|
|
@@ -0,0 +1,362 @@
|
|
|
+"""
|
|
|
+测试评估V4模块 (LangGraph + Gemini)
|
|
|
+从现有run_context.json读取帖子,使用V4评估模块重新评估,生成统计报告
|
|
|
+"""
|
|
|
+
|
|
|
+import asyncio
|
|
|
+import json
|
|
|
+import sys
|
|
|
+from pathlib import Path
|
|
|
+from datetime import datetime
|
|
|
+from collections import defaultdict
|
|
|
+
|
|
|
+# 导入必要的模块
|
|
|
+from knowledge_search_traverse import Post
|
|
|
+from post_evaluator_v4_langgraph import evaluate_post_v4, apply_evaluation_v4_to_post
|
|
|
+
|
|
|
+
|
|
|
+async def test_evaluation_v4(run_context_path: str, max_posts: int = 20):
|
|
|
+ """
|
|
|
+ 测试V4评估模块
|
|
|
+
|
|
|
+ Args:
|
|
|
+ run_context_path: run_context.json路径
|
|
|
+ max_posts: 最多评估的帖子数量(用于快速测试)
|
|
|
+ """
|
|
|
+ print(f"\n{'='*80}")
|
|
|
+ print(f"📊 评估V4测试 (LangGraph + Gemini) - {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")
|
|
|
+ print(f"{'='*80}\n")
|
|
|
+
|
|
|
+ # 读取run_context.json
|
|
|
+ print(f"📂 读取: {run_context_path}")
|
|
|
+ with open(run_context_path, 'r', encoding='utf-8') as f:
|
|
|
+ run_context = json.load(f)
|
|
|
+
|
|
|
+ # 提取原始query
|
|
|
+ original_query = run_context.get('o', '')
|
|
|
+ print(f"🔍 原始Query: {original_query}\n")
|
|
|
+
|
|
|
+ # 提取所有帖子 (从rounds -> search_results -> post_list)
|
|
|
+ post_data_list = []
|
|
|
+ rounds = run_context.get('rounds', [])
|
|
|
+
|
|
|
+ for round_idx, round_data in enumerate(rounds):
|
|
|
+ search_results = round_data.get('search_results', [])
|
|
|
+ for search_idx, search in enumerate(search_results):
|
|
|
+ post_list = search.get('post_list', [])
|
|
|
+ for post_idx, post_data in enumerate(post_list):
|
|
|
+ # 生成唯一ID
|
|
|
+ post_id = f"r{round_idx}_s{search_idx}_p{post_idx}"
|
|
|
+ post_data_list.append((round_idx, search_idx, post_id, post_data))
|
|
|
+
|
|
|
+ total_posts = len(post_data_list)
|
|
|
+ print(f"📝 找到 {total_posts} 个帖子 (来自 {len(rounds)} 轮)")
|
|
|
+
|
|
|
+ # 限制评估数量(快速测试)
|
|
|
+ if max_posts and max_posts < total_posts:
|
|
|
+ post_data_list = post_data_list[:max_posts]
|
|
|
+ print(f"⚡ 快速测试模式: 仅评估前 {max_posts} 个帖子\n")
|
|
|
+ else:
|
|
|
+ print()
|
|
|
+
|
|
|
+ # 将post_data转换为Post对象
|
|
|
+ posts = []
|
|
|
+ for round_idx, search_idx, post_id, post_data in post_data_list:
|
|
|
+ post = Post(
|
|
|
+ note_id=post_data.get('note_id', post_id),
|
|
|
+ title=post_data.get('title', ''),
|
|
|
+ body_text=post_data.get('body_text', ''),
|
|
|
+ images=post_data.get('images', []),
|
|
|
+ type=post_data.get('type', 'normal'),
|
|
|
+ video=post_data.get('video', '') # 添加video字段
|
|
|
+ )
|
|
|
+ posts.append((round_idx, search_idx, post_id, post))
|
|
|
+
|
|
|
+ # 批量评估
|
|
|
+ print(f"🚀 开始并行评估 (最多{len(posts)}个任务,并发限制: 5)...\n")
|
|
|
+
|
|
|
+ semaphore = asyncio.Semaphore(5)
|
|
|
+ tasks = []
|
|
|
+
|
|
|
+ # 1. 创建所有任务
|
|
|
+ for round_idx, search_idx, post_id, post in posts:
|
|
|
