sug_暗示双标的图片_r2_q7_1",
  25874. "sug_双标搞笑图片_r2_q7_2",
  25875. "sug_讽刺双标的人的文案_r2_q7_3",
  25876. "sug_双标梗_r2_q7_4",
  25877. "sug_双标是什么意思_r2_q7_5",
  25878. "sug_形容双标人的文案_r2_q7_6",
  25879. "sug_内涵双标的文案_r2_q7_7",
  25880. "sug_卡皮巴拉100种可爱图片_r2_q7_8",
  25881. "sug_双标_r2_q7_9",
  25882. "sug_表情包图片大全简笔画_r2_q8_0",
  25883. "sug_表情包图片大全微信_r2_q8_1",
  25884. "sug_表情包图片大全抽象_r2_q8_2",
  25885. "sug_表情包图片大全可爱_r2_q8_3",
  25886. "sug_表情包图片大全动态_r2_q8_4",
  25887. "sug_表情包图片大全素材_r2_q8_5",
  25888. "sug_表情包图片大全搞笑_r2_q8_6",
  25889. "sug_ch表情包图片大全_r2_q8_7",
  25890. "sug_开心表情包图片大全_r2_q8_8",
  25891. "sug_表情包图片大全打印素材_r2_q8_9",
  25892. "sug_梗图meme双人_r2_q9_0",
  25893. "sug_梗图meme模板_r2_q9_1",
  25894. "sug_心理疾病meme梗图_r2_q9_2",
  25895. "sug_梗图meme素材_r2_q9_3",
  25896. "sug_梗图meme悲伤自嘲_r2_q9_4",
  25897. "sug_梗图meme代餐_r2_q9_5",
  25898. "sug_梗图meme学习_r2_q9_6",
  25899. "sug_焦虑症meme梗图_r2_q9_7",
  25900. "sug_精神疾病meme梗图_r2_q9_8",
  25901. "sug_梗图meme原创_r2_q9_9",
  25902. "sug_恋与深空同人图资源分享_r2_q10_0",
  25903. "sug_早安分享图片_r2_q10_1",
  25904. "sug_定制分享图_r2_q10_2",
  25905. "sug_图纸分享_r2_q10_3",
  25906. "sug_meme梗图分享_r2_q10_4",
  25907. "sug_拼豆豆图纸分享_r2_q10_5",
  25908. "sug_买断图分享_r2_q10_6",
  25909. "sug_拼豆图纸分享_r2_q10_7",
  25910. "sug_日常分享图片_r2_q10_8",
  25911. "sug_自截分享图_r2_q10_9",
  25912. "sug_猫咪表情包_r2_q11_0",
  25913. "sug_猫咪表情包图片_r2_q11_1",
  25914. "sug_猫咪咪表情包图片_r2_q11_2",
  25915. "sug_猫咪搞笑表情包_r2_q11_3",
  25916. "sug_猫咪表情包梗图搞笑_r2_q11_4",
  25917. "sug_猫咪表情包抽象_r2_q12_0",
  25918. "sug_猫meme表情包动图_r2_q12_1",
  25919. "sug_猫咪表情包配文_r2_q12_2",
  25920. "sug_猫咪表情包动图_r2_q12_3",
  25921. "sug_猫咪表情包制作_r2_q12_4",
  25922. "sug_猫咪表情包可爱_r2_q12_5",
  25923. "sug_猫咪表情符号_r2_q12_6",
  25924. "sug_猫咪表情包叫什么_r2_q12_7",
  25925. "sug_猫咪表情包图片_r2_q12_8",
  25926. "sug_猫咪表情包视频_r2_q12_9",
  25927. "sug_猫咪梗图素材_r2_q13_0",
  25928. "sug_猫咪梗图模板_r2_q13_1",
  25929. "sug_猫咪梗图骂人_r2_q13_2",
  25930. "sug_猫咪梗图恋爱_r2_q13_3",
  25931. "sug_猫咪梗图伤感_r2_q13_4",
  25932. "sug_猫咪梗图睡觉_r2_q13_5",
  25933. "sug_猫咪梗图英文_r2_q13_6",
  25934. "sug_猫咪梗图塔牌_r2_q13_7",
  25935. "sug_猫咪梗图拍照_r2_q13_8",
  25936. "sug_猫咪梗图上帝_r2_q13_9",
  25937. "sug_表情包梗图模板_r2_q14_0",
  25938. "sug_表情包梗图抽象_r2_q14_1",
  25939. "sug_jojo表情包梗图_r2_q14_2",
  25940. "sug_表情包梗图学习_r2_q14_3",
  25941. "sug_表情包梗图动图_r2_q14_4",
  25942. "sug_表情包梗图cp_r2_q14_5",
  25943. "sug_重返未来表情包梗图_r2_q14_6",
  25944. "sug_表情包梗图可爱_r2_q14_7",
  25945. "sug_表情包梗图恶俗_r2_q14_8",
  25946. "sug_表情包梗图开心_r2_q14_9",
  25947. "sug_反映人类双胞胎基因变异_r2_q15_0",
  25948. "sug_反映人类双标行为的图片_r2_q16_0",
  25949. "sug_人类双标行为是什么意思_r2_q17_0",
  25950. "sug_双标行为举例_r2_q18_0",
  25951. "sug_双标行为内涵是什么_r2_q18_1",
  25952. "sug_讽刺双标的文案_r2_q18_2",
  25953. "sug_王楚钦双标行为_r2_q18_3",
  25954. "sug_猫咪为什么会出现双标行为_r2_q18_4",
  25955. "sug_双标男友的典型表现_r2_q18_5",
  25956. "sug_猫咪双标行为搞笑视频_r2_q18_6",
  25957. "sug_猫咪双标行为_r2_q18_7",
  25958. "sug_双标是什么意思啊_r2_q18_8",
  25959. "sug_双标的人怎么怼_r2_q18_9",
  25960. "sug_反映人类社会发展进步的价值理念_r2_q19_0",
  25961. "sug_人类图反映者_r2_q19_1",
  25962. "sug_怎么识别人类图中的反映者_r2_q19_2",
  25963. "sug_人类图显示者_r2_q19_3",
  25964. "sug_人类图解读_r2_q19_4",
  25965. "sug_人类图是什么_r2_q19_5",
  25966. "sug_反映者适合什么工作_r2_q19_6",
  25967. "sug_人类图投射者_r2_q19_7",
  25968. "sug_反映者的代表人物_r2_q19_8",
  25969. "sug_人类图测试_r2_q19_9",
  25970. "sug_反映人类行为的环境问题_r2_q20_0",
  25971. "sug_人类行为与社会环境_r2_q21_0",
  25972. "sug_人类行为设计师-小周_r2_q21_1",
  25973. "sug_人类行为与社会环境重点_r2_q21_2",
  25974. "sug_人类行为与社会环境笔记_r2_q21_3",
  25975. "sug_人类行为矫正教育漫画_r2_q21_4",
  25976. "sug_人类行为与社会环境第三版_r2_q21_5",
  25977. "sug_人类行为矫正教育_r2_q21_6",
  25978. "sug_人类行为心理学_r2_q21_7",
  25979. "sug_人类行为观察员_r2_q21_8",
  25980. "sug_人类行为艺术_r2_q21_9",
  25981. "post_66f9046a000000002a033202_0_0",
  25982. "post_668e06cd00000000250145fe_0_1",
  25983. "post_67dc1a58000000001d0232da_0_2",
  25984. "post_68282bbd000000002001f349_0_3",
  25985. "post_66ea4e30000000001e01964b_0_4",
  25986. "post_6690ebe500000000250153e5_0_5",
  25987. "post_671d9a72000000001402e50f_0_6",
  25988. "post_668f5479000000000d00ebc2_0_7",
  25989. "post_680054bc000000001d014b19_0_8",
  25990. "post_690818e70000000003011fa5_0_9",
  25991. "post_66af92ad0000000005038228_1_0",
  25992. "post_68597fed000000001202d443_1_1",
  25993. "post_6541e7fb000000002303bfea_1_2",
  25994. "post_67bb4d7d000000002903d2fb_1_3",
  25995. "post_6791c3e600000000170392b9_1_4",
  25996. "post_69080c43000000000402bb4b_1_5",
  25997. "post_66791a5f000000001c027fab_1_6",
  25998. "post_66e0e9b900000000270026f2_1_7",
  25999. "post_67db7618000000001c008ddb_1_8",
  26000. "post_66caccf2000000001f03bcee_1_9",
  26001. "post_690ec7070000000004022819_2_0",
  26002. "post_66877a00000000000a0073d7_2_1",
  26003. "post_68ae7e48000000001c004610_2_2",
  26004. "post_6697b8310000000025003164_2_3",
  26005. "post_68626478000000000d019251_2_4",
  26006. "post_68dde20600000000070173ef_2_5",
  26007. "post_67dd3945000000001d02d900_2_6",
  26008. "post_6907666b0000000004022dbb_2_7",
  26009. "post_68a43430000000001d0027d6_2_8",
  26010. "post_67d2e30d000000000603eb03_2_9",
  26011. "post_68ef8753000000000301d581_3_0",
  26012. "post_6882582c000000000d018245_3_1",
  26013. "post_689937da0000000022023e1e_3_2",
  26014. "post_68fdde910000000003018b60_3_3",
  26015. "post_63cfabdd000000001b0173d5_3_4",
  26016. "post_62e4f79a000000000e0308ed_3_5",
  26017. "post_68429814000000002001dfc8_3_6",
  26018. "post_68f485a60000000003010182_3_7",
  26019. "post_682b5cc3000000000f031bf9_3_8",
  26020. "post_681c78d50000000020028a5c_3_9",
  26021. "post_68e06587000000000401467d_4_0",
  26022. "post_690a02720000000005002039_4_1",
  26023. "post_68b27225000000001b03e3a4_4_2",
  26024. "post_677e6b540000000001000781_4_3",
  26025. "post_6640beca000000001e023a10_4_4",
  26026. "post_67a38120000000001801354d_4_5",
  26027. "post_66f6d0df000000002c029dc7_4_6",
  26028. "post_686cfdf60000000023005633_4_7",
  26029. "post_674db30c00000000070278f1_4_8",
  26030. "post_6913214e0000000003034f7f_4_9",
  26031. "post_67d2310a000000001d026c02_5_0",
  26032. "post_68d8bddf000000000e031155_5_1",
  26033. "post_6710c5a7000000001402dc9f_5_2",
  26034. "post_6731806d000000001b02cf7f_5_3",
  26035. "post_66505e0c000000001401add3_5_4",
  26036. "post_6629f62a00000000030233d9_5_5",
  26037. "post_68e71e340000000007002e56_5_6",
  26038. "post_67cbe638000000001203e839_5_7",
  26039. "post_6826f7b7000000002202a171_5_8",
  26040. "post_666d59f2000000000e032b89_5_9",
  26041. "post_660581800000000012023abc_6_0",
  26042. "post_678c8258000000001b00b500_6_1",
  26043. "post_67f60c23000000001c03e8b0_6_2",
  26044. "post_6618ef8a000000001b00815c_6_3",
  26045. "post_68650c0e000000002400ec34_6_4",
  26046. "post_67541e26000000000800553c_6_5",
  26047. "post_68ee4f9400000000050318ba_6_6",
  26048. "post_6803ae1a000000001c036da7_6_7",
  26049. "post_66209a4c00000000040180ad_6_8",
  26050. "post_618ff44f0000000001029e17_6_9"
  26051. ]
  26052. },
  26053. "fullData": null
  26054. };
  26055. // 根据节点类型获取边框颜色
  26056. function getNodeTypeColor(type) {
  26057. const typeColors = {
  26058. 'root': '#6b21a8', // 紫色 - 根节点
  26059. 'round': '#7c3aed', // 深紫 - Round节点
  26060. 'step': '#f59e0b', // 橙色 - 步骤节点
  26061. 'seg': '#10b981', // 绿色 - 分词
  26062. 'q': '#3b82f6', // 蓝色 - Query
  26063. 'sug': '#06b6d4', // 青色 - Sug建议词
  26064. 'seed': '#84cc16', // 黄绿 - Seed
  26065. 'add_word': '#22c55e', // 绿色 - 加词生成
  26066. 'search_word': '#8b5cf6', // 紫色 - 搜索词
  26067. 'post': '#ec4899', // 粉色 - 帖子
  26068. 'filtered_sug': '#14b8a6',// 青绿 - 筛选的sug
  26069. 'next_q': '#2563eb', // 深蓝 - 下轮查询
  26070. 'next_seed': '#65a30d', // 深黄绿 - 下轮种子
  26071. 'search': '#8b5cf6', // 深紫 - 搜索(兼容旧版)
  26072. 'operation': '#f59e0b', // 橙色 - 操作节点(兼容旧版)
  26073. 'query': '#3b82f6', // 蓝色 - 查询(兼容旧版)
  26074. 'note': '#ec4899', // 粉色 - 帖子(兼容旧版)
  26075. };
  26076. return typeColors[type] || '#9ca3af';
  26077. }
  26078. // 查询节点组件 - 卡片样式
  26079. function QueryNode({ id, data, sourcePosition, targetPosition }) {
  26080. // 所有节点默认展开
  26081. const expanded = true;
  26082. // 获取节点类型颜色
  26083. const typeColor = getNodeTypeColor(data.nodeType || 'query');
  26084. return (
  26085. <div>
  26086. <Handle
  26087. type="target"
  26088. position={targetPosition || Position.Left}
  26089. style={{ background: typeColor, width: 8, height: 8 }}
  26090. />
  26091. <div
  26092. style={{
  26093. padding: '12px',
  26094. borderRadius: '8px',
  26095. border: data.isHighlighted ? `3px solid ${typeColor}` :
  26096. data.isCollapsed ? `2px solid ${typeColor}` :
  26097. data.isSelected === false ? '2px dashed #d1d5db' :
  26098. `2px solid ${typeColor}`,
  26099. background: data.isHighlighted ? '#eef2ff' :
  26100. data.isSelected === false ? '#f9fafb' : 'white',
  26101. minWidth: '200px',
  26102. maxWidth: '280px',
  26103. boxShadow: data.isHighlighted ? '0 0 0 4px rgba(102, 126, 234, 0.25), 0 4px 16px rgba(102, 126, 234, 0.4)' :
  26104. data.isCollapsed ? '0 4px 12px rgba(102, 126, 234, 0.15)' :
  26105. data.level === 0 ? '0 4px 12px rgba(139, 92, 246, 0.15)' : '0 2px 6px rgba(0, 0, 0, 0.06)',
  26106. transition: 'all 0.3s ease',
  26107. cursor: 'pointer',
  26108. position: 'relative',
  26109. opacity: data.isSelected === false ? 0.6 : 1,
  26110. }}
  26111. >
  26112. {/* 折叠当前节点按钮 - 左边 */}
  26113. <div
  26114. style={{
  26115. position: 'absolute',
  26116. top: '6px',
  26117. left: '6px',
  26118. width: '20px',
  26119. height: '20px',
  26120. borderRadius: '50%',
  26121. background: '#f59e0b',
  26122. color: 'white',
  26123. display: 'flex',
  26124. alignItems: 'center',
  26125. justifyContent: 'center',
  26126. fontSize: '11px',
  26127. fontWeight: 'bold',
  26128. cursor: 'pointer',
  26129. transition: 'all 0.2s ease',
  26130. zIndex: 10,
  26131. }}
  26132. onClick={(e) => {
  26133. e.stopPropagation();
  26134. if (data.onHideSelf) {
  26135. data.onHideSelf();
  26136. }
  26137. }}
  26138. onMouseEnter={(e) => {
  26139. e.currentTarget.style.background = '#d97706';
  26140. }}
  26141. onMouseLeave={(e) => {
  26142. e.currentTarget.style.background = '#f59e0b';
  26143. }}
  26144. title="隐藏当前节点"
  26145. >
  26146. ×
  26147. </div>
  26148. {/* 聚焦按钮 - 右上角 */}
  26149. <div
  26150. style={{
  26151. position: 'absolute',
  26152. top: '6px',
  26153. right: '6px',
  26154. width: '20px',
  26155. height: '20px',
  26156. borderRadius: '50%',
  26157. background: data.isFocused ? '#10b981' : '#e5e7eb',
  26158. color: data.isFocused ? 'white' : '#6b7280',
  26159. display: 'flex',
  26160. alignItems: 'center',
  26161. justifyContent: 'center',
  26162. fontSize: '11px',
  26163. fontWeight: 'bold',
  26164. cursor: 'pointer',
  26165. transition: 'all 0.2s ease',
  26166. zIndex: 10,
  26167. }}
  26168. onClick={(e) => {
  26169. e.stopPropagation();
  26170. if (data.onFocus) {
  26171. data.onFocus();
  26172. }
  26173. }}
  26174. onMouseEnter={(e) => {
  26175. if (!data.isFocused) {
  26176. e.currentTarget.style.background = '#d1d5db';
  26177. }
  26178. }}
  26179. onMouseLeave={(e) => {
  26180. if (!data.isFocused) {
  26181. e.currentTarget.style.background = '#e5e7eb';
  26182. }
  26183. }}
  26184. title={data.isFocused ? '取消聚焦' : '聚焦到此节点'}
  26185. >
  26186. 🎯
  26187. </div>
  26188. {/* 折叠/展开子节点按钮 - 右边第二个位置 */}
  26189. {data.hasChildren && (
  26190. <div
  26191. style={{
  26192. position: 'absolute',
  26193. top: '6px',
  26194. right: '30px',
  26195. width: '20px',
  26196. height: '20px',
  26197. borderRadius: '50%',
  26198. background: data.isCollapsed ? '#667eea' : '#e5e7eb',
  26199. color: data.isCollapsed ? 'white' : '#6b7280',
  26200. display: 'flex',
  26201. alignItems: 'center',
  26202. justifyContent: 'center',
  26203. fontSize: '11px',
  26204. fontWeight: 'bold',
  26205. cursor: 'pointer',
  26206. transition: 'all 0.2s ease',
  26207. zIndex: 10,
  26208. }}
  26209. onClick={(e) => {
  26210. e.stopPropagation();
  26211. data.onToggleCollapse();
  26212. }}
  26213. title={data.isCollapsed ? '展开子节点' : '折叠子节点'}
  26214. >
  26215. {data.isCollapsed ? '+' : '−'}
  26216. </div>
  26217. )}
  26218. {/* 卡片内容 */}
  26219. <div>
  26220. {/* 标题行 */}
  26221. <div style={{ display: 'flex', justifyContent: 'space-between', alignItems: 'flex-start', marginBottom: '8px', paddingLeft: '24px', paddingRight: data.hasChildren ? '54px' : '28px' }}>
  26222. <div style={{ flex: 1 }}>
