|
@@ -0,0 +1,1039 @@
|
|
|
|
|
+import asyncio
|
|
|
|
|
+import json
|
|
|
|
|
+import os
|
|
|
|
|
+import sys
|
|
|
|
|
+import argparse
|
|
|
|
|
+from datetime import datetime
|
|
|
|
|
+from typing import Literal
|
|
|
|
|
+
|
|
|
|
|
+from agents import Agent, Runner
|
|
|
|
|
+from lib.my_trace import set_trace
|
|
|
|
|
+from pydantic import BaseModel, Field
|
|
|
|
|
+
|
|
|
|
|
+from lib.utils import read_file_as_string
|
|
|
|
|
+from lib.client import get_model
|
|
|
|
|
+MODEL_NAME = "google/gemini-2.5-flash"
|
|
|
|
|
+from script.search_recommendations.xiaohongshu_search_recommendations import XiaohongshuSearchRecommendations
|
|
|
|
|
+from script.search.xiaohongshu_search import XiaohongshuSearch
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+# ============================================================================
|
|
|
|
|
+# 数据模型
|
|
|
|
|
+# ============================================================================
|
|
|
|
|
+
|
|
|
|
|
+class Seg(BaseModel):
|
|
|
|
|
+ """分词"""
|
|
|
|
|
+ text: str
|
|
|
|
|
+ score_with_o: float = 0.0 # 与原始问题的评分
|
|
|
|
|
+ reason: str = "" # 评分理由
|
|
|
|
|
+ from_o: str = "" # 原始问题
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+class Word(BaseModel):
|
|
|
|
|
+ """词"""
|
|
|
|
|
+ text: str
|
|
|
|
|
+ score_with_o: float = 0.0 # 与原始问题的评分
|
|
|
|
|
+ from_o: str = "" # 原始问题
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+class QFromQ(BaseModel):
|
|
|
|
|
+ """Q来源信息(用于Sug中记录)"""
|
|
|
|
|
+ text: str
|
|
|
|
|
+ score_with_o: float = 0.0
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+class Q(BaseModel):
|
|
|
|
|
+ """查询"""
|
|
|
|
|
+ text: str
|
|
|
|
|
+ score_with_o: float = 0.0 # 与原始问题的评分
|
|
|
|
|
+ reason: str = "" # 评分理由
|
|
|
|
|
+ from_source: str = "" # seg/sug/add(加词)
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+class Sug(BaseModel):
|
|
|
|
|
+ """建议词"""
|
|
|
|
|
+ text: str
|
|
|
|
|
+ score_with_o: float = 0.0 # 与原始问题的评分
|
|
|
|
|
+ reason: str = "" # 评分理由
|
|
|
|
|
+ from_q: QFromQ | None = None # 来自的q
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+class Seed(BaseModel):
|
|
|
|
|
+ """种子"""
|
|
|
|
|
+ text: str
|
|
|
|
|
+ added_words: list[str] = Field(default_factory=list) # 已经增加的words
|
|
|
|
|
+ from_type: str = "" # seg/sug
|
|
|
|
|
+ score_with_o: float = 0.0 # 与原始问题的评分
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+class Post(BaseModel):
|
|
|
|
|
+ """帖子"""
|
|
|
|
|
+ title: str = ""
|
|
|
|
|
+ body_text: str = ""
|
|
|
|
|
+ type: str = "normal" # video/normal
|
|
|
|
|
+ images: list[str] = Field(default_factory=list) # 图片url列表,第一张为封面
|
|
|
|
|
+ video: str = "" # 视频url
|
|
|
|
|
+ interact_info: dict = Field(default_factory=dict) # 互动信息
|
|
|
|
|
+ note_id: str = ""
|
|
|
|
|
+ note_url: str = ""
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+class Search(Sug):
|
|
|
|
|
+ """搜索结果(继承Sug)"""
|
|
|
|
|
+ post_list: list[Post] = Field(default_factory=list) # 搜索得到的帖子列表
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+class RunContext(BaseModel):
|
|
|
|
|
+ """运行上下文"""
|
|
|
|
|
+ version: str
|
|
|
|
|
+ input_files: dict[str, str]
|
|
|
|
|
+ c: str # 原始需求