+ task = evaluate_post_v4(post, original_query, semaphore)
|
|
|
+ tasks.append((round_idx, search_idx, post_id, post, task))
|
|
|
+
|
|
|
+ # 2. 并行执行所有任务
|
|
|
+ task_coroutines = [task for _, _, _, _, task in tasks]
|
|
|
+ all_eval_results = await asyncio.gather(*task_coroutines)
|
|
|
+
|
|
|
+ # 3. 处理结果
|
|
|
+ results = []
|
|
|
+ detailed_reports = [] # 收集详细评估报告
|
|
|
+ print(f"📊 处理评估结果...\n")
|
|
|
+ for i, ((round_idx, search_idx, post_id, post, _), eval_result) in enumerate(zip(tasks, all_eval_results), 1):
|
|
|
+ knowledge_eval, content_eval, purpose_eval, category_eval, final_score, match_level = eval_result
|
|
|
+
|
|
|
+ print(f" [{i}/{len(tasks)}] {post.note_id} - {post.title[:40]}", end="")
|
|
|
+ if knowledge_eval:
|
|
|
+ if final_score is not None:
|
|
|
+ print(f" → {match_level} ({final_score:.1f}分)")
|
|
|
+ elif content_eval and not content_eval.is_content_knowledge:
|
|
|
+ print(f" → 非内容知识")
|
|
|
+ elif knowledge_eval and not knowledge_eval.is_knowledge:
|
|
|
+ print(f" → 非知识")
|
|
|
+ else:
|
|
|
+ print(f" → 评估未完成")
|
|
|
+
|
|
|
+ # 打印详细判断原因
|
|
|
+ print(f" 📝 知识评估: {knowledge_eval.conclusion if knowledge_eval.conclusion else '无'}")
|
|
|
+ if content_eval and content_eval.is_content_knowledge:
|
|
|
+ print(f" 📚 内容知识: {content_eval.summary[:80] if content_eval.summary else '无'}...")
|
|
|
+ if purpose_eval:
|
|
|
+ print(f" 🎯 目的匹配: {purpose_eval.core_basis[:80] if purpose_eval.core_basis else '无'}...")
|
|
|
+ if category_eval:
|
|
|
+ print(f" 🏷️ 品类匹配: {category_eval.core_basis[:80] if category_eval.core_basis else '无'}...")
|
|
|
+ print()
|
|
|
+
|
|
|
+ # 收集详细报告
|
|
|
+ detailed_report = {
|
|
|
+ 'post_index': i,
|
|
|
+ 'note_id': post.note_id,
|
|
|
+ 'title': post.title,
|
|
|
+ 'type': post.type,
|
|
|
+ 'final_score': final_score,
|
|
|
+ 'match_level': match_level,
|
|
|
+ 'is_knowledge': knowledge_eval.is_knowledge if knowledge_eval else None,
|
|
|
+ 'is_content_knowledge': content_eval.is_content_knowledge if content_eval else None,
|
|
|
+ 'knowledge_score': content_eval.final_score if content_eval else None,
|
|
|
+ 'evaluations': {
|
|
|
+ 'knowledge': {
|
|
|
+ 'conclusion': knowledge_eval.conclusion if knowledge_eval else None,
|
|
|
+ 'core_evidence': knowledge_eval.core_evidence if knowledge_eval and hasattr(knowledge_eval, 'core_evidence') else None,
|
|
|
+ 'issues': knowledge_eval.issues if knowledge_eval and hasattr(knowledge_eval, 'issues') else None
|
|
|
+ },
|
|
|
+ 'content_knowledge': {
|
|
|
+ 'summary': content_eval.summary if content_eval else None,
|
|
|
+ 'final_score': content_eval.final_score if content_eval else None,
|
|
|
+ 'level': content_eval.level if content_eval else None
|
|
|
+ } if content_eval and content_eval.is_content_knowledge else None,
|
|
|
+ 'purpose': {
|
|
|
+ 'score': purpose_eval.purpose_score if purpose_eval else None,
|