  26223. <div style={{ display: 'flex', alignItems: 'center', gap: '4px', marginBottom: '3px' }}>
  26224. <div style={{
  26225. fontSize: '13px',
  26226. fontWeight: data.level === 0 ? '700' : '600',
  26227. color: data.level === 0 ? '#6b21a8' : '#1f2937',
  26228. lineHeight: '1.3',
  26229. flex: 1,
  26230. }}>
  26231. {data.title}
  26232. </div>
  26233. {data.isSelected === false && (
  26234. <div style={{
  26235. fontSize: '9px',
  26236. padding: '1px 4px',
  26237. borderRadius: '3px',
  26238. background: '#fee2e2',
  26239. color: '#991b1b',
  26240. fontWeight: '500',
  26241. flexShrink: 0,
  26242. }}>
  26243. 未选中
  26244. </div>
  26245. )}
  26246. </div>
  26247. </div>
  26248. </div>
  26249. {/* 展开的详细信息 - 始终显示 */}
  26250. <div style={{ fontSize: '11px', lineHeight: 1.4 }}>
  26251. <div style={{ display: 'flex', gap: '4px', marginBottom: '6px', flexWrap: 'wrap' }}>
  26252. <span style={{
  26253. display: 'inline-block',
  26254. padding: '1px 6px',
  26255. borderRadius: '10px',
  26256. background: '#eff6ff',
  26257. color: '#3b82f6',
  26258. fontSize: '10px',
  26259. fontWeight: '500',
  26260. }}>
  26261. Lv.{data.level}
  26262. </span>
  26263. <span style={{
  26264. display: 'inline-block',
  26265. padding: '1px 6px',
  26266. borderRadius: '10px',
  26267. background: '#f0fdf4',
  26268. color: '#16a34a',
  26269. fontSize: '10px',
  26270. fontWeight: '500',
  26271. }}>
  26272. {data.score}
  26273. </span>
  26274. {data.strategy && data.strategy !== 'root' && (
  26275. <span style={{
  26276. display: 'inline-block',
  26277. padding: '1px 6px',
  26278. borderRadius: '10px',
  26279. background: '#fef3c7',
  26280. color: '#92400e',
  26281. fontSize: '10px',
  26282. fontWeight: '500',
  26283. }}>
  26284. {data.strategy}
  26285. </span>
  26286. )}
  26287. {(data.typeLabel || data.type_label) && (
  26288. <span style={{
  26289. display: 'inline-block',
  26290. padding: '1px 6px',
  26291. borderRadius: '10px',
  26292. background: '#fce7f3',
  26293. color: '#9f1239',
  26294. fontSize: '10px',
  26295. fontWeight: '500',
  26296. }}>
  26297. {data.typeLabel || data.type_label}
  26298. </span>
  26299. )}
  26300. {data.is_suggestion && data.suggestion_label && (
  26301. <span style={{
  26302. display: 'inline-block',
  26303. padding: '1px 6px',
  26304. borderRadius: '10px',
  26305. background: '#ede9fe',
  26306. color: '#6d28d9',
  26307. fontSize: '10px',
  26308. fontWeight: '600',
  26309. }}>
  26310. {data.suggestion_label}
  26311. </span>
  26312. )}
  26313. </div>
  26314. {data.parent && (
  26315. <div style={{ color: '#6b7280', fontSize: '10px', marginTop: '4px', paddingTop: '4px', borderTop: '1px solid #f3f4f6' }}>
  26316. <strong>Parent:</strong> {data.parent}
  26317. </div>
  26318. )}
  26319. {data.nodeType === 'domain_combination' && Array.isArray(data.source_word_details) && data.source_word_details.length > 0 && (
  26320. <div style={{
  26321. marginTop: '6px',
  26322. paddingTop: '6px',
  26323. borderTop: '1px solid #f3f4f6',
  26324. fontSize: '10px',
  26325. color: '#6b7280',
  26326. lineHeight: '1.5',
  26327. }}>
  26328. <strong style={{ color: '#4b5563' }}>来源词得分:</strong>
  26329. <div style={{ marginTop: '4px', display: 'flex', flexDirection: 'column', gap: '4px' }}>
  26330. {data.source_word_details.map((detail, idx) => {
  26331. const words = (detail.words || []).map((w) => {
  26332. const numericScore = typeof w.score === 'number' ? w.score : parseFloat(w.score || '0');
  26333. const formattedScore = Number.isFinite(numericScore) ? numericScore.toFixed(2) : '0.00';
  26334. return w.text + ' (' + formattedScore + ')';
  26335. }).join(' + ');
  26336. return (
  26337. <div key={idx} style={{ display: 'flex', flexWrap: 'wrap', gap: '4px', alignItems: 'center' }}>
  26338. <span style={{ color: '#2563eb' }}>{words}</span>
  26339. </div>
  26340. );
  26341. })}
  26342. </div>
  26343. <div style={{ marginTop: '4px', fontWeight: '500', color: data.is_above_sources ? '#16a34a' : '#dc2626' }}>
  26344. {data.is_above_sources ? '✅ 组合得分高于所有来源词' : '⚠️ 组合得分未超过全部来源词'}
  26345. </div>
  26346. </div>
  26347. )}
  26348. {data.selectedWord && (
  26349. <div style={{
  26350. marginTop: '6px',
  26351. paddingTop: '6px',
  26352. borderTop: '1px solid #f3f4f6',
  26353. fontSize: '10px',
  26354. color: '#6b7280',
  26355. lineHeight: '1.5',
  26356. }}>
  26357. <strong style={{ color: '#4b5563' }}>选择词:</strong>
  26358. <span style={{ marginLeft: '4px', color: '#3b82f6', fontWeight: '500' }}>{data.selectedWord}</span>
  26359. {data.seed_score !== undefined && (
  26360. <div style={{ marginTop: '4px' }}>
  26361. <strong style={{ color: '#4b5563' }}>种子得分:</strong>
  26362. <span style={{ marginLeft: '4px', color: '#16a34a', fontWeight: '500' }}>
  26363. {typeof data.seed_score === 'number' ? data.seed_score.toFixed(2) : data.seed_score}
  26364. </span>
  26365. </div>
  26366. )}
  26367. </div>
  26368. )}
  26369. {data.evaluationReason && (
  26370. <div style={{
  26371. marginTop: '6px',
  26372. paddingTop: '6px',
  26373. borderTop: '1px solid #f3f4f6',
  26374. fontSize: '10px',
  26375. color: '#6b7280',
  26376. lineHeight: '1.5',
  26377. }}>
  26378. <strong style={{ color: '#4b5563' }}>评估:</strong>
  26379. <div style={{ marginTop: '2px' }}>{data.evaluationReason}</div>
  26380. </div>
  26381. )}
  26382. {data.occurrences && data.occurrences.length > 1 && (
  26383. <div style={{
  26384. marginTop: '6px',
  26385. paddingTop: '6px',
  26386. borderTop: '1px solid #f3f4f6',
  26387. fontSize: '10px',
  26388. color: '#6b7280',
  26389. }}>
  26390. <strong style={{ color: '#4b5563' }}>演化历史 ({data.occurrences.length}次):</strong>
  26391. <div style={{ marginTop: '4px' }}>
  26392. {data.occurrences.map((occ, idx) => (
  26393. <div key={idx} style={{ marginTop: '2px', paddingLeft: '8px' }}>
  26394. <span style={{ color: '#3b82f6', fontWeight: '500' }}>R{occ.round}</span>
  26395. {' · '}
  26396. <span>{occ.strategy}</span>
  26397. {occ.score !== undefined && (
  26398. <span style={{ color: '#16a34a', marginLeft: '4px' }}>
  26399. ({typeof occ.score === 'number' ? occ.score.toFixed(2) : occ.score})
  26400. </span>
  26401. )}
  26402. </div>
  26403. ))}
  26404. </div>
  26405. </div>
  26406. )}
  26407. {data.hasSearchResults && (
  26408. <div style={{
  26409. marginTop: '6px',
  26410. paddingTop: '6px',
  26411. borderTop: '1px solid #f3f4f6',
  26412. fontSize: '10px',
  26413. background: '#fef3c7',
  26414. padding: '4px 6px',
  26415. borderRadius: '4px',
  26416. color: '#92400e',
  26417. fontWeight: '500',
  26418. }}>
  26419. 🔍 找到 {data.postCount} 个帖子
  26420. </div>
  26421. )}
  26422. </div>
  26423. </div>
  26424. </div>
  26425. <Handle
  26426. type="source"
  26427. position={sourcePosition || Position.Right}
  26428. style={{ background: '#667eea', width: 8, height: 8 }}
  26429. />
  26430. </div>
  26431. );
  26432. }
  26433. // 笔记节点组件 - 卡片样式,带轮播图
  26434. function NoteNode({ id, data, sourcePosition, targetPosition }) {
  26435. const [currentImageIndex, setCurrentImageIndex] = useState(0);
  26436. const expanded = true;
  26437. const hasImages = data.imageList && data.imageList.length > 0;
  26438. const nextImage = (e) => {
  26439. e.stopPropagation();
  26440. if (hasImages) {
  26441. setCurrentImageIndex((prev) => (prev + 1) % data.imageList.length);
  26442. }
  26443. };
  26444. const prevImage = (e) => {
  26445. e.stopPropagation();
  26446. if (hasImages) {
  26447. setCurrentImageIndex((prev) => (prev - 1 + data.imageList.length) % data.imageList.length);
  26448. }
  26449. };
  26450. return (
  26451. <div>
  26452. <Handle
  26453. type="target"
  26454. position={targetPosition || Position.Left}
  26455. style={{ background: '#ec4899', width: 8, height: 8 }}
  26456. />
  26457. <div
  26458. style={{
  26459. padding: '14px',
  26460. borderRadius: '20px',
  26461. border: data.isHighlighted ? '3px solid #ec4899' : '2px solid #fce7f3',
  26462. background: data.isHighlighted ? '#eef2ff' : 'white',
  26463. minWidth: '220px',
  26464. maxWidth: '300px',
  26465. boxShadow: data.isHighlighted ? '0 0 0 4px rgba(236, 72, 153, 0.25), 0 4px 16px rgba(236, 72, 153, 0.4)' : '0 4px 12px rgba(236, 72, 153, 0.15)',
  26466. transition: 'all 0.3s ease',
  26467. cursor: 'pointer',
  26468. }}
  26469. >
  26470. {/* 笔记标题 */}
  26471. <div style={{ display: 'flex', alignItems: 'flex-start', marginBottom: '8px' }}>
  26472. <div style={{ flex: 1 }}>
  26473. <div style={{
  26474. fontSize: '13px',
  26475. fontWeight: '600',
  26476. color: '#831843',
  26477. lineHeight: '1.4',
  26478. marginBottom: '4px',
  26479. }}>
  26480. {data.title}
  26481. </div>
  26482. </div>
  26483. </div>
  26484. {/* 评估信息区域 */}
  26485. {(data.is_knowledge !== undefined && data.is_knowledge !== null || data.post_relevance_score !== undefined && data.post_relevance_score !== null) && (
  26486. <div style={{
  26487. marginBottom: '10px',
  26488. paddingBottom: '8px',
  26489. borderBottom: '1px solid #fce7f3',
  26490. }}>
  26491. {/* 知识判定标签 */}
  26492. {(data.is_knowledge !== undefined && data.is_knowledge !== null) && (
  26493. <div style={{ marginBottom: '8px' }}>
  26494. <span style={{
  26495. display: 'inline-block',
  26496. padding: '3px 10px',
  26497. borderRadius: '12px',
  26498. fontSize: '11px',
  26499. fontWeight: '600',
  26500. background: data.is_knowledge ? '#dcfce7' : '#fee2e2',
  26501. color: data.is_knowledge ? '#166534' : '#991b1b',
  26502. }}>
  26503. {data.is_knowledge ? '✓ 知识内容' : '✗ 非知识'}
  26504. </span>
  26505. {data.knowledge_reason && (
  26506. <div style={{
  26507. marginTop: '4px',
  26508. fontSize: '10px',
  26509. color: '#9f1239',
  26510. lineHeight: '1.4',
  26511. }}>
  26512. {data.knowledge_reason}
  26513. </div>
  26514. )}
  26515. </div>
  26516. )}
  26517. {/* 相关性得分 */}
  26518. {(data.post_relevance_score !== undefined && data.post_relevance_score !== null) && (
  26519. <div>
  26520. <div style={{
  26521. display: 'flex',
  26522. alignItems: 'center',
  26523. gap: '6px',
  26524. marginBottom: '4px',
  26525. }}>
  26526. <span style={{
  26527. fontSize: '11px',
  26528. fontWeight: '600',
  26529. color: '#9f1239',
  26530. }}>
  26531. 相关性: {(data.post_relevance_score * 100).toFixed(0)}%
  26532. </span>
  26533. {data.relevance_level && (
  26534. <span style={{
  26535. padding: '2px 8px',
  26536. borderRadius: '10px',
  26537. fontSize: '10px',
  26538. fontWeight: '600',
  26539. background:
  26540. data.relevance_level === '高度相关' ? '#dcfce7' :
  26541. data.relevance_level === '中度相关' ? '#fef3c7' : '#fee2e2',
  26542. color:
  26543. data.relevance_level === '高度相关' ? '#166534' :
  26544. data.relevance_level === '中度相关' ? '#854d0e' : '#991b1b',
  26545. }}>
  26546. {data.relevance_level}
  26547. </span>
  26548. )}
  26549. </div>
  26550. {data.relevance_reason && (
  26551. <div style={{
  26552. fontSize: '10px',
  26553. color: '#9f1239',
  26554. lineHeight: '1.4',
  26555. }}>
  26556. {data.relevance_reason}
  26557. </div>
  26558. )}
  26559. </div>
  26560. )}
  26561. </div>
  26562. )}
  26563. {/* 轮播图 */}
  26564. {hasImages && (
  26565. <div style={{
  26566. position: 'relative',
  26567. marginBottom: '8px',
  26568. borderRadius: '12px',
  26569. overflow: 'hidden',
  26570. }}>
  26571. <img
  26572. src={data.imageList[currentImageIndex].image_url}
  26573. alt={`Image ${currentImageIndex + 1}`}
  26574. style={{
  26575. width: '100%',
  26576. height: '160px',
  26577. objectFit: 'cover',
  26578. display: 'block',
  26579. }}
  26580. onError={(e) => {
  26581. e.target.style.display = 'none';
  26582. }}
  26583. />
  26584. {data.imageList.length > 1 && (
  26585. <>
  26586. {/* 左右切换按钮 */}
  26587. <button
  26588. onClick={prevImage}
  26589. style={{
  26590. position: 'absolute',
  26591. left: '4px',
  26592. top: '50%',
  26593. transform: 'translateY(-50%)',
  26594. background: 'rgba(0, 0, 0, 0.5)',
  26595. color: 'white',
  26596. border: 'none',
  26597. borderRadius: '50%',
  26598. width: '24px',
  26599. height: '24px',
  26600. cursor: 'pointer',
  26601. display: 'flex',
  26602. alignItems: 'center',
  26603. justifyContent: 'center',
  26604. fontSize: '14px',