|
|
|
|
|
+ o: str # 原始问题
|
|
|
|
|
+ log_url: str
|
|
|
|
|
+ log_dir: str
|
|
|
|
|
+
|
|
|
|
|
+ # 每轮的数据
|
|
|
|
|
+ rounds: list[dict] = Field(default_factory=list) # 每轮的详细数据
|
|
|
|
|
+
|
|
|
|
|
+ # 最终结果
|
|
|
|
|
+ final_output: str | None = None
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+# ============================================================================
|
|
|
|
|
+# Agent 定义
|
|
|
|
|
+# ============================================================================
|
|
|
|
|
+
|
|
|
|
|
+# Agent 1: 分词专家
|
|
|
|
|
+class WordSegmentation(BaseModel):
|
|
|
|
|
+ """分词结果"""
|
|
|
|
|
+ words: list[str] = Field(..., description="分词结果列表")
|
|
|
|
|
+ reasoning: str = Field(..., description="分词理由")
|
|
|
|
|
+
|
|
|
|
|
+word_segmentation_instructions = """
|
|
|
|
|
+你是分词专家。给定一个query,将其拆分成有意义的最小单元。
|
|
|
|
|
+
|
|
|
|
|
+## 分词原则
|
|
|
|
|
+1. 保留有搜索意义的词汇
|
|
|
|
|
+2. 拆分成独立的概念
|
|
|
|
|
+3. 保留专业术语的完整性
|
|
|
|
|
+4. 去除虚词(的、吗、呢等)
|
|
|
|
|
+
|
|
|
|
|
+## 输出要求
|
|
|
|
|
+返回分词列表和分词理由。
|
|
|
|
|
+""".strip()
|
|
|
|
|
+
|
|
|
|
|
+word_segmenter = Agent[None](
|
|
|
|
|
+ name="分词专家",
|
|
|
|
|
+ instructions=word_segmentation_instructions,
|
|
|
|
|
+ model=get_model(MODEL_NAME),
|
|
|
|
|
+ output_type=WordSegmentation,
|
|
|
|
|
+)
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+# Agent 2.1: 动机维度评估专家
|
|
|
|
|
+class MotivationEvaluation(BaseModel):
|
|
|
|
|
+ """动机维度评估"""
|
|
|
|
|
+ motivation_score: float = Field(..., description="动机维度得分 -1~1")
|
|
|
|
|
+ reason: str = Field(..., description="动机评估理由")
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+# Agent 2.2: 品类维度评估专家
|
|
|
|
|
+class CategoryEvaluation(BaseModel):
|
|
|
|
|
+ """品类维度评估"""
|
|
|
|
|
+ category_score: float = Field(..., description="品类维度得分 -1~1")
|
|
|
|
|
+ reason: str = Field(..., description="品类评估理由")
|
|
|
|
|
+
|
|
|
|
|
+motivation_evaluation_instructions = """
|
|
|
|
|
+# 角色定义
|
|
|
|
|
+你是 **动机维度评估专家**。你的任务是:评估 <平台sug词条> 与 <原始问题> 的**动机匹配度**,给出 **-1 到 1 之间** 的数值评分。
|
|
|
|
|
+
|
|
|
|
|
+## 核心任务
|
|
|
|
|
+评估对象:<平台sug词条> 与 <原始问题> 的需求动机匹配度
|
|
|
|
|
+核心要素:**动词** - 获取、学习、拍摄、制作、寻找等
|
|
|
|
|
+
|
|
|
|
|
+## 如何识别核心动机
|
|
|
|
|
+
|
|
|
|
|
+**核心动机必须是动词**:
|
|
|
|
|
+
|
|
|
|
|
+### 方法1: 显性动词直接提取
|
|
|
|
|
+当原始问题明确包含动词时,直接提取
|
|
|
|
|
+示例:
|
|
|
|
|
+"如何获取素材" → 核心动机 = "获取"
|
|
|
|
|
+"寻找拍摄技巧" → 核心动机 = "寻找"(或"学习")
|
|
|
|
|
+"制作视频教程" → 核心动机 = "制作"
|
|
|
|
|
+
|
|
|
|
|
+### 方法2: 隐性动词语义推理
|
|
|
|
|
+当原始问题没有显性动词时,需要结合上下文推理
|
|
|
|
|
+示例:
|
|
|
|
|
+"川西秋天风光摄影" → 隐含动作="拍摄"
|
|
|
|
|
+
|
|
|
|
|
+如果原始问题是纯名词短语,无任何动作线索:
|
|
|
|
|
+→ 核心动机 = 无法识别
|
|
|
|
|
+→ 得分 = 0
|
|
|
|
|
+示例:
|
|
|
|
|
+"摄影" → 无法识别动机,得分=0
|
|
|
|
|
+"川西风光" → 无法识别动机,得分=0
|
|
|
|
|
+
|
|
|
|
|
+## 评分标准
|
|
|
|
|
+
|
|
|
|
|
+【正向匹配】
|
|
|
|
|
++1.0: 核心动作完全一致
|
|
|
|
|
+ - 例: 原始问题"如何获取素材" vs sug词"素材获取方法"
|
|
|
|
|
+ - 特殊规则: sug词的核心动作是原始问题动作的具体化子集,也判定为完全一致
|
|
|
|
|
+ · 例: 原始问题"扣除猫咪主体的方法" vs sug词"扣除猫咪眼睛的方法"
|
|
|
|
|
+
|
|
|
|
|
++0.8~0.95: 核心动作语义相近或为同义表达
|
|
|
|
|
+ - 例: 原始问题"如何获取素材" vs sug词"素材下载教程"
|
|
|
|
|
+ - 同义词对: 获取≈下载≈寻找, 技巧≈方法≈教程≈攻略
|
|
|
|
|
+
|
|
|
|
|
++0.5~0.75: 核心动作相关但非直接对应(相关实现路径)
|
|
|
|
|
+ - 例: 原始问题"如何获取素材" vs sug词"素材管理整理"
|
|
|
|