|
|
+ 'core_motivation': purpose_eval.core_motivation if purpose_eval else None,
|
|
|
+ 'core_basis': purpose_eval.core_basis if purpose_eval else None,
|
|
|
+ 'match_level': purpose_eval.match_level if purpose_eval else None
|
|
|
+ } if purpose_eval else None,
|
|
|
+ 'category': {
|
|
|
+ 'score': category_eval.category_score if category_eval else None,
|
|
|
+ 'core_basis': category_eval.core_basis if category_eval else None,
|
|
|
+ 'match_level': category_eval.match_level if category_eval else None
|
|
|
+ } if category_eval else None
|
|
|
+ }
|
|
|
+ }
|
|
|
+ detailed_reports.append(detailed_report)
|
|
|
+
|
|
|
+ # 应用评估结果
|
|
|
+ apply_evaluation_v4_to_post(
|
|
|
+ post,
|
|
|
+ knowledge_eval,
|
|
|
+ content_eval,
|
|
|
+ purpose_eval,
|
|
|
+ category_eval,
|
|
|
+ final_score,
|
|
|
+ match_level
|
|
|
+ )
|
|
|
+ results.append((round_idx, search_idx, post_id, post))
|
|
|
+ else:
|
|
|
+ print(f" → ❌ 评估失败\n")
|
|
|
+
|
|
|
+ print(f"\n✅ 评估完成: {len(results)}/{len(posts)} 成功\n")
|
|
|
+
|
|
|
+ # 更新run_context.json中的帖子数据
|
|
|
+ print("💾 更新 run_context.json...")
|
|
|
+ for round_idx, search_idx, post_id, post in results:
|
|
|
+ # 定位到对应的post_list
|
|
|
+ if round_idx < len(rounds):
|
|
|
+ search_results = rounds[round_idx].get('search_results', [])
|
|
|
+ if search_idx < len(search_results):
|
|
|
+ post_list = search_results[search_idx].get('post_list', [])
|
|
|
+
|
|
|
+ # 找到对应的帖子并更新
|
|
|
+ for p in post_list:
|
|
|
+ if p.get('note_id') == post.note_id:
|
|
|
+ # 更新V4顶层字段
|
|
|
+ p['is_knowledge'] = post.is_knowledge
|
|
|
+ p['is_content_knowledge'] = post.is_content_knowledge
|
|
|
+ p['knowledge_score'] = post.knowledge_score
|
|
|
+
|
|
|
+ p['purpose_score'] = post.purpose_score
|
|
|
+ p['category_score'] = post.category_score
|
|
|
+ p['final_score'] = post.final_score
|
|
|
+ p['match_level'] = post.match_level
|
|
|
+
|
|
|
+ p['evaluation_time'] = post.evaluation_time
|
|
|
+ p['evaluator_version'] = post.evaluator_version
|
|
|
+
|
|
|
+ # 更新V4嵌套字段
|
|
|
+ p['knowledge_evaluation'] = post.knowledge_evaluation
|
|
|
+ p['content_knowledge_evaluation'] = post.content_knowledge_evaluation
|
|
|
+ p['purpose_evaluation'] = post.purpose_evaluation
|
|
|
+ p['category_evaluation'] = post.category_evaluation
|
|
|
+ break
|
|
|
+
|
|
|
+ # 保存更新后的run_context.json
|
|
|
+ output_path = run_context_path.replace('.json', '_v4.json')
|
|
|
+ with open(output_path, 'w', encoding='utf-8') as f:
|
|
|
+ json.dump(run_context, f, ensure_ascii=False, indent=2)
|
|
|
+ print(f"✅ 已保存: {output_path}")
|
|
|
+
|
|
|
+ # 保存详细评估报告
|
|
|
+ report_path = run_context_path.replace('.json', '_evaluation_report_v4.json')
|
|
|
+ evaluation_report = {
|
|
|
+ 'metadata': {
|
|
|
+ 'original_query': original_query,
|
|
|
+ 'total_posts': len(results),
|
|
|
+ 'evaluation_time': datetime.now().strftime('%Y-%m-%d %H:%M:%S'),