  26605. }}
  26606. >
  26607. </button>
  26608. <button
  26609. onClick={nextImage}
  26610. style={{
  26611. position: 'absolute',
  26612. right: '4px',
  26613. top: '50%',
  26614. transform: 'translateY(-50%)',
  26615. background: 'rgba(0, 0, 0, 0.5)',
  26616. color: 'white',
  26617. border: 'none',
  26618. borderRadius: '50%',
  26619. width: '24px',
  26620. height: '24px',
  26621. cursor: 'pointer',
  26622. display: 'flex',
  26623. alignItems: 'center',
  26624. justifyContent: 'center',
  26625. fontSize: '14px',
  26626. }}
  26627. >
  26628. </button>
  26629. {/* 图片计数 */}
  26630. <div style={{
  26631. position: 'absolute',
  26632. bottom: '4px',
  26633. right: '4px',
  26634. background: 'rgba(0, 0, 0, 0.6)',
  26635. color: 'white',
  26636. padding: '2px 6px',
  26637. borderRadius: '10px',
  26638. fontSize: '10px',
  26639. }}>
  26640. {currentImageIndex + 1}/{data.imageList.length}
  26641. </div>
  26642. </>
  26643. )}
  26644. </div>
  26645. )}
  26646. {/* 互动数据 */}
  26647. {data.interact_info && (
  26648. <div style={{
  26649. display: 'flex',
  26650. gap: '8px',
  26651. marginBottom: '8px',
  26652. flexWrap: 'wrap',
  26653. fontSize: '11px',
  26654. color: '#9f1239',
  26655. }}>
  26656. {data.interact_info.liked_count > 0 && (
  26657. <span style={{ display: 'flex', alignItems: 'center', gap: '2px' }}>
  26658. ❤️ {data.interact_info.liked_count}
  26659. </span>
  26660. )}
  26661. {data.interact_info.collected_count > 0 && (
  26662. <span style={{ display: 'flex', alignItems: 'center', gap: '2px' }}>
  26663. ⭐ {data.interact_info.collected_count}
  26664. </span>
  26665. )}
  26666. {data.interact_info.comment_count > 0 && (
  26667. <span style={{ display: 'flex', alignItems: 'center', gap: '2px' }}>
  26668. 💬 {data.interact_info.comment_count}
  26669. </span>
  26670. )}
  26671. {data.interact_info.shared_count > 0 && (
  26672. <span style={{ display: 'flex', alignItems: 'center', gap: '2px' }}>
  26673. 🔗 {data.interact_info.shared_count}
  26674. </span>
  26675. )}
  26676. </div>
  26677. )}
  26678. {/* 被哪些query找到 */}
  26679. {data.foundByQueries && data.foundByQueries.length > 0 && (
  26680. <div style={{
  26681. marginBottom: '8px',
  26682. padding: '6px 8px',
  26683. background: '#f0fdf4',
  26684. borderRadius: '6px',
  26685. fontSize: '10px',
  26686. }}>
  26687. <strong style={{ color: '#16a34a' }}>🔍 被找到:</strong>
  26688. <div style={{ marginTop: '4px', display: 'flex', flexWrap: 'wrap', gap: '4px' }}>
  26689. {data.foundByQueries.map((query, idx) => (
  26690. <span key={idx} style={{
  26691. display: 'inline-block',
  26692. padding: '2px 6px',
  26693. background: '#dcfce7',
  26694. color: '#166534',
  26695. borderRadius: '4px',
  26696. fontSize: '9px',
  26697. }}>
  26698. {query}
  26699. </span>
  26700. ))}
  26701. </div>
  26702. {data.foundInRounds && data.foundInRounds.length > 0 && (
  26703. <div style={{ marginTop: '4px', color: '#6b7280' }}>
  26704. 出现在: Round {data.foundInRounds.join(', ')}
  26705. </div>
  26706. )}
  26707. </div>
  26708. )}
  26709. {/* 标签 */}
  26710. {(data.matchLevel || data.score) && (
  26711. <div style={{ display: 'flex', gap: '6px', marginBottom: '8px', flexWrap: 'wrap' }}>
  26712. {data.matchLevel && (
  26713. <span style={{
  26714. display: 'inline-block',
  26715. padding: '2px 8px',
  26716. borderRadius: '12px',
  26717. background: '#fff1f2',
  26718. color: '#be123c',
  26719. fontSize: '10px',
  26720. fontWeight: '500',
  26721. }}>
  26722. {data.matchLevel}
  26723. </span>
  26724. )}
  26725. {data.score && (
  26726. <span style={{
  26727. display: 'inline-block',
  26728. padding: '2px 8px',
  26729. borderRadius: '12px',
  26730. background: '#fff7ed',
  26731. color: '#c2410c',
  26732. fontSize: '10px',
  26733. fontWeight: '500',
  26734. }}>
  26735. Score: {data.score}
  26736. </span>
  26737. )}
  26738. </div>
  26739. )}
  26740. {/* 描述 */}
  26741. {expanded && data.description && (
  26742. <div style={{
  26743. fontSize: '11px',
  26744. color: '#9f1239',
  26745. lineHeight: '1.5',
  26746. paddingTop: '8px',
  26747. borderTop: '1px solid #fbcfe8',
  26748. }}>
  26749. {data.description}
  26750. </div>
  26751. )}
  26752. {/* 评估理由 */}
  26753. {expanded && data.evaluationReason && (
  26754. <div style={{
  26755. fontSize: '10px',
  26756. color: '#831843',
  26757. lineHeight: '1.5',
  26758. paddingTop: '8px',
  26759. marginTop: '8px',
  26760. borderTop: '1px solid #fbcfe8',
  26761. }}>
  26762. <strong style={{ color: '#9f1239' }}>评估:</strong>
  26763. <div style={{ marginTop: '2px' }}>{data.evaluationReason}</div>
  26764. </div>
  26765. )}
  26766. </div>
  26767. <Handle
  26768. type="source"
  26769. position={sourcePosition || Position.Right}
  26770. style={{ background: '#ec4899', width: 8, height: 8 }}
  26771. />
  26772. </div>
  26773. );
  26774. }
  26775. // AnalysisNode 组件:展示AI分析(左侧OCR文字,右侧缩略图+描述)
  26776. function AnalysisNode({ data }) {
  26777. const nodeStyle = {
  26778. background: '#fffbeb',
  26779. border: '2px solid #fbbf24',
  26780. borderRadius: '8px',
  26781. padding: '12px',
  26782. minWidth: '700px',
  26783. maxWidth: '900px',
  26784. fontSize: '12px',
  26785. boxShadow: '0 4px 6px rgba(0,0,0,0.1)',
  26786. };
  26787. return (
  26788. <div style={nodeStyle}>
  26789. <Handle
  26790. type="target"
  26791. position={Position.Left}
  26792. style={{ background: '#fbbf24', width: 8, height: 8 }}
  26793. />
  26794. {/* 标题 */}
  26795. <div style={{
  26796. fontSize: '14px',
  26797. fontWeight: 'bold',
  26798. marginBottom: '8px',
  26799. color: '#92400e',
  26800. }}>
  26801. 🖼️ {data.query}
  26802. </div>
  26803. {/* 评分和互动数据 */}
  26804. <div style={{
  26805. display: 'flex',
  26806. justifyContent: 'space-between',
  26807. marginBottom: '8px',
  26808. padding: '6px',
  26809. background: '#fef3c7',
  26810. borderRadius: '4px',
  26811. }}>
  26812. <div style={{ fontSize: '11px', fontWeight: 'bold' }}>
  26813. Score: {data.interact_info?.relevance_score || 0}
  26814. </div>
  26815. <div style={{ display: 'flex', gap: '12px', fontSize: '11px' }}>
  26816. {data.interact_info?.liked_count > 0 && (
  26817. <span>❤️ {data.interact_info.liked_count}</span>
  26818. )}
  26819. {data.interact_info?.collected_count > 0 && (
  26820. <span>⭐ {data.interact_info.collected_count}</span>
  26821. )}
  26822. {data.interact_info?.comment_count > 0 && (
  26823. <span>💬 {data.interact_info.comment_count}</span>
  26824. )}
  26825. </div>
  26826. </div>
  26827. {/* 完整正文内容 */}
  26828. {data.body_text && (
  26829. <div style={{
  26830. padding: '8px',
  26831. background: 'white',
  26832. borderRadius: '4px',
  26833. marginBottom: '12px',
  26834. fontSize: '11px',
  26835. lineHeight: '1.5',
  26836. border: '1px solid #fbbf24',
  26837. whiteSpace: 'pre-wrap',
  26838. wordBreak: 'break-word',
  26839. }}>
  26840. {data.body_text}
  26841. </div>
  26842. )}
  26843. {/* AI分析 - 左右分栏 */}
  26844. {data.extraction && data.extraction.images && (
  26845. <div style={{
  26846. display: 'flex',
  26847. flexDirection: 'column',
  26848. gap: '12px',
  26849. }}>
  26850. {data.extraction.images.map((img, idx) => (
  26851. <div
  26852. key={idx}
  26853. style={{
  26854. display: 'flex',
  26855. flexDirection: 'row',
  26856. gap: '16px',
  26857. padding: '10px',
  26858. background: 'white',
  26859. borderRadius: '4px',
  26860. border: '1px solid #d97706',
  26861. alignItems: 'flex-start',
  26862. }}
  26863. >
  26864. {/* 左侧:OCR提取文字 */}
  26865. <div style={{
  26866. flex: '1', // 1/3宽度
  26867. minWidth: '0',
  26868. }}>
  26869. <div style={{
  26870. fontSize: '11px',
  26871. fontWeight: 'bold',
  26872. color: '#92400e',
  26873. marginBottom: '6px',
  26874. }}>
  26875. 📝 图片 {idx + 1}/{data.extraction.images.length}
  26876. </div>
  26877. {img.extract_text && (
  26878. <div style={{
  26879. fontSize: '11px',
  26880. color: '#1f2937',
  26881. lineHeight: '1.6',
  26882. padding: '8px',
  26883. background: '#fef9e7',
  26884. borderRadius: '3px',
  26885. borderLeft: '3px solid #f39c12',
  26886. wordBreak: 'break-word',
  26887. }}>
  26888. <div style={{
  26889. fontSize: '10px',
  26890. fontWeight: 'bold',
  26891. color: '#d97706',
  26892. marginBottom: '4px',
  26893. }}>
  26894. 【提取文字】
  26895. </div>
  26896. {img.extract_text}
  26897. </div>
  26898. )}
  26899. </div>
  26900. {/* 右侧:缩略图 + 描述 */}
  26901. <div style={{
  26902. flex: '2', // 2/3宽度
  26903. display: 'flex',
  26904. flexDirection: 'column',
  26905. gap: '8px',
  26906. minWidth: '200px',
  26907. }}>
  26908. {/* 缩略图 */}
  26909. {data.image_list && data.image_list[idx] && (
  26910. <img
  26911. src={(data.image_list[idx].image_url || data.image_list[idx])}
  26912. alt={'图片' + (idx + 1)}
  26913. style={{
  26914. width: '100%',
  26915. height: 'auto',
  26916. maxHeight: '180px',
  26917. objectFit: 'contain',
  26918. borderRadius: '4px',
  26919. border: '1px solid #d97706',
  26920. cursor: 'pointer',
  26921. }}
  26922. onError={(e) => {
  26923. e.target.style.display = 'none';
  26924. }}
  26925. />
  26926. )}
  26927. {/* 描述文字(完整展示) */}
  26928. {img.description && (
  26929. <div
  26930. style={{
  26931. fontSize: '10px',
  26932. color: '#78350f',
  26933. lineHeight: '1.5',
  26934. wordBreak: 'break-word',
  26935. padding: '8px',
  26936. background: '#fef9e7',
  26937. borderRadius: '3px',
  26938. border: '1px solid #f39c12',
  26939. }}
  26940. >
  26941. <div style={{
  26942. fontSize: '9px',
  26943. fontWeight: 'bold',
  26944. color: '#d97706',
  26945. marginBottom: '4px',
  26946. }}>
  26947. 【图片描述】
  26948. </div>
  26949. {img.description}
  26950. </div>
  26951. )}
  26952. </div>
  26953. </div>
  26954. ))}
  26955. </div>
  26956. )}
  26957. {/* 查看原帖链接 */}
  26958. {data.note_url && (
  26959. <div style={{ marginTop: '8px', fontSize: '10px' }}>
  26960. <a
  26961. href={data.note_url}
  26962. target="_blank"
  26963. rel="noopener noreferrer"
  26964. style={{ color: '#92400e', textDecoration: 'underline' }}
  26965. >
  26966. 🔗 查看原帖
  26967. </a>
  26968. </div>
  26969. )}
  26970. <Handle
  26971. type="source"
  26972. position={Position.Right}
  26973. style={{ background: '#fbbf24', width: 8, height: 8 }}
  26974. />
  26975. </div>
  26976. );
  26977. }
  26978. const nodeTypes = {
  26979. query: QueryNode,
  26980. note: NoteNode,
  26981. post: NoteNode, // 帖子节点使用 NoteNode 组件渲染
  26982. analysis: AnalysisNode,
  26983. };
  26984. // 根据 score 获取颜色
  26985. function getScoreColor(score) {
  26986. if (score >= 0.7) return '#10b981'; // 绿色 - 高分
  26987. if (score >= 0.4) return '#f59e0b'; // 橙色 - 中分
  26988. return '#ef4444'; // 红色 - 低分
  26989. }
  26990. // 截断文本,保留头尾,中间显示省略号
  26991. function truncateMiddle(text, maxLength = 20) {
  26992. if (!text || text.length <= maxLength) return text;
  26993. const headLength = Math.ceil(maxLength * 0.4);
  26994. const tailLength = Math.floor(maxLength * 0.4);
  26995. const head = text.substring(0, headLength);
  26996. const tail = text.substring(text.length - tailLength);
  26997. return `${head}...${tail}`;
  26998. }
  26999. // 根据策略获取颜色
  27000. // 智能提取主要策略的辅助函数
  27001. function getPrimaryStrategy(nodeData) {
  27002. // 优先级1: 使用 primaryStrategy 字段
  27003. if (nodeData.primaryStrategy) {
  27004. return nodeData.primaryStrategy;
  27005. }
  27006. // 优先级2: 从 occurrences 数组中获取最新的策略
  27007. if (nodeData.occurrences && Array.isArray(nodeData.occurrences) && nodeData.occurrences.length > 0) {
  27008. const latestOccurrence = nodeData.occurrences[nodeData.occurrences.length - 1];
  27009. if (latestOccurrence && latestOccurrence.strategy) {
  27010. return latestOccurrence.strategy;
  27011. }
  27012. }
  27013. // 优先级3: 拆分组合策略字符串,取第一个
  27014. if (nodeData.strategy && typeof nodeData.strategy === 'string') {
  27015. const strategies = nodeData.strategy.split(' + ');
  27016. if (strategies.length > 0 && strategies[0]) {
  27017. return strategies[0].trim();
  27018. }
  27019. }
  27020. // 默认返回原始strategy或未知
  27021. return nodeData.strategy || '未知';
  27022. }
  27023. function getStrategyColor(strategy) {
  27024. const strategyColors = {
  27025. '初始分词': '#10b981',