|
+
|
|
|
|
|
++0.2~0.45: 核心动作弱相关(同领域不同动作)
|
|
|
|
|
+ - 例: 原始问题"如何拍摄风光" vs sug词"风光摄影欣赏"
|
|
|
|
|
+
|
|
|
|
|
+【中性/无关】
|
|
|
|
|
+0: 没有明确目的,动作意图无明确关联
|
|
|
|
|
+ - 例: 原始问题"如何获取素材" vs sug词"摄影器材推荐"
|
|
|
|
|
+ - 例: 原始问题无法识别动机 且 sug词也无明确动作 → 0
|
|
|
|
|
+
|
|
|
|
|
+【负向偏离】
|
|
|
|
|
+-0.2~-0.05: 动作意图轻度冲突或误导
|
|
|
|
|
+ - 例: 原始问题"如何获取素材" vs sug词"素材版权保护须知"
|
|
|
|
|
+
|
|
|
|
|
+-0.5~-0.25: 动作意图明显对立
|
|
|
|
|
+ - 例: 原始问题"如何获取免费素材" vs sug词"如何售卖素材"
|
|
|
|
|
+
|
|
|
|
|
+-1.0~-0.55: 动作意图完全相反或产生严重负面引导
|
|
|
|
|
+ - 例: 原始问题"免费素材获取" vs sug词"付费素材强制推销"
|
|
|
|
|
+
|
|
|
|
|
+## 输出
|
|
|
|
|
+- motivation_score: -1到1的动机得分
|
|
|
|
|
+- reason: 详细评估理由(说明核心动作识别和匹配情况)
|
|
|
|
|
+""".strip()
|
|
|
|
|
+
|
|
|
|
|
+motivation_evaluator = Agent[None](
|
|
|
|
|
+ name="动机维度评估专家",
|
|
|
|
|
+ instructions=motivation_evaluation_instructions,
|
|
|
|
|
+ model=get_model(MODEL_NAME),
|
|
|
|
|
+ output_type=MotivationEvaluation,
|
|
|
|
|
+)
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+category_evaluation_instructions = """
|
|
|
|
|
+# 角色定义
|
|
|
|
|
+你是 **品类维度评估专家**。你的任务是:评估 <平台sug词条> 与 <原始问题> 的**品类匹配度**,给出 **-1 到 1 之间** 的数值评分。
|
|
|
|
|
+
|
|
|
|
|
+## 核心任务
|
|
|
|
|
+评估对象:<平台sug词条> 与 <原始问题> 的内容主体和限定词匹配度
|
|
|
|
|
+核心要素:**名词+限定词** - 川西、秋季、风光摄影、素材
|
|
|
|
|
+
|
|
|
|
|
+## 评分标准
|
|
|
|
|
+
|
|
|
|
|
+【正向匹配】
|
|
|
|
|
++1.0: 核心主体+所有关键限定词完全匹配
|
|
|
|
|
+ - 例: 原始问题"川西秋季风光摄影素材" vs sug词"川西秋季风光摄影作品"
|
|
|
|
|
+
|
|
|
|
|
++0.75~0.95: 核心主体匹配,大部分限定词匹配
|
|
|
|
|
+ - 例: 原始问题"川西秋季风光摄影素材" vs sug词"川西风光摄影素材"(缺失"秋季")
|
|
|
|
|
+
|
|
|
|
|
++0.5~0.7: 核心主体匹配,少量限定词匹配或合理泛化
|
|
|
|
|
+ - 例: 原始问题"川西秋季风光摄影素材" vs sug词"四川风光摄影"
|
|
|
|
|
+
|
|
|
|
|
++0.2~0.45: 仅主体词匹配,限定词全部缺失或错位
|
|
|
|
|
+ - 例: 原始问题"川西秋季风光摄影素材" vs sug词"风光摄影入门"
|
|
|
|
|
+
|
|
|
|
|
++0.05~0.15: 主题领域相关但品类不同
|
|
|
|
|
+ - 例: 原始问题"风光摄影素材" vs sug词"人文摄影素材"
|
|
|
|
|
+
|
|
|
|
|
+【中性/无关】
|
|
|
|
|
+0: 主体词部分相关但类别明显不同
|
|
|
|
|
+ - 例: 原始问题"川西秋季风光摄影素材" vs sug词"人像摄影素材"
|
|
|
|
|
+
|
|
|
|
|
+【负向偏离】
|
|
|
|
|
+-0.2~-0.05: 主体词或限定词存在误导性
|
|
|
|
|
+ - 例: 原始问题"免费摄影素材" vs sug词"付费摄影素材库"
|
|
|
|
|
+
|
|
|
|
|
+-0.5~-0.25: 主体词明显错位或品类冲突
|
|
|
|
|
+ - 例: 原始问题"风光摄影素材" vs sug词"人像修图教程"
|
|
|
|
|
+
|
|
|
|
|
+-1.0~-0.55: 完全错误的品类或有害引导
|
|
|
|
|
+ - 例: 原始问题"正版素材获取" vs sug词"盗版素材下载"
|
|
|
|
|
+
|
|
|
|
|
+## 输出
|
|
|
|
|
+- category_score: -1到1的品类得分
|
|
|
|
|
+- reason: 详细评估理由(说明主体词和限定词匹配情况)
|
|
|
|
|
+""".strip()
|
|
|
|
|
+
|
|
|
|
|
+category_evaluator = Agent[None](
|
|
|
|
|
+ name="品类维度评估专家",
|
|
|
|
|
+ instructions=category_evaluation_instructions,
|
|
|
|
|
+ model=get_model(MODEL_NAME),
|
|
|
|
|
+ output_type=CategoryEvaluation,
|
|
|
|
|
+)
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+# Agent 3: 加词选择专家
|
|
|
|
|
+class WordSelection(BaseModel):
|
|
|
|
|
+ """加词选择结果"""
|
|
|
|
|
+ selected_word: str = Field(..., description="选择的词")
|
|
|
|
|
+ combined_query: str = Field(..., description="组合后的新query")
|
|
|
|
|
+ reasoning: str = Field(..., description="选择理由")
|
|
|
|
|
+
|
|
|
|
|
+word_selection_instructions = """
|
|
|
|
|
+你是加词选择专家。
|
|
|
|
|
+
|
|
|
|
|
+## 任务
|
|
|
|
|
+从候选词列表中选择一个最合适的词,与当前seed组合成新的query。
|
|
|
|
|
+
|
|
|
|
|
+## 原则
|
|
|
|
|
+1. 选择与当前seed最相关的词
|
|
|
|
|
+2. 组合后的query要语义通顺