|
|
|
+ 'evaluator_version': 'v4.0_langgraph'
|
|
|
+ },
|
|
|
+ 'detailed_reports': detailed_reports
|
|
|
+ }
|
|
|
+ with open(report_path, 'w', encoding='utf-8') as f:
|
|
|
+ json.dump(evaluation_report, f, ensure_ascii=False, indent=2)
|
|
|
+ print(f"📄 已保存详细评估报告: {report_path}\n")
|
|
|
+
|
|
|
+ # 生成统计报告
|
|
|
+ print(f"\n{'='*80}")
|
|
|
+ print("📊 统计报告")
|
|
|
+ print(f"{'='*80}\n")
|
|
|
+
|
|
|
+ # Prompt1: 是否是知识
|
|
|
+ is_knowledge_counts = defaultdict(int)
|
|
|
+ for _, _, _, post in results:
|
|
|
+ if post.is_knowledge:
|
|
|
+ is_knowledge_counts['是知识'] += 1
|
|
|
+ else:
|
|
|
+ is_knowledge_counts['非知识'] += 1
|
|
|
+
|
|
|
+ total = len(results)
|
|
|
+ print("🔍 Prompt1 - 是否是知识:")
|
|
|
+ print(f" 是知识: {is_knowledge_counts['是知识']:3d} / {total} ({is_knowledge_counts['是知识']/total*100:.1f}%)")
|
|
|
+ print(f" 非知识: {is_knowledge_counts['非知识']:3d} / {total} ({is_knowledge_counts['非知识']/total*100:.1f}%)")
|
|
|
+ print()
|
|
|
+
|
|
|
+ # Prompt2: 是否是内容知识
|
|
|
+ is_content_knowledge_counts = defaultdict(int)
|
|
|
+ knowledge_scores = []
|
|
|
+ for _, _, _, post in results:
|
|
|
+ if post.is_content_knowledge is not None:
|
|
|
+ if post.is_content_knowledge:
|
|
|
+ is_content_knowledge_counts['是内容知识'] += 1
|
|
|
+ else:
|
|
|
+ is_content_knowledge_counts['非内容知识'] += 1
|
|
|
+
|
|
|
+ if post.knowledge_score is not None:
|
|
|
+ knowledge_scores.append(post.knowledge_score)
|
|
|
+
|
|
|
+ if is_content_knowledge_counts:
|
|
|
+ content_total = sum(is_content_knowledge_counts.values())
|
|
|
+ print("📚 Prompt2 - 是否是内容知识:")
|
|
|
+ print(f" 是内容知识: {is_content_knowledge_counts['是内容知识']:3d} / {content_total} ({is_content_knowledge_counts['是内容知识']/content_total*100:.1f}%)")
|
|
|
+ if is_content_knowledge_counts['非内容知识'] > 0:
|
|
|
+ print(f" 非内容知识: {is_content_knowledge_counts['非内容知识']:3d} / {content_total} ({is_content_knowledge_counts['非内容知识']/content_total*100:.1f}%)")
|
|
|
+ print()
|
|
|
+
|
|
|
+ if knowledge_scores:
|
|
|
+ avg_score = sum(knowledge_scores) / len(knowledge_scores)
|
|
|
+ print(f" 知识平均得分: {avg_score:.1f}分")
|
|
|
+ print(f" 知识最高得分: {max(knowledge_scores):.0f}分")
|
|
|
+ print(f" 知识最低得分: {min(knowledge_scores):.0f}分")
|
|
|
+ print()
|
|
|
+
|
|
|
+ # Prompt3 & Prompt4: 目的性和品类匹配
|
|
|
+ purpose_scores = []
|
|
|
+ category_scores = []
|
|
|
+ final_scores = []
|
|
|
+ match_level_counts = defaultdict(int)
|
|
|
+
|
|
|
+ for _, _, _, post in results:
|
|
|
+ if post.purpose_score is not None:
|
|
|
+ purpose_scores.append(post.purpose_score)
|
|
|
+ if post.category_score is not None:
|
|
|
+ category_scores.append(post.category_score)
|
|
|
+ if post.final_score is not None:
|
|
|
+ final_scores.append(post.final_score)
|
|
|
+ if post.match_level:
|
|
|
+ match_level_counts[post.match_level] += 1
|
|
|
+
|
|
|
+ if purpose_scores:
|
|
|