  27026. '调用sug': '#06b6d4',
  27027. '同义改写': '#f59e0b',
  27028. '加词': '#3b82f6',
  27029. '抽象改写': '#8b5cf6',
  27030. '基于部分匹配改进': '#ec4899',
  27031. '结果分支-抽象改写': '#a855f7',
  27032. '结果分支-同义改写': '#fb923c',
  27033. // v6.1.2.8 新增策略
  27034. '原始问题': '#6b21a8',
  27035. '来自分词': '#10b981',
  27036. '加词生成': '#ef4444',
  27037. '建议词': '#06b6d4',
  27038. '执行搜索': '#8b5cf6',
  27039. // 添加简化版本的策略映射
  27040. '分词': '#10b981',
  27041. '推荐词': '#06b6d4',
  27042. };
  27043. return strategyColors[strategy] || '#9ca3af';
  27044. }
  27045. // 树节点组件
  27046. function TreeNode({ node, level, children, isCollapsed, onToggle, isSelected, onSelect }) {
  27047. const hasChildren = children && children.length > 0;
  27048. const score = node.data.score ? parseFloat(node.data.score) : 0;
  27049. const strategy = getPrimaryStrategy(node.data); // 使用智能提取函数
  27050. const strategyColor = getStrategyColor(strategy);
  27051. const nodeActualType = node.data.nodeType || node.type; // 获取实际节点类型
  27052. const isDomainCombination = nodeActualType === 'domain_combination';
  27053. let sourceSummary = '';
  27054. if (isDomainCombination && Array.isArray(node.data.source_word_details) && node.data.source_word_details.length > 0) {
  27055. const summaryParts = [];
  27056. node.data.source_word_details.forEach((detail) => {
  27057. const words = Array.isArray(detail.words) ? detail.words : [];
  27058. const wordTexts = [];
  27059. words.forEach((w) => {
  27060. const numericScore = typeof w.score === 'number' ? w.score : parseFloat(w.score || '0');
  27061. const formattedScore = Number.isFinite(numericScore) ? numericScore.toFixed(2) : '0.00';
  27062. wordTexts.push(w.text + ' (' + formattedScore + ')');
  27063. });
  27064. if (wordTexts.length > 0) {
  27065. const segmentLabel = detail.segment_type ? '[' + detail.segment_type + '] ' : '';
  27066. summaryParts.push(segmentLabel + wordTexts.join(' + '));
  27067. }
  27068. });
  27069. sourceSummary = summaryParts.join(' | ');
  27070. }
  27071. // 计算字体颜色:根据分数提升幅度判断
  27072. let fontColor = '#374151'; // 默认颜色
  27073. if (node.type === 'note') {
  27074. fontColor = node.data.matchLevel === 'unsatisfied' ? '#ef4444' : '#374151';
  27075. } else if (node.data.seed_score !== undefined) {
  27076. const parentScore = parseFloat(node.data.seed_score);
  27077. const gain = score - parentScore;
  27078. fontColor = gain >= 0.05 ? '#16a34a' : '#ef4444';
  27079. } else if (node.data.isSelected === false) {
  27080. fontColor = '#ef4444';
  27081. }
  27082. return (
  27083. <div style={{ marginLeft: level * 12 + 'px', marginBottom: '8px' }}>
  27084. <div
  27085. style={{
  27086. padding: '6px 8px',
  27087. borderRadius: '4px',
  27088. cursor: 'pointer',
  27089. background: 'transparent',
  27090. border: isSelected ? '1px solid #3b82f6' : '1px solid transparent',
  27091. display: 'flex',
  27092. alignItems: 'center',
  27093. gap: '6px',
  27094. transition: 'all 0.2s ease',
  27095. position: 'relative',
  27096. overflow: 'visible',
  27097. }}
  27098. onMouseEnter={(e) => {
  27099. if (!isSelected) e.currentTarget.style.background = '#f9fafb';
  27100. }}
  27101. onMouseLeave={(e) => {
  27102. if (!isSelected) e.currentTarget.style.background = 'transparent';
  27103. }}
  27104. >
  27105. {/* 策略类型竖线 */}
  27106. <div style={{
  27107. width: '3px',
  27108. height: '20px',
  27109. background: strategyColor,
  27110. borderRadius: '2px',
  27111. flexShrink: 0,
  27112. position: 'relative',
  27113. zIndex: 1,
  27114. }} />
  27115. {hasChildren && (
  27116. <span
  27117. style={{
  27118. fontSize: '10px',
  27119. color: '#6b7280',
  27120. cursor: 'pointer',
  27121. width: '16px',
  27122. textAlign: 'center',
  27123. position: 'relative',
  27124. zIndex: 1,
  27125. }}
  27126. onClick={(e) => {
  27127. e.stopPropagation();
  27128. onToggle();
  27129. }}
  27130. >
  27131. {isCollapsed ? '▶' : '▼'}
  27132. </span>
  27133. )}
  27134. {!hasChildren && <span style={{ width: '16px', position: 'relative', zIndex: 1 }}></span>}
  27135. <div
  27136. style={{
  27137. flex: 1,
  27138. fontSize: '12px',
  27139. color: '#374151',
  27140. position: 'relative',
  27141. zIndex: 1,
  27142. minWidth: 0,
  27143. display: 'flex',
  27144. flexDirection: 'column',
  27145. gap: '4px',
  27146. }}
  27147. onClick={onSelect}
  27148. >
  27149. <div style={{
  27150. display: 'flex',
  27151. alignItems: 'center',
  27152. gap: '8px',
  27153. }}>
  27154. {/* 文本标题 - 左侧 */}
  27155. <div style={{
  27156. fontWeight: level === 0 ? '600' : '400',
  27157. flex: 1,
  27158. minWidth: 0,
  27159. color: node.data.scoreColor || fontColor,
  27160. overflow: 'hidden',
  27161. textOverflow: 'ellipsis',
  27162. whiteSpace: 'nowrap',
  27163. }}
  27164. title={node.data.title || node.id}
  27165. >
  27166. {node.data.title || node.id}
  27167. </div>
  27168. {/* 域标识 - 右侧,挨着分数,优先显示域类型,否则显示域索引或域字符串,但domain_combination节点不显示 */}
  27169. {(node.data.domain_type || node.data.domains_str || (node.data.domain_index !== null && node.data.domain_index !== undefined)) && nodeActualType !== 'domain_combination' && (
  27170. <span style={{
  27171. fontSize: '12px',
  27172. color: '#fff',
  27173. background: '#6366f1',
  27174. padding: '2px 5px',
  27175. borderRadius: '3px',
  27176. flexShrink: 0,
  27177. fontWeight: '600',
  27178. marginLeft: '4px',
  27179. }}
  27180. title={
  27181. node.data.domain_type ? '域: ' + node.data.domain_type + ' (D' + node.data.domain_index + ')' :
  27182. node.data.domains_str ? '域: ' + node.data.domains_str :
  27183. '域 D' + node.data.domain_index
  27184. }
  27185. >
  27186. {node.data.domain_type || node.data.domains_str || ('D' + node.data.domain_index)}
  27187. </span>
  27188. )}
  27189. {node.data.is_suggestion && node.data.suggestion_label && (
  27190. <span style={{
  27191. fontSize: '12px',
  27192. color: '#fff',
  27193. background: '#8b5cf6',
  27194. padding: '2px 5px',
  27195. borderRadius: '3px',
  27196. flexShrink: 0,
  27197. fontWeight: '600',
  27198. }}
  27199. >
  27200. {node.data.suggestion_label}
  27201. </span>
  27202. )}
  27203. {/* 类型标签 - 显示在右侧靠近分数,蓝色背景 */}
  27204. {node.data.type_label && (
  27205. <span style={{
  27206. fontSize: '12px',
  27207. color: '#fff',
  27208. background: '#6366f1',
  27209. padding: '2px 5px',
  27210. borderRadius: '3px',
  27211. flexShrink: 0,
  27212. fontWeight: '600',
  27213. }}
  27214. title={'类型: ' + node.data.type_label}
  27215. >
  27216. {node.data.type_label}
  27217. </span>
  27218. )}
  27219. {/* 分数显示 - 步骤和轮次节点不显示分数 */}
  27220. {nodeActualType !== 'step' && nodeActualType !== 'round' && (
  27221. <span style={{
  27222. fontSize: '11px',
  27223. color: '#6b7280',
  27224. fontWeight: '500',
  27225. flexShrink: 0,
  27226. minWidth: '35px',
  27227. textAlign: 'right',
  27228. }}>
  27229. {score.toFixed(2)}
  27230. </span>
  27231. )}
  27232. </div>
  27233. {/* 域组合的来源词得分(树状视图,右对齐) */}
  27234. {isDomainCombination && sourceSummary && (
  27235. <div style={{
  27236. fontSize: '10px',
  27237. color: '#2563eb',
  27238. lineHeight: '1.4',
  27239. display: 'flex',
  27240. flexDirection: 'column',
  27241. alignItems: 'flex-end',
  27242. gap: '2px',
  27243. textAlign: 'right',
  27244. }}>
  27245. {node.data.source_word_details.map((detail, idx) => {
  27246. const words = Array.isArray(detail.words) ? detail.words : [];
  27247. const summary = words.map((w) => {
  27248. const numericScore = typeof w.score === 'number' ? w.score : parseFloat(w.score || '0');
  27249. const formattedScore = Number.isFinite(numericScore) ? numericScore.toFixed(2) : '0.00';
  27250. return w.text + ' (' + formattedScore + ')';
  27251. }).join(' + ');
  27252. return (
  27253. <span key={idx} title={summary}>
  27254. {summary}
  27255. </span>
  27256. );
  27257. })}
  27258. </div>
  27259. )}
  27260. {/* 分数下划线 - 步骤和轮次节点不显示 */}
  27261. {nodeActualType !== 'step' && nodeActualType !== 'round' && (
  27262. <div style={{
  27263. width: (score * 100) + '%',
  27264. height: '2px',
  27265. background: getScoreColor(score),
  27266. borderRadius: '1px',
  27267. }} />
  27268. )}
  27269. </div>
  27270. </div>
  27271. {hasChildren && !isCollapsed && (
  27272. <div>
  27273. {children}
  27274. </div>
  27275. )}
  27276. </div>
  27277. );
  27278. }
  27279. // 使用 dagre 自动布局
  27280. function getLayoutedElements(nodes, edges, direction = 'LR') {
  27281. console.log('🎯 Starting layout with dagre...');
  27282. console.log('Input:', nodes.length, 'nodes,', edges.length, 'edges');
  27283. // 检查 dagre 是否加载
  27284. if (typeof window === 'undefined' || typeof window.dagre === 'undefined') {
  27285. console.warn('⚠️ Dagre not loaded, using fallback layout');
  27286. // 降级到简单布局
  27287. const levelGroups = {};
  27288. nodes.forEach(node => {
  27289. const level = node.data.level || 0;
  27290. if (!levelGroups[level]) levelGroups[level] = [];
  27291. levelGroups[level].push(node);
  27292. });
  27293. Object.entries(levelGroups).forEach(([level, nodeList]) => {
  27294. const x = parseInt(level) * 480;
  27295. nodeList.forEach((node, index) => {
  27296. node.position = { x, y: index * 260 };
  27297. node.targetPosition = 'left';
  27298. node.sourcePosition = 'right';
  27299. });
  27300. });
  27301. return { nodes, edges };
  27302. }
  27303. try {
  27304. const dagreGraph = new window.dagre.graphlib.Graph();
  27305. dagreGraph.setDefaultEdgeLabel(() => ({}));
  27306. const isHorizontal = direction === 'LR';
  27307. dagreGraph.setGraph({
  27308. rankdir: direction,
  27309. nodesep: 180, // 垂直间距 - 增加以避免节点重叠
  27310. ranksep: 360, // 水平间距 - 增加以容纳更宽的节点
  27311. });
  27312. // 添加节点 - 根据节点类型设置不同的尺寸
  27313. nodes.forEach((node) => {
  27314. let nodeWidth = 320;
  27315. let nodeHeight = 220;
  27316. // note 节点有轮播图,需要更大的空间
  27317. if (node.type === 'note') {
  27318. nodeWidth = 360;
  27319. nodeHeight = 380; // 增加高度以容纳轮播图
  27320. }
  27321. // analysis 节点内容很多,需要更大的空间
  27322. else if (node.type === 'analysis') {
  27323. nodeWidth = 900; // 宽度足够容纳左右分栏
  27324. nodeHeight = 600; // 高度足够容纳多张图片
  27325. }
  27326. dagreGraph.setNode(node.id, { width: nodeWidth, height: nodeHeight });
  27327. });
  27328. // 添加边
  27329. edges.forEach((edge) => {
  27330. dagreGraph.setEdge(edge.source, edge.target);
  27331. });
  27332. // 计算布局
  27333. window.dagre.layout(dagreGraph);
  27334. console.log('✅ Dagre layout completed');
  27335. // 更新节点位置和 handle 位置
  27336. nodes.forEach((node) => {
  27337. const nodeWithPosition = dagreGraph.node(node.id);
  27338. if (!nodeWithPosition) {
  27339. console.warn('Node position not found for:', node.id);
  27340. return;
  27341. }
  27342. node.targetPosition = isHorizontal ? 'left' : 'top';
  27343. node.sourcePosition = isHorizontal ? 'right' : 'bottom';
  27344. // 根据节点类型获取尺寸
  27345. let nodeWidth = 320;
  27346. let nodeHeight = 220;
  27347. if (node.type === 'note') {
  27348. nodeWidth = 360;
  27349. nodeHeight = 380;
  27350. }
  27351. // 将 dagre 的中心点位置转换为 React Flow 的左上角位置
  27352. node.position = {
  27353. x: nodeWithPosition.x - nodeWidth / 2,
  27354. y: nodeWithPosition.y - nodeHeight / 2,
  27355. };
  27356. });
  27357. console.log('✅ Layout completed, sample node:', nodes[0]);
  27358. return { nodes, edges };
  27359. } catch (error) {
  27360. console.error('❌ Error in dagre layout:', error);
  27361. console.error('Error details:', error.message, error.stack);
  27362. // 降级处理
  27363. console.log('Using fallback layout...');
  27364. const levelGroups = {};
  27365. nodes.forEach(node => {
  27366. const level = node.data.level || 0;
  27367. if (!levelGroups[level]) levelGroups[level] = [];
  27368. levelGroups[level].push(node);
  27369. });
  27370. Object.entries(levelGroups).forEach(([level, nodeList]) => {
  27371. const x = parseInt(level) * 480;
  27372. nodeList.forEach((node, index) => {
  27373. node.position = { x, y: index * 260 };
  27374. node.targetPosition = 'left';
  27375. node.sourcePosition = 'right';
  27376. });
  27377. });
  27378. return { nodes, edges };
  27379. }
  27380. }
  27381. function transformData(data) {
  27382. const nodes = [];
  27383. const edges = [];
  27384. const originalIdToCanvasId = {}; // 原始ID -> 画布ID的映射