|
|
|
|
|
+3. 符合搜索习惯
|
|
|
|
|
+4. 优先选择能扩展搜索范围的词
|
|
|
|
|
+
|
|
|
|
|
+## 输出
|
|
|
|
|
+- selected_word: 选中的词
|
|
|
|
|
+- combined_query: 组合后的新query
|
|
|
|
|
+- reasoning: 选择理由
|
|
|
|
|
+""".strip()
|
|
|
|
|
+
|
|
|
|
|
+word_selector = Agent[None](
|
|
|
|
|
+ name="加词选择专家",
|
|
|
|
|
+ instructions=word_selection_instructions,
|
|
|
|
|
+ model=get_model(MODEL_NAME),
|
|
|
|
|
+ output_type=WordSelection,
|
|
|
|
|
+)
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+# ============================================================================
|
|
|
|
|
+# 辅助函数
|
|
|
|
|
+# ============================================================================
|
|
|
|
|
+
|
|
|
|
|
+def process_note_data(note: dict) -> Post:
|
|
|
|
|
+ """处理搜索接口返回的帖子数据"""
|
|
|
|
|
+ note_card = note.get("note_card", {})
|
|
|
|
|
+ image_list = note_card.get("image_list", [])
|
|
|
|
|
+ interact_info = note_card.get("interact_info", {})
|
|
|
|
|
+ user_info = note_card.get("user", {})
|
|
|
|
|
+
|
|
|
|
|
+ # 提取图片URL - 使用新的字段名 image_url
|
|
|
|
|
+ images = []
|
|
|
|
|
+ for img in image_list:
|
|
|
|
|
+ if isinstance(img, dict):
|
|
|
|
|
+ # 尝试新字段名 image_url,如果不存在则尝试旧字段名 url_default
|
|
|
|
|
+ img_url = img.get("image_url") or img.get("url_default")
|
|
|
|
|
+ if img_url:
|
|
|
|
|
+ images.append(img_url)
|
|
|
|
|
+
|
|
|
|
|
+ # 判断类型
|
|
|
|
|
+ note_type = note_card.get("type", "normal")
|
|
|
|
|
+ video_url = ""
|
|
|
|
|
+ if note_type == "video":
|
|
|
|
|
+ video_info = note_card.get("video", {})
|
|
|
|
|
+ if isinstance(video_info, dict):
|
|
|
|
|
+ # 尝试获取视频URL
|
|
|
|
|
+ video_url = video_info.get("media", {}).get("stream", {}).get("h264", [{}])[0].get("master_url", "")
|
|
|
|
|
+
|
|
|
|
|
+ return Post(
|
|
|
|
|
+ note_id=note.get("id", ""),
|
|
|
|
|
+ title=note_card.get("display_title", ""),
|
|
|
|
|
+ body_text=note_card.get("desc", ""),
|
|
|
|
|
+ type=note_type,
|
|
|
|
|
+ images=images,
|
|
|
|
|
+ video=video_url,
|
|
|
|
|
+ interact_info={
|
|
|
|
|
+ "liked_count": interact_info.get("liked_count", 0),
|
|
|
|
|
+ "collected_count": interact_info.get("collected_count", 0),
|
|
|
|
|
+ "comment_count": interact_info.get("comment_count", 0),
|
|
|
|
|
+ "shared_count": interact_info.get("shared_count", 0)
|
|
|
|
|
+ },
|
|
|
|
|
+ note_url=f"https://www.xiaohongshu.com/explore/{note.get('id', '')}"
|
|
|
|
|
+ )
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+def apply_score_rules(base_score: float, motivation_score: float, category_score: float) -> float:
|
|
|
|
|
+ """
|
|
|
|
|
+ 应用依存性规则调整得分
|
|
|
|
|
+
|
|
|
|
|
+ Args:
|
|
|
|
|
+ base_score: 基础加权得分 (motivation*0.7 + category*0.3)
|
|
|
|
|
+ motivation_score: 动机维度得分
|
|
|
|
|
+ category_score: 品类维度得分
|
|
|
|
|
+
|
|
|
|
|
+ Returns:
|
|
|
|
|
+ 调整后的最终得分
|
|
|
|
|
+ """
|
|
|
|
|
+ # 规则A: 动机高分保护机制
|
|
|
|
|
+ if motivation_score >= 0.8:
|
|
|
|
|
+ # 当目的高度一致时,品类的泛化不应导致"弱相关"
|
|
|
|
|
+ return max(base_score, 0.55)
|
|
|
|
|
+
|
|
|
|
|
+ # 规则B: 动机低分限制机制
|
|
|
|
|
+ if motivation_score <= 0.2:
|
|
|
|
|
+ # 目的不符时,品类匹配的价值有限
|
|
|
|
|
+ return min(base_score, 0.4)
|
|
|
|
|
+
|
|
|
|
|
+ # 规则C: 动机负向决定机制
|
|
|
|
|
+ if motivation_score < 0:
|
|
|
|
|
+ # 动作意图冲突时,推荐具有误导性,不应为正相关
|
|
|
|
|
+ return min(base_score, 0)
|
|
|
|
|
+
|
|
|
|
|
+ # 无规则调整
|
|
|
|
|
+ return base_score
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+async def evaluate_with_o(text: str, o: str) -> tuple[float, str]:
|
|
|
|
|
+ """评估文本与原始问题o的相关度
|
|
|
|
|
+
|
|
|
|
|
+ 采用两阶段评估:
|
|
|
|
|
+ 1. 动机维度评估(权重70%)
|
|
|
|
|
+ 2. 品类维度评估(权重30%)
|
|
|
|
|
+
|
|
|
|
|
+ Returns:
|
|
|
|
|
+ tuple[float, str]: (最终相关度分数, 综合评估理由)
|
|
|
|
|
+ """
|
|
|
|
|
+ # 准备输入
|
|
|
|
|
+ eval_input = f"""
|
|
|
|
|
+<原始问题>
|
|
|
|
|
+{o}
|
|
|
|
|
+</原始问题>
|
|
|
|
|
+
|
|
|
|
|
+<平台sug词条>
|
|
|
|
|
+{text}
|
|
|
|
|
+</平台sug词条>
|
|
|
|
|
+
|
|
|
|
|
+请评估平台sug词条与原始问题的匹配度。
|
|
|
|
|
+"""
|
|
|
|
|
+
|
|
|
|
|
+ # 并发调用两个评估器
|
|
|
|
|
+ motivation_task = Runner.run(motivation_evaluator, eval_input)
|
|
|
|
|
+ category_task = Runner.run(category_evaluator, eval_input)
|
|
|
|
|
+
|
|
|
|
|
+ motivation_result, category_result = await asyncio.gather(
|
|
|
|
|
+ motivation_task,
|
|
|
|
|
+ category_task
|
|
|
|
|
+ )
|
|
|
|
|
+
|
|
|
|
|
+ # 获取分维度评估结果
|
|
|
|
|
+ motivation_eval: MotivationEvaluation = motivation_result.final_output
|
|
|
|
|
+ category_eval: CategoryEvaluation = category_result.final_output
|
|
|
|
|
+
|
|
|
|
|
+ # 计算基础加权得分
|
|
|
|
|
+ base_score = motivation_eval.motivation_score * 0.7 + category_eval.category_score * 0.3
|
|
|
|
|
+
|
|
|
|
|
+ # 应用规则调整
|
|
|
|
|
+ final_score = apply_score_rules(
|
|
|
|
|
+ base_score,
|
|
|
|
|
+ motivation_eval.motivation_score,
|
|
|
|
|
+ category_eval.category_score
|
|
|
|
|
+ )
|
|
|
|
|
+
|
|
|
|
|
+ # 组合评估理由
|
|
|
|
|
+ combined_reason = (
|
|
|
|
|
+ f"【动机维度 {motivation_eval.motivation_score:.2f}】{motivation_eval.reason}\n"
|
|
|
|
|
+ f"【品类维度 {category_eval.category_score:.2f}】{category_eval.reason}\n"
|
|
|
|
|
+ f"【基础得分 {base_score:.2f}】动机*0.7 + 品类*0.3\n"
|
|
|
|
|
+ f"【最终得分 {final_score:.2f}】"
|
|
|
|
|
+ )
|
|
|
|
|
+
|
|
|
|
|
+ # 如果应用了规则,添加规则说明
|
|
|
|
|
+ if final_score != base_score:
|
|
|
|
|
+ if motivation_eval.motivation_score >= 0.8 and final_score > base_score:
|
|
|
|
|
+ combined_reason += "(应用规则A:动机高分保护)"
|
|
|
|
|
+ elif motivation_eval.motivation_score <= 0.2 and final_score < base_score:
|
|
|
|
|
+ combined_reason += "(应用规则B:动机低分限制)"
|
|
|
|
|
+ elif motivation_eval.motivation_score < 0 and final_score < base_score:
|
|
|
|
|
+ combined_reason += "(应用规则C:动机负向决定)"
|
|
|
|
|
+
|
|
|
|
|
+ return final_score, combined_reason
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+# ============================================================================
|
|
|
|
|
+# 核心流程函数
|
|
|
|
|
+# ============================================================================
|
|
|
|
|
+
|
|
|
|
|
+async def initialize(o: str, context: RunContext) -> tuple[list[Seg], list[Word], list[Q], list[Seed]]:
|
|
|
|
|
+ """
|
|
|
|
|
+ 初始化阶段
|
|
|
|
|
+
|
|
|
|
|
+ Returns:
|
|
|
|
|
+ (seg_list, word_list_1, q_list_1, seed_list)
|
|
|
|
|
+ """
|
|
|
|
|
+ print(f"\n{'='*60}")
|
|
|
|
|
+ print(f"初始化阶段")
|
|
|
|
|
+ print(f"{'='*60}")
|
|
|
|
|
+
|
|
|
|
|
+ # 1. 分词:原始问题(o) ->分词-> seg_list
|
|
|
|
|
+ print(f"\n[步骤1] 分词...")