+ avg_purpose = sum(purpose_scores) / len(purpose_scores)
|
|
|
+ print("🎯 Prompt3 - 目的性匹配:")
|
|
|
+ print(f" 平均得分: {avg_purpose:.1f}分")
|
|
|
+ print(f" 最高得分: {max(purpose_scores):.0f}分")
|
|
|
+ print(f" 最低得分: {min(purpose_scores):.0f}分")
|
|
|
+ print()
|
|
|
+
|
|
|
+ if category_scores:
|
|
|
+ avg_category = sum(category_scores) / len(category_scores)
|
|
|
+ print("🏷️ Prompt4 - 品类匹配:")
|
|
|
+ print(f" 平均得分: {avg_category:.1f}分")
|
|
|
+ print(f" 最高得分: {max(category_scores):.0f}分")
|
|
|
+ print(f" 最低得分: {min(category_scores):.0f}分")
|
|
|
+ print()
|
|
|
+
|
|
|
+ if final_scores:
|
|
|
+ avg_final = sum(final_scores) / len(final_scores)
|
|
|
+ print("🔥 综合得分 (目的性50% + 品类50%):")
|
|
|
+ print(f" 平均得分: {avg_final:.2f}分")
|
|
|
+ print(f" 最高得分: {max(final_scores):.2f}分")
|
|
|
+ print(f" 最低得分: {min(final_scores):.2f}分")
|
|
|
+ print()
|
|
|
+
|
|
|
+ if match_level_counts:
|
|
|
+ print("📊 匹配等级分布:")
|
|
|
+ for level in ['高度匹配', '基本匹配', '部分匹配', '弱匹配', '不匹配']:
|
|
|
+ count = match_level_counts.get(level, 0)
|
|
|
+ if count > 0:
|
|
|
+ bar = '█' * int(count / total * 50)
|
|
|
+ print(f" {level:8s}: {count:3d} / {total} ({count/total*100:.1f}%) {bar}")
|
|
|
+ print()
|
|
|
+
|
|
|
+ # 综合分析
|
|
|
+ print("🌟 高质量内容统计:")
|
|
|
+
|
|
|
+ # 是知识 + 是内容知识
|
|
|
+ is_quality_knowledge = sum(
|
|
|
+ 1 for _, _, _, post in results
|
|
|
+ if post.is_knowledge and post.is_content_knowledge
|
|
|
+ )
|
|
|
+ print(f" 知识内容: {is_quality_knowledge} / {total} ({is_quality_knowledge/total*100:.1f}%)")
|
|
|
+
|
|
|
+ # 是知识 + 是内容知识 + 高度匹配
|
|
|
+ high_match = sum(
|
|
|
+ 1 for _, _, _, post in results
|
|
|
+ if post.is_knowledge and post.is_content_knowledge and post.match_level == '高度匹配'
|
|
|
+ )
|
|
|
+ print(f" 高度匹配: {high_match} / {total} ({high_match/total*100:.1f}%)")
|
|
|
+
|
|
|
+ # 是知识 + 是内容知识 + 综合得分>=70
|
|
|
+ high_score = sum(
|
|
|
+ 1 for _, _, _, post in results
|
|
|
+ if post.is_knowledge and post.is_content_knowledge and post.final_score and post.final_score >= 70
|
|
|
+ )
|
|
|
+ print(f" 得分≥70: {high_score} / {total} ({high_score/total*100:.1f}%)")
|
|
|
+ print()
|
|
|
+
|
|
|
+ print(f"{'='*80}\n")
|
|
|
+
|
|
|
+ return results
|
|
|
+
|
|
|
+
|
|
|
+if __name__ == "__main__":
|
|
|
+ if len(sys.argv) < 2:
|
|
|
+ print("用法: python3 test_evaluation_v4.py <run_context.json路径> [最大评估数量]")
|
|
|
+ print()
|
|
|
+ print("示例:")
|
|
|
+ print(" python3 test_evaluation_v4.py input/test_case/output/knowledge_search_traverse/20251114/005215_b1/run_context.json")
|
|
|
+ print(" python3 test_evaluation_v4.py input/test_case/output/knowledge_search_traverse/20251114/005215_b1/run_context.json 20")
|
|
|
+ sys.exit(1)
|
|
|
+
|
|
|
+ run_context_path = sys.argv[1]
|
|
|
+ max_posts = int(sys.argv[2]) if len(sys.argv) > 2 else 20 # 默认20条
|
|
|
+
|
|
|
+ asyncio.run(test_evaluation_v4(run_context_path, max_posts))
|