  27385. const canvasIdToNodeData = {}; // 避免重复创建相同的节点
  27386. let analysisNodeCount = 0; // 用于给analysis节点添加X偏移
  27387. // 创建节点
  27388. Object.entries(data.nodes).forEach(([originalId, node]) => {
  27389. // 统一处理所有类型的节点
  27390. const nodeType = node.type || 'query';
  27391. // 直接使用originalId作为canvasId,避免冲突
  27392. const canvasId = originalId;
  27393. originalIdToCanvasId[originalId] = canvasId;
  27394. // 如果这个 canvasId 还没有创建过节点,则创建
  27395. if (!canvasIdToNodeData[canvasId]) {
  27396. canvasIdToNodeData[canvasId] = true;
  27397. // 根据节点类型创建不同的数据结构
  27398. if (nodeType === 'note' || nodeType === 'post') {
  27399. nodes.push({
  27400. id: canvasId,
  27401. originalId: originalId,
  27402. type: 'note',
  27403. data: {
  27404. title: node.query || node.title || '帖子',
  27405. matchLevel: node.match_level,
  27406. score: node.relevance_score ? node.relevance_score.toFixed(2) : '0.00',
  27407. description: node.body_text || node.desc || '',
  27408. isSelected: node.is_selected !== undefined ? node.is_selected : true,
  27409. imageList: node.image_list || [],
  27410. noteUrl: node.note_url || '',
  27411. evaluationReason: node.evaluationReason || node.evaluation_reason || '',
  27412. interact_info: node.interact_info || {},
  27413. nodeType: nodeType,
  27414. // 🆕 添加评估字段
  27415. is_knowledge: node.is_knowledge !== undefined ? node.is_knowledge : null,
  27416. knowledge_reason: node.knowledge_reason || '',
  27417. post_relevance_score: node.post_relevance_score !== undefined ? node.post_relevance_score : null,
  27418. relevance_level: node.relevance_level || '',
  27419. relevance_reason: node.relevance_reason || ''
  27420. },
  27421. position: { x: 0, y: 0 },
  27422. });
  27423. } else if (nodeType === 'analysis') {
  27424. // AI分析节点 - 添加X偏移避免叠加
  27425. const xOffset = analysisNodeCount * 150; // 每个节点偏移150px
  27426. analysisNodeCount++;
  27427. nodes.push({
  27428. id: canvasId,
  27429. originalId: originalId,
  27430. type: 'analysis',
  27431. data: {
  27432. query: node.query || '[AI分析]',
  27433. note_id: node.note_id,
  27434. note_url: node.note_url,
  27435. title: node.title || '',
  27436. body_text: node.body_text || '',
  27437. interact_info: node.interact_info || {},
  27438. extraction: node.extraction || null,
  27439. image_list: node.image_list || [],
  27440. },
  27441. position: { x: xOffset, y: 0 },
  27442. });
  27443. } else {
  27444. // query, seg, q, search, root 等节点
  27445. let displayTitle = node.query || originalId;
  27446. nodes.push({
  27447. id: canvasId,
  27448. originalId: originalId,
  27449. type: 'query', // 使用 query 组件渲染所有非note节点
  27450. data: {
  27451. title: displayTitle,
  27452. level: node.level || 0,
  27453. score: node.relevance_score ? node.relevance_score.toFixed(2) : '0.00',
  27454. strategy: node.strategy || '',
  27455. parent: node.parent_query || '',
  27456. isSelected: node.is_selected !== undefined ? node.is_selected : true,
  27457. evaluationReason: node.evaluationReason || node.evaluation_reason || '',
  27458. nodeType: nodeType, // 传递实际节点类型用于样式
  27459. searchCount: node.search_count, // search 节点特有
  27460. totalPosts: node.total_posts, // search 节点特有
  27461. selectedWord: node.selected_word || '', // 加词节点特有 - 显示选择的词
  27462. scoreColor: node.scoreColor || null, // SUG节点的颜色标识
  27463. parentQScore: node.parentQScore || 0, // 父Q得分(用于调试)
  27464. domain_index: node.domain_index !== undefined ? node.domain_index : null, // 域索引
  27465. domain_type: node.domain_type || '', // 域类型(如"中心名词"、"核心动作"),只有Q节点有,segment节点不显示
  27466. segment_type: node.segment_type || '', // segment类型(只有segment节点才有)
  27467. type_label: node.type_label || '', // 类型标签
  27468. domains: node.domains || [], // 域索引数组(domain_combination节点特有)
  27469. domains_str: node.domains_str || '', // 域标识字符串(如"D0,D1")
  27470. from_segments: node.from_segments || [], // 来源segments(domain_combination节点特有)
  27471. source_word_details: node.source_word_details || [], // 组合来源词及其得分
  27472. source_scores: node.source_scores || [], // 扁平来源得分
  27473. is_above_sources: node.is_above_sources || false, // 组合是否高于来源得分
  27474. max_source_score: node.max_source_score !== undefined ? node.max_source_score : null, // 来源最高分
  27475. item_type: node.item_type || '', // 构建下一轮节点来源类型
  27476. is_suggestion: node.is_suggestion || false,
  27477. suggestion_label: node.suggestion_label || '',
  27478. },
  27479. position: { x: 0, y: 0 },
  27480. });
  27481. }
  27482. }
  27483. });
  27484. // 创建边 - 使用虚线样式,映射到画布ID
  27485. data.edges.forEach((edge, index) => {
  27486. const edgeColors = {
  27487. '初始分词': '#10b981',
  27488. '调用sug': '#06b6d4',
  27489. '同义改写': '#f59e0b',
  27490. '加词': '#3b82f6',
  27491. '抽象改写': '#8b5cf6',
  27492. '基于部分匹配改进': '#ec4899',
  27493. '结果分支-抽象改写': '#a855f7',
  27494. '结果分支-同义改写': '#fb923c',
  27495. 'query_to_note': '#ec4899',
  27496. };
  27497. const color = edgeColors[edge.strategy] || edgeColors[edge.edge_type] || '#d1d5db';
  27498. const isNoteEdge = edge.edge_type === 'query_to_note';
  27499. edges.push({
  27500. id: `edge-${index}`,
  27501. source: originalIdToCanvasId[edge.from], // 使用画布ID
  27502. target: originalIdToCanvasId[edge.to], // 使用画布ID
  27503. type: 'simplebezier', // 使用简单贝塞尔曲线
  27504. animated: isNoteEdge,
  27505. style: {
  27506. stroke: color,
  27507. strokeWidth: isNoteEdge ? 2.5 : 2,
  27508. strokeDasharray: isNoteEdge ? '5,5' : '8,4',
  27509. },
  27510. markerEnd: {
  27511. type: 'arrowclosed',
  27512. color: color,
  27513. width: 20,
  27514. height: 20,
  27515. },
  27516. });
  27517. });
  27518. // 使用 dagre 自动计算布局 - 从左到右
  27519. return getLayoutedElements(nodes, edges, 'LR');
  27520. }
  27521. function FlowContent() {
  27522. // 画布使用简化数据
  27523. const { nodes: initialNodes, edges: initialEdges } = useMemo(() => {
  27524. console.log('🔍 Transforming data for canvas...');
  27525. const result = transformData(data);
  27526. console.log('✅ Canvas data:', result.nodes.length, 'nodes,', result.edges.length, 'edges');
  27527. return result;
  27528. }, []);
  27529. // 目录使用完整数据(如果存在)
  27530. const { nodes: fullNodes, edges: fullEdges } = useMemo(() => {
  27531. if (data.fullData) {
  27532. console.log('🔍 Transforming full data for tree directory...');
  27533. const result = transformData(data.fullData);
  27534. console.log('✅ Directory data:', result.nodes.length, 'nodes,', result.edges.length, 'edges');
  27535. return result;
  27536. }
  27537. // 如果没有 fullData,使用简化数据
  27538. return { nodes: initialNodes, edges: initialEdges };
  27539. }, [initialNodes, initialEdges]);
  27540. // 初始化:找出所有有子节点的节点,默认折叠(画布节点)
  27541. const initialCollapsedNodes = useMemo(() => {
  27542. const nodesWithChildren = new Set();
  27543. initialEdges.forEach(edge => {
  27544. nodesWithChildren.add(edge.source);
  27545. });
  27546. // 排除根节点(level 0),让根节点默认展开
  27547. const rootNode = initialNodes.find(n => n.data.level === 0);
  27548. if (rootNode) {
  27549. nodesWithChildren.delete(rootNode.id);
  27550. }
  27551. return nodesWithChildren;
  27552. }, [initialNodes, initialEdges]);
  27553. // 树节点的折叠状态需要在树构建后初始化
  27554. const [collapsedNodes, setCollapsedNodes] = useState(() => initialCollapsedNodes);
  27555. const [collapsedTreeNodes, setCollapsedTreeNodes] = useState(new Set());
  27556. const [selectedNodeId, setSelectedNodeId] = useState(null);
  27557. const [hiddenNodes, setHiddenNodes] = useState(new Set()); // 用户手动隐藏的节点
  27558. const [focusMode, setFocusMode] = useState(false); // 全局聚焦模式,默认关闭
  27559. const [focusedNodeId, setFocusedNodeId] = useState(null); // 单独聚焦的节点ID
  27560. const [sidebarWidth, setSidebarWidth] = useState(400); // 左侧目录宽度
  27561. const [isResizing, setIsResizing] = useState(false); // 是否正在拖拽调整宽度
  27562. // 拖拽调整侧边栏宽度的处理逻辑
  27563. const handleMouseDown = useCallback(() => {
  27564. setIsResizing(true);
  27565. }, []);
  27566. useEffect(() => {
  27567. if (!isResizing) return;
  27568. const handleMouseMove = (e) => {
  27569. const newWidth = e.clientX;
  27570. // 限制宽度范围:300px - 700px
  27571. if (newWidth >= 300 && newWidth <= 700) {
  27572. setSidebarWidth(newWidth);
  27573. }
  27574. };
  27575. const handleMouseUp = () => {
  27576. setIsResizing(false);
  27577. };
  27578. document.addEventListener('mousemove', handleMouseMove);
  27579. document.addEventListener('mouseup', handleMouseUp);
  27580. return () => {
  27581. document.removeEventListener('mousemove', handleMouseMove);
  27582. document.removeEventListener('mouseup', handleMouseUp);
  27583. };
  27584. }, [isResizing]);
  27585. // 获取 React Flow 实例以控制画布
  27586. const { setCenter, fitView } = useReactFlow();
  27587. // 获取某个节点的所有后代节点ID
  27588. const getDescendants = useCallback((nodeId) => {
  27589. const descendants = new Set();
  27590. const queue = [nodeId];
  27591. while (queue.length > 0) {
  27592. const current = queue.shift();
  27593. initialEdges.forEach(edge => {
  27594. if (edge.source === current && !descendants.has(edge.target)) {
  27595. descendants.add(edge.target);
  27596. queue.push(edge.target);
  27597. }
  27598. });
  27599. }
  27600. return descendants;
  27601. }, [initialEdges]);
  27602. // 获取直接父节点
  27603. const getDirectParents = useCallback((nodeId) => {
  27604. const parents = [];
  27605. initialEdges.forEach(edge => {
  27606. if (edge.target === nodeId) {
  27607. parents.push(edge.source);
  27608. }
  27609. });
  27610. return parents;
  27611. }, [initialEdges]);
  27612. // 获取直接子节点
  27613. const getDirectChildren = useCallback((nodeId) => {
  27614. const children = [];
  27615. initialEdges.forEach(edge => {
  27616. if (edge.source === nodeId) {
  27617. children.push(edge.target);
  27618. }
  27619. });
  27620. return children;
  27621. }, [initialEdges]);
  27622. // 切换节点折叠状态
  27623. const toggleNodeCollapse = useCallback((nodeId) => {
  27624. setCollapsedNodes(prev => {
  27625. const newSet = new Set(prev);
  27626. const descendants = getDescendants(nodeId);
  27627. if (newSet.has(nodeId)) {
  27628. // 展开:移除此节点,但保持其他折叠的节点
  27629. newSet.delete(nodeId);
  27630. } else {
  27631. // 折叠:添加此节点
  27632. newSet.add(nodeId);
  27633. }
  27634. return newSet;
  27635. });
  27636. }, [getDescendants]);
  27637. // 过滤可见的节点和边,并重新计算布局
  27638. const { nodes, edges } = useMemo(() => {
  27639. const nodesToHide = new Set();
  27640. // 判断使用哪个节点ID进行聚焦:优先使用单独聚焦的节点,否则使用全局聚焦模式的选中节点
  27641. const effectiveFocusNodeId = focusedNodeId || (focusMode ? selectedNodeId : null);
  27642. // 聚焦模式:只显示聚焦节点、其父节点和直接子节点
  27643. if (effectiveFocusNodeId) {
  27644. const visibleInFocus = new Set([effectiveFocusNodeId]);
  27645. // 添加所有父节点
  27646. initialEdges.forEach(edge => {
  27647. if (edge.target === effectiveFocusNodeId) {
  27648. visibleInFocus.add(edge.source);
  27649. }
  27650. });
  27651. // 添加所有直接子节点
  27652. initialEdges.forEach(edge => {
  27653. if (edge.source === effectiveFocusNodeId) {
  27654. visibleInFocus.add(edge.target);
  27655. }
  27656. });
  27657. // 隐藏不在聚焦范围内的节点
  27658. initialNodes.forEach(node => {
  27659. if (!visibleInFocus.has(node.id)) {
  27660. nodesToHide.add(node.id);
  27661. }
  27662. });
  27663. } else {
  27664. // 非聚焦模式:使用原有的折叠逻辑
  27665. // 收集所有被折叠节点的后代
  27666. collapsedNodes.forEach(collapsedId => {
  27667. const descendants = getDescendants(collapsedId);
  27668. descendants.forEach(id => nodesToHide.add(id));
  27669. });
  27670. }
  27671. // 添加用户手动隐藏的节点
  27672. hiddenNodes.forEach(id => nodesToHide.add(id));
  27673. const visibleNodes = initialNodes
  27674. .filter(node => !nodesToHide.has(node.id))
  27675. .map(node => ({
  27676. ...node,
  27677. data: {
  27678. ...node.data,
  27679. isCollapsed: collapsedNodes.has(node.id),
  27680. hasChildren: initialEdges.some(e => e.source === node.id),
  27681. onToggleCollapse: () => toggleNodeCollapse(node.id),
  27682. onHideSelf: () => {
  27683. setHiddenNodes(prev => {
  27684. const newSet = new Set(prev);
  27685. newSet.add(node.id);
  27686. return newSet;
  27687. });
  27688. },
  27689. onFocus: () => {
  27690. // 切换聚焦状态
  27691. if (focusedNodeId === node.id) {
  27692. setFocusedNodeId(null); // 如果已经聚焦,则取消聚焦
  27693. } else {
  27694. // 先取消之前的聚焦,然后聚焦到当前节点
  27695. setFocusedNodeId(node.id);
  27696. // 延迟聚焦视图到该节点
  27697. setTimeout(() => {
  27698. fitView({