|
|
|
|
|
+ result = await Runner.run(word_segmenter, o)
|
|
|
|
|
+ segmentation: WordSegmentation = result.final_output
|
|
|
|
|
+
|
|
|
|
|
+ seg_list = []
|
|
|
|
|
+ for word in segmentation.words:
|
|
|
|
|
+ seg_list.append(Seg(text=word, from_o=o))
|
|
|
|
|
+
|
|
|
|
|
+ print(f"分词结果: {[s.text for s in seg_list]}")
|
|
|
|
|
+ print(f"分词理由: {segmentation.reasoning}")
|
|
|
|
|
+
|
|
|
|
|
+ # 2. 分词评估:seg_list -> 每个seg与o进行评分(并发)
|
|
|
|
|
+ print(f"\n[步骤2] 评估每个分词与原始问题的相关度...")
|
|
|
|
|
+
|
|
|
|
|
+ async def evaluate_seg(seg: Seg) -> Seg:
|
|
|
|
|
+ seg.score_with_o, seg.reason = await evaluate_with_o(seg.text, o)
|
|
|
|
|
+ return seg
|
|
|
|
|
+
|
|
|
|
|
+ if seg_list:
|
|
|
|
|
+ eval_tasks = [evaluate_seg(seg) for seg in seg_list]
|
|
|
|
|
+ await asyncio.gather(*eval_tasks)
|
|
|
|
|
+
|
|
|
|
|
+ for seg in seg_list:
|
|
|
|
|
+ print(f" {seg.text}: {seg.score_with_o:.2f}")
|
|
|
|
|
+
|
|
|
|
|
+ # 3. 构建word_list_1: seg_list -> word_list_1
|
|
|
|
|
+ print(f"\n[步骤3] 构建word_list_1...")
|
|
|
|
|
+ word_list_1 = []
|
|
|
|
|
+ for seg in seg_list:
|
|
|
|
|
+ word_list_1.append(Word(
|
|
|
|
|
+ text=seg.text,
|
|
|
|
|
+ score_with_o=seg.score_with_o,
|
|
|
|
|
+ from_o=o
|
|
|
|
|
+ ))
|
|
|
|
|
+ print(f"word_list_1: {[w.text for w in word_list_1]}")
|
|
|
|
|
+
|
|
|
|
|
+ # 4. 构建q_list_1:seg_list 作为 q_list_1
|
|
|
|
|
+ print(f"\n[步骤4] 构建q_list_1...")
|
|
|
|
|
+ q_list_1 = []
|
|
|
|
|
+ for seg in seg_list:
|
|
|
|
|
+ q_list_1.append(Q(
|
|
|
|
|
+ text=seg.text,
|
|
|
|
|
+ score_with_o=seg.score_with_o,
|
|
|
|
|
+ reason=seg.reason,
|
|
|
|
|
+ from_source="seg"
|
|
|
|
|
+ ))
|
|
|
|
|
+ print(f"q_list_1: {[q.text for q in q_list_1]}")
|
|
|
|
|
+
|
|
|
|
|
+ # 5. 构建seed_list: seg_list -> seed_list
|
|
|
|
|
+ print(f"\n[步骤5] 构建seed_list...")