  27699. nodes: [{ id: node.id }],
  27700. duration: 800,
  27701. padding: 0.3,
  27702. });
  27703. }, 100);
  27704. }
  27705. },
  27706. isFocused: focusedNodeId === node.id,
  27707. isHighlighted: selectedNodeId === node.id,
  27708. }
  27709. }));
  27710. const visibleEdges = initialEdges.filter(
  27711. edge => !nodesToHide.has(edge.source) && !nodesToHide.has(edge.target)
  27712. );
  27713. // 重新计算布局 - 只对可见节点
  27714. if (typeof window !== 'undefined' && typeof window.dagre !== 'undefined') {
  27715. try {
  27716. const dagreGraph = new window.dagre.graphlib.Graph();
  27717. dagreGraph.setDefaultEdgeLabel(() => ({}));
  27718. dagreGraph.setGraph({
  27719. rankdir: 'LR',
  27720. nodesep: 180, // 垂直间距 - 增加以避免节点重叠
  27721. ranksep: 360, // 水平间距 - 增加以容纳更宽的节点
  27722. });
  27723. visibleNodes.forEach((node) => {
  27724. let nodeWidth = 320;
  27725. let nodeHeight = 220;
  27726. // note 节点有轮播图,需要更大的空间
  27727. if (node.type === 'note') {
  27728. nodeWidth = 360;
  27729. nodeHeight = 380;
  27730. }
  27731. dagreGraph.setNode(node.id, { width: nodeWidth, height: nodeHeight });
  27732. });
  27733. visibleEdges.forEach((edge) => {
  27734. dagreGraph.setEdge(edge.source, edge.target);
  27735. });
  27736. window.dagre.layout(dagreGraph);
  27737. visibleNodes.forEach((node) => {
  27738. const nodeWithPosition = dagreGraph.node(node.id);
  27739. if (nodeWithPosition) {
  27740. // 根据节点类型获取对应的尺寸
  27741. let nodeWidth = 320;
  27742. let nodeHeight = 220;
  27743. if (node.type === 'note') {
  27744. nodeWidth = 360;
  27745. nodeHeight = 380;
  27746. }
  27747. node.position = {
  27748. x: nodeWithPosition.x - nodeWidth / 2,
  27749. y: nodeWithPosition.y - nodeHeight / 2,
  27750. };
  27751. node.targetPosition = 'left';
  27752. node.sourcePosition = 'right';
  27753. }
  27754. });
  27755. console.log('✅ Dynamic layout recalculated for', visibleNodes.length, 'visible nodes');
  27756. } catch (error) {
  27757. console.error('❌ Error in dynamic layout:', error);
  27758. }
  27759. }
  27760. return { nodes: visibleNodes, edges: visibleEdges };
  27761. }, [initialNodes, initialEdges, collapsedNodes, hiddenNodes, focusMode, focusedNodeId, getDescendants, toggleNodeCollapse, selectedNodeId]);
  27762. // 构建树形结构 - 允许一个节点有多个父节点
  27763. // 为目录构建树(使用完整数据)
  27764. const buildTree = useCallback(() => {
  27765. // 使用完整数据构建目录树
  27766. const nodeMap = new Map();
  27767. fullNodes.forEach(node => {
  27768. nodeMap.set(node.id, node);
  27769. });
  27770. // 为每个节点创建树节点的副本(允许多次出现)
  27771. const createTreeNode = (nodeId, pathKey) => {
  27772. const node = nodeMap.get(nodeId);
  27773. if (!node) return null;
  27774. return {
  27775. ...node,
  27776. treeKey: pathKey, // 唯一的树路径key,用于React key
  27777. children: []
  27778. };
  27779. };
  27780. // 构建父子关系映射:记录每个节点的所有父节点,去重边
  27781. const parentToChildren = new Map();
  27782. const childToParents = new Map();
  27783. fullEdges.forEach(edge => {
  27784. // 记录父->子关系(去重:同一个父节点到同一个子节点只记录一次)
  27785. if (!parentToChildren.has(edge.source)) {
  27786. parentToChildren.set(edge.source, []);
  27787. }
  27788. const children = parentToChildren.get(edge.source);
  27789. if (!children.includes(edge.target)) {
  27790. children.push(edge.target);
  27791. }
  27792. // 记录子->父关系(用于判断是否有多个父节点,也去重)
  27793. if (!childToParents.has(edge.target)) {
  27794. childToParents.set(edge.target, []);
  27795. }
  27796. const parents = childToParents.get(edge.target);
  27797. if (!parents.includes(edge.source)) {
  27798. parents.push(edge.source);
  27799. }
  27800. });
  27801. // 递归构建树
  27802. const buildSubtree = (nodeId, pathKey, visitedInPath) => {
  27803. // 避免循环引用:如果当前路径中已经访问过这个节点,跳过
  27804. if (visitedInPath.has(nodeId)) {
  27805. return null;
  27806. }
  27807. const treeNode = createTreeNode(nodeId, pathKey);
  27808. if (!treeNode) return null;
  27809. const newVisitedInPath = new Set(visitedInPath);
  27810. newVisitedInPath.add(nodeId);
  27811. const children = parentToChildren.get(nodeId) || [];
  27812. treeNode.children = children
  27813. .map((childId, index) => buildSubtree(childId, pathKey + '-' + childId + '-' + index, newVisitedInPath))
  27814. .filter(child => child !== null);
  27815. return treeNode;
  27816. };
  27817. // 找出所有根节点(没有入边的节点)
  27818. const hasParent = new Set();
  27819. fullEdges.forEach(edge => {
  27820. hasParent.add(edge.target);
  27821. });
  27822. const roots = [];
  27823. fullNodes.forEach((node, index) => {
  27824. if (!hasParent.has(node.id)) {
  27825. const treeNode = buildSubtree(node.id, 'root-' + node.id + '-' + index, new Set());
  27826. if (treeNode) roots.push(treeNode);
  27827. }
  27828. });
  27829. return roots;
  27830. }, [fullNodes, fullEdges]);
  27831. const treeRoots = useMemo(() => buildTree(), [buildTree]);
  27832. // 生成树形文本结构(使用完整数据)
  27833. const generateTreeText = useCallback(() => {
  27834. const lines = [];
  27835. // 递归生成树形文本
  27836. const traverse = (nodes, prefix = '', isLast = true, depth = 0) => {
  27837. nodes.forEach((node, index) => {
  27838. const isLastNode = index === nodes.length - 1;
  27839. const nodeData = fullNodes.find(n => n.id === node.id)?.data || {};
  27840. const nodeType = nodeData.nodeType || node.data?.nodeType || 'unknown';
  27841. const title = nodeData.title || node.data?.title || node.id;
  27842. // 优先从node.data获取score,然后从nodeData获取
  27843. let score = null;
  27844. if (node.data?.score !== undefined && node.data?.score !== null) {
  27845. score = node.data.score;
  27846. } else if (node.data?.relevance_score !== undefined && node.data?.relevance_score !== null) {
  27847. score = node.data.relevance_score;
  27848. } else if (nodeData.score !== undefined && nodeData.score !== null) {
  27849. score = nodeData.score;
  27850. } else if (nodeData.relevance_score !== undefined && nodeData.relevance_score !== null) {
  27851. score = nodeData.relevance_score;
  27852. }
  27853. const strategy = nodeData.strategy || node.data?.strategy || '';
  27854. // 构建当前行 - score可能是数字或字符串,step/round节点不显示分数
  27855. const connector = isLastNode ? '└─' : '├─';
  27856. let scoreText = '';
  27857. if (nodeType !== 'step' && nodeType !== 'round' && score !== null && score !== undefined) {
  27858. // score可能已经是字符串格式(如 "0.05"),也可能是数字
  27859. const scoreStr = typeof score === 'number' ? score.toFixed(2) : score;
  27860. scoreText = ` (分数: ${scoreStr})`;
  27861. }
  27862. const strategyText = strategy ? ` [${strategy}]` : '';
  27863. lines.push(`${prefix}${connector} ${title}${scoreText}${strategyText}`);
  27864. // 递归处理子节点
  27865. if (node.children && node.children.length > 0) {
  27866. const childPrefix = prefix + (isLastNode ? ' ' : '│ ');
  27867. traverse(node.children, childPrefix, isLastNode, depth + 1);
  27868. }
  27869. });
  27870. };
  27871. // 添加标题
  27872. const rootNode = fullNodes.find(n => n.data?.level === 0);
  27873. if (rootNode) {
  27874. lines.push(`📊 查询扩展树形结构`);
  27875. lines.push(`原始问题: ${rootNode.data.title || rootNode.data.query}`);
  27876. lines.push('');
  27877. }
  27878. traverse(treeRoots);
  27879. return lines.join('\n');
  27880. }, [treeRoots, fullNodes]);
  27881. // 复制树形结构到剪贴板
  27882. const copyTreeToClipboard = useCallback(async () => {
  27883. try {
  27884. const treeText = generateTreeText();
  27885. await navigator.clipboard.writeText(treeText);
  27886. alert('✅ 树形结构已复制到剪贴板!');
  27887. } catch (err) {
  27888. console.error('复制失败:', err);
  27889. alert('❌ 复制失败,请手动复制');
  27890. }
  27891. }, [generateTreeText]);
  27892. // 初始化树节点折叠状态
  27893. useEffect(() => {
  27894. const getAllTreeKeys = (nodes) => {
  27895. const keys = new Set();
  27896. const traverse = (node) => {
  27897. if (node.children && node.children.length > 0) {
  27898. // 排除根节点
  27899. if (node.data.level !== 0) {
  27900. keys.add(node.treeKey);
  27901. }
  27902. node.children.forEach(traverse);
  27903. }
  27904. };
  27905. nodes.forEach(traverse);
  27906. return keys;
  27907. };
  27908. setCollapsedTreeNodes(getAllTreeKeys(treeRoots));
  27909. }, [treeRoots]);
  27910. // 映射完整节点ID到画布简化节点ID
  27911. const mapTreeNodeToCanvasNode = useCallback((treeNodeId) => {
  27912. // 如果是简化模式,需要映射
  27913. if (data.fullData) {
  27914. // 从完整数据中找到节点
  27915. const fullNode = fullNodes.find(n => n.id === treeNodeId);
  27916. if (!fullNode) return treeNodeId;
  27917. // 根据节点类型和文本找到画布上的简化节点
  27918. const nodeText = fullNode.data.title || fullNode.data.query;
  27919. const nodeType = fullNode.data.nodeType || fullNode.type;
  27920. // Query类节点:找 query_xxx
  27921. if (['q', 'seg', 'sug', 'add_word', 'query'].includes(nodeType)) {
  27922. const canvasNode = initialNodes.find(n =>
  27923. (n.data.title === nodeText || n.data.query === nodeText) &&
  27924. ['query'].includes(n.type)
  27925. );
  27926. return canvasNode ? canvasNode.id : treeNodeId;
  27927. }
  27928. // Post节点:按note_id查找
  27929. if (nodeType === 'post' || nodeType === 'note') {
  27930. const noteId = fullNode.data.note_id;
  27931. if (noteId) {
  27932. const canvasNode = initialNodes.find(n => n.data.note_id === noteId);
  27933. return canvasNode ? canvasNode.id : treeNodeId;
  27934. }
  27935. }
  27936. // 其他节点类型(Round/Step等):直接返回
  27937. return treeNodeId;
  27938. }
  27939. // 非简化模式,直接返回
  27940. return treeNodeId;
  27941. }, [data.fullData, fullNodes, initialNodes]);
  27942. const renderTree = useCallback((treeNodes, level = 0) => {
  27943. return treeNodes.map(node => {
  27944. // 使用 treeKey 来区分树中的不同实例
  27945. const isCollapsed = collapsedTreeNodes.has(node.treeKey);
  27946. const isSelected = selectedNodeId === node.id;
  27947. return (
  27948. <TreeNode
  27949. key={node.treeKey}
  27950. node={node}
  27951. level={level}
  27952. isCollapsed={isCollapsed}
  27953. isSelected={isSelected}
  27954. onToggle={() => {
  27955. setCollapsedTreeNodes(prev => {
  27956. const newSet = new Set(prev);
  27957. if (newSet.has(node.treeKey)) {
  27958. newSet.delete(node.treeKey);
  27959. } else {
  27960. newSet.add(node.treeKey);
  27961. }
  27962. return newSet;
  27963. });
  27964. }}
  27965. onSelect={() => {
  27966. // 将目录节点ID映射到画布节点ID
  27967. const treeNodeId = node.id;
  27968. const canvasNodeId = mapTreeNodeToCanvasNode(treeNodeId);
  27969. // 检查画布上是否存在这个节点
  27970. const canvasNodeExists = initialNodes.some(n => n.id === canvasNodeId);
  27971. if (!canvasNodeExists) {
  27972. console.warn(`节点 ${canvasNodeId} 在画布上不存在(可能被简化了)`);
  27973. return;
  27974. }
  27975. const nodeId = canvasNodeId;
  27976. // 展开所有祖先节点
  27977. const ancestorIds = [nodeId];
  27978. const findAncestors = (id) => {
  27979. initialEdges.forEach(edge => {
  27980. if (edge.target === id && !ancestorIds.includes(edge.source)) {
  27981. ancestorIds.push(edge.source);
  27982. findAncestors(edge.source);
  27983. }
  27984. });
  27985. };
  27986. findAncestors(nodeId);
  27987. // 如果节点或其祖先被隐藏,先恢复它们
  27988. setHiddenNodes(prev => {
  27989. const newSet = new Set(prev);
  27990. ancestorIds.forEach(id => newSet.delete(id));
  27991. return newSet;
  27992. });
  27993. setSelectedNodeId(nodeId);
  27994. // 获取选中节点的直接子节点
  27995. const childrenIds = [];
  27996. initialEdges.forEach(edge => {
  27997. if (edge.source === nodeId) {
  27998. childrenIds.push(edge.target);
  27999. }
  28000. });
  28001. setCollapsedNodes(prev => {
  28002. const newSet = new Set(prev);
  28003. // 展开所有祖先节点
  28004. ancestorIds.forEach(id => newSet.delete(id));
  28005. // 展开选中节点本身
  28006. newSet.delete(nodeId);
  28007. // 展开选中节点的直接子节点
  28008. childrenIds.forEach(id => newSet.delete(id));
  28009. return newSet;
  28010. });
  28011. // 延迟聚焦,等待节点展开和布局重新计算
  28012. setTimeout(() => {
  28013. fitView({
  28014. nodes: [{ id: nodeId }],
  28015. duration: 800,
  28016. padding: 0.3,
  28017. });
  28018. }, 300);
  28019. }}
  28020. >
  28021. {node.children && node.children.length > 0 && renderTree(node.children, level + 1)}
  28022. </TreeNode>
  28023. );
  28024. });
  28025. }, [collapsedTreeNodes, selectedNodeId, nodes, setCenter, initialEdges, setCollapsedNodes, fitView, mapTreeNodeToCanvasNode, initialNodes, setHiddenNodes]);
  28026. console.log('📊 Rendering with', nodes.length, 'visible nodes and', edges.length, 'visible edges');
  28027. if (nodes.length === 0) {
  28028. return (
  28029. <div style={{ padding: 50, color: 'red', fontSize: 20 }}>
  28030. ERROR: No nodes to display!
  28031. </div>
  28032. );
  28033. }
  28034. return (
  28035. <div style={{ width: '100vw', height: '100vh', background: '#f9fafb', display: 'flex', flexDirection: 'column' }}>
  28036. {/* 顶部面包屑导航栏 */}
  28037. <div style={{
  28038. minHeight: '48px',
  28039. maxHeight: '120px',
  28040. background: 'white',
  28041. borderBottom: '1px solid #e5e7eb',
  28042. display: 'flex',
  28043. alignItems: 'flex-start',
  28044. padding: '12px 24px',
  28045. zIndex: 1000,
  28046. boxShadow: '0 1px 3px rgba(0, 0, 0, 0.05)',
  28047. flexShrink: 0,
  28048. overflowY: 'auto',
  28049. }}>
  28050. <div style={{ width: '100%' }}>
  28051. {selectedNodeId ? (
  28052. <div style={{ fontSize: '12px', color: '#6b7280' }}>
  28053. {/* 面包屑导航 - 显示所有路径 */}
  28054. {(() => {
  28055. const selectedNode = nodes.find(n => n.id === selectedNodeId);
  28056. if (!selectedNode) return null;
  28057. // 找到所有从根节点到当前节点的路径
  28058. const findAllPaths = (targetId) => {
  28059. const paths = [];
  28060. const buildPath = (nodeId, currentPath) => {
  28061. const node = initialNodes.find(n => n.id === nodeId);
  28062. if (!node) return;
  28063. const newPath = [node, ...currentPath];
  28064. // 找到所有父节点
  28065. const parents = initialEdges.filter(e => e.target === nodeId).map(e => e.source);
  28066. if (parents.length === 0) {
  28067. // 到达根节点
  28068. paths.push(newPath);
  28069. } else {
  28070. // 递归处理所有父节点
  28071. parents.forEach(parentId => {
  28072. buildPath(parentId, newPath);
  28073. });
  28074. }
  28075. };
  28076. buildPath(targetId, []);
  28077. return paths;
  28078. };
  28079. const allPaths = findAllPaths(selectedNodeId);
  28080. // 去重:将路径转换为字符串进行比较
  28081. const uniquePaths = [];
  28082. const pathStrings = new Set();
  28083. allPaths.forEach(path => {
  28084. const pathString = path.map(n => n.id).join('->');
  28085. if (!pathStrings.has(pathString)) {
  28086. pathStrings.add(pathString);
  28087. uniquePaths.push(path);
  28088. }
  28089. });
  28090. return (
  28091. <div style={{ display: 'flex', flexDirection: 'column', gap: '6px' }}>
  28092. {uniquePaths.map((path, pathIndex) => (
  28093. <div key={pathIndex} style={{ display: 'flex', alignItems: 'center', gap: '6px', flexWrap: 'wrap' }}>
  28094. {pathIndex > 0 && <span style={{ color: '#d1d5db', marginRight: '4px' }}>或</span>}
  28095. {path.map((node, index) => {
  28096. // 获取节点的 score、strategy 和 isSelected
  28097. const nodeScore = node.data.score ? parseFloat(node.data.score) : 0;
  28098. const nodeStrategy = getPrimaryStrategy(node.data); // 使用智能提取函数
  28099. const strategyColor = getStrategyColor(nodeStrategy);
  28100. const nodeIsSelected = node.type === 'note' ? node.data.matchLevel !== 'unsatisfied' : node.data.isSelected !== false;
  28101. const nodeActualType = node.data.nodeType || node.type; // 获取实际节点类型
  28102. // 计算路径节点字体颜色:根据分数提升幅度判断
  28103. let pathFontColor = '#374151'; // 默认颜色
  28104. if (node.type === 'note') {
  28105. pathFontColor = node.data.matchLevel === 'unsatisfied' ? '#ef4444' : '#374151';
  28106. } else if (node.data.seed_score !== undefined) {
  28107. const parentScore = parseFloat(node.data.seed_score);
  28108. const gain = nodeScore - parentScore;
  28109. pathFontColor = gain >= 0.05 ? '#16a34a' : '#ef4444';
  28110. } else if (index > 0) {
  28111. const prevNode = path[index - 1];
  28112. const prevScore = prevNode.data.score ? parseFloat(prevNode.data.score) : 0;
  28113. const gain = nodeScore - prevScore;
  28114. pathFontColor = gain >= 0.05 ? '#16a34a' : '#ef4444';
  28115. } else if (node.data.isSelected === false) {
  28116. pathFontColor = '#ef4444';
  28117. }
  28118. return (
  28119. <React.Fragment key={node.id + '-' + index}>
  28120. <span
  28121. onClick={() => {
  28122. const nodeId = node.id;
  28123. // 找到所有祖先节点
  28124. const ancestorIds = [nodeId];
  28125. const findAncestors = (id) => {
  28126. initialEdges.forEach(edge => {
  28127. if (edge.target === id && !ancestorIds.includes(edge.source)) {
  28128. ancestorIds.push(edge.source);
  28129. findAncestors(edge.source);
  28130. }
  28131. });
  28132. };
  28133. findAncestors(nodeId);
  28134. // 如果节点或其祖先被隐藏,先恢复它们
  28135. setHiddenNodes(prev => {
  28136. const newSet = new Set(prev);
  28137. ancestorIds.forEach(id => newSet.delete(id));
  28138. return newSet;
  28139. });
  28140. // 展开目录树中到达该节点的路径
  28141. // 需要找到所有包含该节点的树路径的 treeKey,并展开它们的父节点
  28142. setCollapsedTreeNodes(prev => {
  28143. const newSet = new Set(prev);
  28144. // 清空所有折叠状态,让目录树完全展开到选中节点
  28145. // 这样可以确保选中节点在目录中可见
  28146. return new Set();
  28147. });
  28148. setSelectedNodeId(nodeId);
  28149. setTimeout(() => {
  28150. fitView({
  28151. nodes: [{ id: nodeId }],
  28152. duration: 800,
  28153. padding: 0.3,
  28154. });
  28155. }, 100);
  28156. }}
  28157. style={{
  28158. padding: '6px 8px',
  28159. borderRadius: '4px',
  28160. background: 'white',
  28161. border: index === path.length - 1 ? '2px solid #3b82f6' : '1px solid #d1d5db',
  28162. color: '#374151',
  28163. fontWeight: index === path.length - 1 ? '600' : '400',
  28164. width: '180px',
  28165. cursor: 'pointer',
  28166. transition: 'all 0.2s ease',
  28167. position: 'relative',
  28168. display: 'inline-flex',
  28169. flexDirection: 'column',
  28170. gap: '4px',
  28171. }}
  28172. onMouseEnter={(e) => {
  28173. e.currentTarget.style.opacity = '0.8';
  28174. }}
  28175. onMouseLeave={(e) => {
  28176. e.currentTarget.style.opacity = '1';
  28177. }}
  28178. title={`${node.data.title || node.id} (Score: ${nodeScore.toFixed(2)}, Strategy: ${nodeStrategy}, Selected: ${nodeIsSelected})`}
  28179. >
  28180. {/* 上半部分:竖线 + 图标 + 文字 + 分数 */}
  28181. <div style={{
  28182. display: 'flex',
  28183. alignItems: 'center',
  28184. gap: '6px',
  28185. }}>
  28186. {/* 策略类型竖线 */}
  28187. <div style={{
  28188. width: '3px',
  28189. height: '16px',
  28190. background: strategyColor,
  28191. borderRadius: '2px',
  28192. flexShrink: 0,
  28193. }} />
  28194. {/* 节点文字 - 左侧 */}
  28195. <span style={{
  28196. flex: 1,
  28197. fontSize: '12px',
  28198. color: pathFontColor,
  28199. overflow: 'hidden',
  28200. textOverflow: 'ellipsis',
  28201. whiteSpace: 'nowrap',
  28202. }}>
  28203. {node.data.title || node.id}
  28204. </span>
  28205. {/* 域标识 - 右侧,挨着分数 */}
  28206. {(node.data.domain_type || node.data.domains_str || (node.data.domain_index !== null && node.data.domain_index !== undefined)) && (
  28207. <span style={{
  28208. fontSize: '12px',
  28209. color: '#fff',
  28210. background: '#6366f1',
  28211. padding: '2px 5px',
  28212. borderRadius: '3px',
  28213. flexShrink: 0,
  28214. fontWeight: '600',
  28215. marginLeft: '4px',
  28216. }}
  28217. title={
  28218. node.data.domain_type ? '域: ' + node.data.domain_type + ' (D' + node.data.domain_index + ')' :
  28219. node.data.domains_str ? '域: ' + node.data.domains_str :
  28220. '域 D' + node.data.domain_index
  28221. }
  28222. >
  28223. {node.data.domain_type || node.data.domains_str || ('D' + node.data.domain_index)}
  28224. </span>
  28225. )}
  28226. {/* 分数显示 - 步骤和轮次节点不显示分数 */}
  28227. {nodeActualType !== 'step' && nodeActualType !== 'round' && (
  28228. <span style={{
  28229. fontSize: '10px',
  28230. color: '#6b7280',
  28231. fontWeight: '500',
  28232. flexShrink: 0,
  28233. minWidth: '35px',
  28234. textAlign: 'right',
  28235. marginLeft: '4px',
  28236. }}>
  28237. {nodeScore.toFixed(2)}
  28238. </span>
  28239. )}
  28240. </div>
  28241. {/* 分数下划线 - 步骤和轮次节点不显示 */}
  28242. {nodeActualType !== 'step' && nodeActualType !== 'round' && (
  28243. <div style={{
  28244. width: (nodeScore * 100) + '%',
  28245. height: '2px',
  28246. background: getScoreColor(nodeScore),
  28247. borderRadius: '1px',
  28248. marginLeft: '9px',
  28249. }} />
  28250. )}
  28251. </span>
  28252. {index < path.length - 1 && <span style={{ color: '#9ca3af' }}>›</span>}
  28253. </React.Fragment>
  28254. )})}
  28255. </div>
  28256. ))}
  28257. </div>
  28258. );
  28259. })()}
  28260. </div>
  28261. ) : (
  28262. <div style={{ fontSize: '13px', color: '#9ca3af', textAlign: 'center' }}>
  28263. 选择一个节点查看路径
  28264. </div>
  28265. )}
  28266. </div>
  28267. </div>
  28268. {/* 主内容区:目录 + 画布 */}
  28269. <div style={{
  28270. display: 'flex',
  28271. flex: 1,
  28272. overflow: 'hidden',
  28273. cursor: isResizing ? 'col-resize' : 'default',
  28274. userSelect: isResizing ? 'none' : 'auto',
  28275. }}>
  28276. {/* 左侧目录树 */}
  28277. <div style={{
  28278. width: `${sidebarWidth}px`,
  28279. background: 'white',
  28280. borderRight: '1px solid #e5e7eb',
  28281. display: 'flex',
  28282. flexDirection: 'column',
  28283. flexShrink: 0,
  28284. }}>
  28285. <div style={{
  28286. padding: '12px 16px',
  28287. borderBottom: '1px solid #e5e7eb',
  28288. display: 'flex',
  28289. justifyContent: 'space-between',
  28290. alignItems: 'center',
  28291. }}>
  28292. <span style={{
  28293. fontWeight: '600',
  28294. fontSize: '14px',
  28295. color: '#111827',
  28296. }}>
  28297. 节点目录
  28298. </span>
  28299. <div style={{ display: 'flex', gap: '6px' }}>
  28300. <button
  28301. onClick={() => {
  28302. setCollapsedTreeNodes(new Set());
  28303. }}
  28304. style={{
  28305. fontSize: '11px',
  28306. padding: '4px 8px',
  28307. borderRadius: '4px',
  28308. border: '1px solid #d1d5db',
  28309. background: 'white',
  28310. color: '#6b7280',
  28311. cursor: 'pointer',
  28312. fontWeight: '500',
  28313. }}
  28314. title="展开全部节点"
  28315. >
  28316. 全部展开
  28317. </button>
  28318. <button
  28319. onClick={() => {
  28320. const getAllTreeKeys = (nodes) => {
  28321. const keys = new Set();
  28322. const traverse = (node) => {
  28323. if (node.children && node.children.length > 0) {
  28324. keys.add(node.treeKey);
  28325. node.children.forEach(traverse);
  28326. }
  28327. };
  28328. nodes.forEach(traverse);
  28329. return keys;
  28330. };
  28331. setCollapsedTreeNodes(getAllTreeKeys(treeRoots));
  28332. }}
  28333. style={{
  28334. fontSize: '11px',
  28335. padding: '4px 8px',
  28336. borderRadius: '4px',
  28337. border: '1px solid #d1d5db',
  28338. background: 'white',
  28339. color: '#6b7280',
  28340. cursor: 'pointer',
  28341. fontWeight: '500',