|
|
|
|
|
+ seed_list = []
|
|
|
|
|
+ for seg in seg_list:
|
|
|
|
|
+ seed_list.append(Seed(
|
|
|
|
|
+ text=seg.text,
|
|
|
|
|
+ added_words=[],
|
|
|
|
|
+ from_type="seg",
|
|
|
|
|
+ score_with_o=seg.score_with_o
|
|
|
|
|
+ ))
|
|
|
|
|
+ print(f"seed_list: {[s.text for s in seed_list]}")
|
|
|
|
|
+
|
|
|
|
|
+ return seg_list, word_list_1, q_list_1, seed_list
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+async def run_round(
|
|
|
|
|
+ round_num: int,
|
|
|
|
|
+ q_list: list[Q],
|
|
|
|
|
+ word_list: list[Word],
|
|
|
|
|
+ seed_list: list[Seed],
|
|
|
|
|
+ o: str,
|
|
|
|
|
+ context: RunContext,
|
|
|
|
|
+ xiaohongshu_api: XiaohongshuSearchRecommendations,
|
|
|
|
|
+ xiaohongshu_search: XiaohongshuSearch,
|
|
|
|
|
+ sug_threshold: float = 0.7
|
|
|
|
|
+) -> tuple[list[Word], list[Q], list[Seed], list[Search]]:
|
|
|
|
|
+ """
|
|
|
|
|
+ 运行一轮
|
|
|
|
|
+
|
|
|
|
|
+ Args:
|
|
|
|
|
+ round_num: 轮次编号
|
|
|
|
|
+ q_list: 当前轮的q列表
|
|
|
|
|
+ word_list: 当前的word列表
|
|
|
|
|
+ seed_list: 当前的seed列表
|
|
|
|
|
+ o: 原始问题
|
|
|
|
|
+ context: 运行上下文
|
|
|
|
|
+ xiaohongshu_api: 建议词API
|
|
|
|
|
+ xiaohongshu_search: 搜索API
|
|
|
|
|
+ sug_threshold: suggestion的阈值
|
|
|
|
|
+
|
|
|
|
|
+ Returns:
|
|
|
|
|
+ (word_list_next, q_list_next, seed_list_next, search_list)
|
|
|
|
|
+ """
|
|
|
|
|
+ print(f"\n{'='*60}")
|
|
|
|
|
+ print(f"第{round_num}轮")
|
|
|
|
|
+ print(f"{'='*60}")
|
|
|
|
|
+
|
|
|
|
|
+ round_data = {
|
|
|
|
|
+ "round_num": round_num,
|
|
|
|
|
+ "input_q_list": [{"text": q.text, "score": q.score_with_o} for q in q_list],
|
|
|
|
|
+ "input_word_list_size": len(word_list),
|
|
|
|
|
+ "input_seed_list_size": len(seed_list)
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ # 1. 请求sug:q_list -> 每个q请求sug接口 -> sug_list_list
|
|
|
|
|
+ print(f"\n[步骤1] 为每个q请求建议词...")
|
|
|
|
|
+ sug_list_list = [] # list of list
|
|
|
|
|
+ for q in q_list:
|
|
|
|
|
+ print(f"\n 处理q: {q.text}")
|
|
|
|
|
+ suggestions = xiaohongshu_api.get_recommendations(keyword=q.text)
|
|
|
|
|
+
|
|
|
|
|
+ q_sug_list = []
|
|
|
|
|
+ if suggestions:
|
|
|
|
|
+ print(f" 获取到 {len(suggestions)} 个建议词")
|
|
|
|
|
+ for sug_text in suggestions:
|
|
|
|
|
+ sug = Sug(
|
|
|
|
|
+ text=sug_text,
|
|
|
|
|
+ from_q=QFromQ(text=q.text, score_with_o=q.score_with_o)
|
|
|
|
|
+ )
|
|
|
|
|
+ q_sug_list.append(sug)
|
|
|
|
|
+ else:
|
|
|
|
|
+ print(f" 未获取到建议词")
|
|
|
|
|
+
|
|
|
|
|
+ sug_list_list.append(q_sug_list)
|
|
|
|
|
+
|
|
|
|
|
+ # 2. sug评估:sug_list_list -> 每个sug与o进评分(并发)
|
|
|
|
|
+ print(f"\n[步骤2] 评估每个建议词与原始问题的相关度...")
|
|
|
|
|
+
|
|
|
|
|
+ # 2.1 收集所有需要评估的sug,并记录它们所属的q
|
|
|
|
|
+ all_sugs = []
|
|
|
|
|
+ sug_to_q_map = {} # 记录每个sug属于哪个q
|
|
|
|
|
+ for i, q_sug_list in enumerate(sug_list_list):
|
|
|
|
|
+ if q_sug_list:
|
|
|
|
|
+ q_text = q_list[i].text
|
|
|
|
|
+ for sug in q_sug_list:
|
|
|
|
|
+ all_sugs.append(sug)
|
|
|
|
|
+ sug_to_q_map[id(sug)] = q_text
|
|
|
|
|
+
|
|
|
|
|
+ # 2.2 并发评估所有sug
|
|
|
|
|
+ async def evaluate_sug(sug: Sug) -> Sug:
|
|
|
|
|
+ sug.score_with_o, sug.reason = await evaluate_with_o(sug.text, o)
|
|
|
|
|
+ return sug
|
|
|
|
|
+
|
|
|
|
|
+ if all_sugs:
|
|
|
|
|
+ eval_tasks = [evaluate_sug(sug) for sug in all_sugs]
|
|
|
|
|
+ await asyncio.gather(*eval_tasks)
|
|
|
|
|
+
|
|
|
|
|
+ # 2.3 打印结果并组织到sug_details
|
|
|
|
|
+ sug_details = {} # 保存每个Q对应的sug列表
|
|
|
|
|
+ for i, q_sug_list in enumerate(sug_list_list):
|
|
|
|
|
+ if q_sug_list:
|
|
|
|
|
+ q_text = q_list[i].text
|
|
|
|
|
+ print(f"\n 来自q '{q_text}' 的建议词:")
|
|
|
|
|
+ sug_details[q_text] = []
|
|
|
|
|
+ for sug in q_sug_list:
|
|
|
|
|
+ print(f" {sug.text}: {sug.score_with_o:.2f}")
|
|
|
|
|
+ # 保存到sug_details
|
|
|
|
|
+ sug_details[q_text].append({
|
|
|
|
|
+ "text": sug.text,
|
|
|
|
|
+ "score": sug.score_with_o,
|
|
|
|
|
+ "reason": sug.reason
|
|
|
|
|
+ })
|
|
|
|
|
+
|
|
|
|
|
+ # 3. search_list构建
|
|
|
|
|
+ print(f"\n[步骤3] 构建search_list(阈值>{sug_threshold})...")