  28342. }}
  28343. title="折叠全部节点"
  28344. >
  28345. 全部折叠
  28346. </button>
  28347. <button
  28348. onClick={copyTreeToClipboard}
  28349. style={{
  28350. fontSize: '11px',
  28351. padding: '4px 8px',
  28352. borderRadius: '4px',
  28353. border: '1px solid #3b82f6',
  28354. background: '#3b82f6',
  28355. color: 'white',
  28356. cursor: 'pointer',
  28357. fontWeight: '500',
  28358. transition: 'all 0.2s',
  28359. }}
  28360. onMouseEnter={(e) => e.currentTarget.style.background = '#2563eb'}
  28361. onMouseLeave={(e) => e.currentTarget.style.background = '#3b82f6'}
  28362. title="复制树形结构为文本格式"
  28363. >
  28364. 📋 复制树形结构
  28365. </button>
  28366. </div>
  28367. </div>
  28368. <div style={{
  28369. flex: 1,
  28370. overflowX: 'auto',
  28371. overflowY: 'auto',
  28372. padding: '8px',
  28373. }}>
  28374. <div style={{ minWidth: 'fit-content' }}>
  28375. {renderTree(treeRoots)}
  28376. </div>
  28377. </div>
  28378. </div>
  28379. {/* 可拖拽的分隔条 */}
  28380. <div
  28381. onMouseDown={handleMouseDown}
  28382. style={{
  28383. width: '4px',
  28384. cursor: 'col-resize',
  28385. background: isResizing ? '#3b82f6' : 'transparent',
  28386. transition: isResizing ? 'none' : 'background 0.2s',
  28387. flexShrink: 0,
  28388. position: 'relative',
  28389. }}
  28390. onMouseEnter={(e) => e.currentTarget.style.background = '#e5e7eb'}
  28391. onMouseLeave={(e) => {
  28392. if (!isResizing) e.currentTarget.style.background = 'transparent';
  28393. }}
  28394. >
  28395. {/* 拖拽提示线 */}
  28396. <div style={{
  28397. position: 'absolute',
  28398. top: '50%',
  28399. left: '50%',
  28400. transform: 'translate(-50%, -50%)',
  28401. width: '1px',
  28402. height: '40px',
  28403. background: '#9ca3af',
  28404. opacity: isResizing ? 1 : 0.3,
  28405. }} />
  28406. </div>
  28407. {/* 画布区域 */}
  28408. <div style={{ flex: 1, position: 'relative' }}>
  28409. {/* 右侧图例 */}
  28410. <div style={{
  28411. position: 'absolute',
  28412. top: '20px',
  28413. right: '20px',
  28414. background: 'white',
  28415. padding: '16px',
  28416. borderRadius: '12px',
  28417. boxShadow: '0 4px 12px rgba(0, 0, 0, 0.08)',
  28418. zIndex: 1000,
  28419. maxWidth: '260px',
  28420. border: '1px solid #e5e7eb',
  28421. }}>
  28422. <div style={{ display: 'flex', justifyContent: 'space-between', alignItems: 'center', marginBottom: '12px' }}>
  28423. <h3 style={{ fontSize: '14px', fontWeight: '600', color: '#111827', margin: 0 }}>图例</h3>
  28424. <button
  28425. onClick={() => setFocusMode(!focusMode)}
  28426. style={{
  28427. fontSize: '11px',
  28428. padding: '4px 8px',
  28429. borderRadius: '4px',
  28430. border: '1px solid',
  28431. borderColor: focusMode ? '#3b82f6' : '#d1d5db',
  28432. background: focusMode ? '#3b82f6' : 'white',
  28433. color: focusMode ? 'white' : '#6b7280',
  28434. cursor: 'pointer',
  28435. fontWeight: '500',
  28436. }}
  28437. title={focusMode ? '关闭聚焦模式' : '开启聚焦模式'}
  28438. >
  28439. {focusMode ? '🎯 聚焦' : '📊 全图'}
  28440. </button>
  28441. </div>
  28442. <div style={{ fontSize: '12px' }}>
  28443. {/* 画布节点展开/折叠控制 */}
  28444. <div style={{ marginBottom: '12px', paddingBottom: '12px', borderBottom: '1px solid #f3f4f6' }}>
  28445. <div style={{ fontSize: '12px', fontWeight: '500', marginBottom: '8px', color: '#374151' }}>节点控制</div>
  28446. <div style={{ display: 'flex', gap: '6px' }}>
  28447. <button
  28448. onClick={() => {
  28449. setCollapsedNodes(new Set());
  28450. }}
  28451. style={{
  28452. fontSize: '11px',
  28453. padding: '4px 8px',
  28454. borderRadius: '4px',
  28455. border: '1px solid #d1d5db',
  28456. background: 'white',
  28457. color: '#6b7280',
  28458. cursor: 'pointer',
  28459. fontWeight: '500',
  28460. flex: 1,
  28461. }}
  28462. title="展开画布中所有节点的子节点"
  28463. >
  28464. 全部展开
  28465. </button>
  28466. <button
  28467. onClick={() => {
  28468. const allNodeIds = new Set(initialNodes.map(n => n.id));
  28469. setCollapsedNodes(allNodeIds);
  28470. }}
  28471. style={{
  28472. fontSize: '11px',
  28473. padding: '4px 8px',
  28474. borderRadius: '4px',
  28475. border: '1px solid #d1d5db',
  28476. background: 'white',
  28477. color: '#6b7280',
  28478. cursor: 'pointer',
  28479. fontWeight: '500',
  28480. flex: 1,
  28481. }}
  28482. title="折叠画布中所有节点的子节点"
  28483. >
  28484. 全部折叠
  28485. </button>
  28486. </div>
  28487. </div>
  28488. <div style={{ paddingTop: '12px', borderTop: '1px solid #f3f4f6' }}>
  28489. <div style={{ fontSize: '12px', fontWeight: '500', marginBottom: '8px', color: '#374151' }}>策略类型</div>
  28490. <div style={{ display: 'flex', alignItems: 'center', margin: '6px 0' }}>
  28491. <div style={{ width: '20px', height: '2px', marginRight: '8px', background: '#10b981', opacity: 0.7 }}></div>
  28492. <span style={{ color: '#6b7280', fontSize: '11px' }}>初始分词</span>
  28493. </div>
  28494. <div style={{ display: 'flex', alignItems: 'center', margin: '6px 0' }}>
  28495. <div style={{ width: '20px', height: '2px', marginRight: '8px', background: '#06b6d4', opacity: 0.7 }}></div>
  28496. <span style={{ color: '#6b7280', fontSize: '11px' }}>调用sug</span>
  28497. </div>
  28498. <div style={{ display: 'flex', alignItems: 'center', margin: '6px 0' }}>
  28499. <div style={{ width: '20px', height: '2px', marginRight: '8px', background: '#f59e0b', opacity: 0.7 }}></div>
  28500. <span style={{ color: '#6b7280', fontSize: '11px' }}>同义改写</span>
  28501. </div>
  28502. <div style={{ display: 'flex', alignItems: 'center', margin: '6px 0' }}>
  28503. <div style={{ width: '20px', height: '2px', marginRight: '8px', background: '#3b82f6', opacity: 0.7 }}></div>
  28504. <span style={{ color: '#6b7280', fontSize: '11px' }}>加词</span>
  28505. </div>
  28506. <div style={{ display: 'flex', alignItems: 'center', margin: '6px 0' }}>
  28507. <div style={{ width: '20px', height: '2px', marginRight: '8px', background: '#8b5cf6', opacity: 0.7 }}></div>
  28508. <span style={{ color: '#6b7280', fontSize: '11px' }}>抽象改写</span>
  28509. </div>
  28510. <div style={{ display: 'flex', alignItems: 'center', margin: '6px 0' }}>
  28511. <div style={{ width: '20px', height: '2px', marginRight: '8px', background: '#ec4899', opacity: 0.7 }}></div>
  28512. <span style={{ color: '#6b7280', fontSize: '11px' }}>基于部分匹配改进</span>
  28513. </div>
  28514. <div style={{ display: 'flex', alignItems: 'center', margin: '6px 0' }}>
  28515. <div style={{ width: '20px', height: '2px', marginRight: '8px', background: '#a855f7', opacity: 0.7 }}></div>
  28516. <span style={{ color: '#6b7280', fontSize: '11px' }}>结果分支-抽象改写</span>
  28517. </div>
  28518. <div style={{ display: 'flex', alignItems: 'center', margin: '6px 0' }}>
  28519. <div style={{ width: '20px', height: '2px', marginRight: '8px', background: '#fb923c', opacity: 0.7 }}></div>
  28520. <span style={{ color: '#6b7280', fontSize: '11px' }}>结果分支-同义改写</span>
  28521. </div>
  28522. </div>
  28523. <div style={{
  28524. marginTop: '12px',
  28525. paddingTop: '12px',
  28526. borderTop: '1px solid #f3f4f6',
  28527. fontSize: '11px',
  28528. color: '#9ca3af',
  28529. lineHeight: '1.5',
  28530. }}>
  28531. 💡 点击节点左上角 × 隐藏节点
  28532. </div>
  28533. {/* 隐藏节点列表 - 在图例内部 */}
  28534. {hiddenNodes.size > 0 && (
  28535. <div style={{
  28536. marginTop: '12px',
  28537. paddingTop: '12px',
  28538. borderTop: '1px solid #f3f4f6',
  28539. }}>
  28540. <div style={{ display: 'flex', justifyContent: 'space-between', alignItems: 'center', marginBottom: '8px' }}>
  28541. <h4 style={{ fontSize: '12px', fontWeight: '600', color: '#111827' }}>已隐藏节点</h4>
  28542. <button
  28543. onClick={() => setHiddenNodes(new Set())}
  28544. style={{
  28545. fontSize: '10px',
  28546. color: '#3b82f6',
  28547. background: 'none',
  28548. border: 'none',
  28549. cursor: 'pointer',
  28550. textDecoration: 'underline',
  28551. }}
  28552. >
  28553. 全部恢复
  28554. </button>
  28555. </div>
  28556. <div style={{ fontSize: '12px', maxHeight: '200px', overflow: 'auto' }}>
  28557. {Array.from(hiddenNodes).map(nodeId => {
  28558. const node = initialNodes.find(n => n.id === nodeId);
  28559. if (!node) return null;
  28560. return (
  28561. <div
  28562. key={nodeId}
  28563. style={{
  28564. display: 'flex',
  28565. justifyContent: 'space-between',
  28566. alignItems: 'center',
  28567. padding: '6px 8px',
  28568. margin: '4px 0',
  28569. background: '#f9fafb',
  28570. borderRadius: '6px',
  28571. fontSize: '11px',
  28572. }}
  28573. >
  28574. <span
  28575. style={{
  28576. flex: 1,
  28577. overflow: 'hidden',
  28578. textOverflow: 'ellipsis',
  28579. whiteSpace: 'nowrap',
  28580. color: '#374151',
  28581. }}
  28582. title={node.data.title || nodeId}
  28583. >
  28584. {node.data.title || nodeId}
  28585. </span>
  28586. <button
  28587. onClick={() => {
  28588. setHiddenNodes(prev => {
  28589. const newSet = new Set(prev);
  28590. newSet.delete(nodeId);
  28591. return newSet;
  28592. });
  28593. }}
  28594. style={{
  28595. marginLeft: '8px',
  28596. fontSize: '10px',
  28597. color: '#10b981',
  28598. background: 'none',
  28599. border: 'none',
  28600. cursor: 'pointer',
  28601. flexShrink: 0,
  28602. }}
  28603. >
  28604. 恢复
  28605. </button>
  28606. </div>
  28607. );
  28608. })}
  28609. </div>
  28610. </div>
  28611. )}
  28612. </div>
  28613. </div>
  28614. {/* React Flow 画布 */}
  28615. <ReactFlow
  28616. nodes={nodes}
  28617. edges={edges}
  28618. nodeTypes={nodeTypes}
  28619. fitView
  28620. fitViewOptions={{ padding: 0.2, duration: 500 }}
  28621. minZoom={0.1}
  28622. maxZoom={1.5}
  28623. nodesDraggable={true}
  28624. nodesConnectable={false}
  28625. elementsSelectable={true}
  28626. defaultEdgeOptions={{
  28627. type: 'smoothstep',
  28628. }}
  28629. proOptions={{ hideAttribution: true }}
  28630. onNodeClick={(event, clickedNode) => {
  28631. setSelectedNodeId(clickedNode.id);
  28632. }}
  28633. >
  28634. <Controls style={{ bottom: '20px', left: 'auto', right: '20px' }} />
  28635. <Background variant="dots" gap={20} size={1} color="#e5e7eb" />
  28636. </ReactFlow>
  28637. </div>
  28638. </div>
  28639. </div>
  28640. );
  28641. }
  28642. function App() {
  28643. return (
  28644. <ReactFlowProvider>
  28645. <FlowContent />
  28646. </ReactFlowProvider>
  28647. );
  28648. }
  28649. const root = createRoot(document.getElementById('root'));
  28650. root.render(<App />);