|
|
|
|
|
+ search_list = []
|
|
|
|
|
+ high_score_sugs = [sug for sug in all_sugs if sug.score_with_o > sug_threshold]
|
|
|
|
|
+
|
|
|
|
|
+ if high_score_sugs:
|
|
|
|
|
+ print(f" 找到 {len(high_score_sugs)} 个高分建议词")
|
|
|
|
|
+
|
|
|
|
|
+ # 并发搜索
|
|
|
|
|
+ async def search_for_sug(sug: Sug) -> Search:
|
|
|
|
|
+ print(f" 搜索: {sug.text}")
|
|
|
|
|
+ try:
|
|
|
|
|
+ search_result = xiaohongshu_search.search(keyword=sug.text)
|
|
|
|
|
+ result_str = search_result.get("result", "{}")
|
|
|
|
|
+ if isinstance(result_str, str):
|
|
|
|
|
+ result_data = json.loads(result_str)
|
|
|
|
|
+ else:
|
|
|
|
|
+ result_data = result_str
|
|
|
|
|
+
|
|
|
|
|
+ notes = result_data.get("data", {}).get("data", [])
|
|
|
|
|
+ post_list = []
|
|
|
|
|
+ for note in notes[:10]: # 只取前10个
|
|
|
|
|
+ post = process_note_data(note)
|
|
|
|
|
+ post_list.append(post)
|
|
|
|
|
+
|
|
|
|
|
+ print(f" → 找到 {len(post_list)} 个帖子")
|
|
|
|
|
+
|
|
|
|
|
+ return Search(
|
|
|
|
|
+ text=sug.text,
|
|
|
|
|
+ score_with_o=sug.score_with_o,
|
|
|
|
|
+ from_q=sug.from_q,
|
|
|
|
|
+ post_list=post_list
|
|
|
|
|
+ )
|
|
|
|
|
+ except Exception as e:
|
|
|
|
|
+ print(f" ✗ 搜索失败: {e}")
|
|
|
|
|
+ return Search(
|
|
|
|
|
+ text=sug.text,
|
|
|
|
|
+ score_with_o=sug.score_with_o,
|
|
|
|
|
+ from_q=sug.from_q,
|
|
|
|
|
+ post_list=[]
|
|
|
|
|
+ )
|
|
|
|
|
+
|
|
|
|
|
+ search_tasks = [search_for_sug(sug) for sug in high_score_sugs]
|
|
|
|
|
+ search_list = await asyncio.gather(*search_tasks)
|
|
|
|
|
+ else:
|
|
|
|
|
+ print(f" 没有高分建议词,search_list为空")
|
|
|
|
|
+
|
|
|
|
|
+ # 4. 构建word_list_next: word_list -> word_list_next(先直接复制)
|
|
|
|
|
+ print(f"\n[步骤4] 构建word_list_next(暂时直接复制)...")
|
|
|
|
|
+ word_list_next = word_list.copy()
|
|
|
|
|
+
|
|
|
|
|
+ # 5. 构建q_list_next
|
|
|
|
|
+ print(f"\n[步骤5] 构建q_list_next...")
|
|
|
|
|
+ q_list_next = []
|
|
|
|
|
+ add_word_details = {} # 保存每个seed对应的组合词列表
|
|
|
|
|
+
|
|
|
|
|
+ # 5.1 对于seed_list中的每个seed,从word_list_next中选一个未加过的词
|
|
|
|
|
+ print(f"\n 5.1 为每个seed加词...")
|
|
|
|
|
+ for seed in seed_list:
|
|
|
|
|
+ print(f"\n 处理seed: {seed.text}")
|
|
|
|
|
+
|
|
|
|
|
+ # 简单过滤:找出不在seed.text中且未被添加过的词
|
|
|
|
|
+ candidate_words = []
|
|
|
|
|
+ for word in word_list_next:
|
|
|
|
|
+ # 检查词是否已在seed中
|
|
|
|
|
+ if word.text in seed.text:
|
|
|
|
|
+ continue
|
|
|
|
|
+ # 检查词是否已被添加过
|
|
|
|
|
+ if word.text in seed.added_words:
|
|
|
|
|
+ continue
|
|
|
|
|
+ candidate_words.append(word)
|
|
|
|
|
+
|
|
|
|
|
+ if not candidate_words:
|
|
|
|
|
+ print(f" 没有可用的候选词")
|
|
|
|
|
+ continue
|
|
|
|
|
+
|
|
|
|
|
+ print(f" 候选词: {[w.text for w in candidate_words]}")
|
|
|
|
|
+
|
|
|
|
|
+ # 使用Agent选择最合适的词
|
|
|
|
|
+ selection_input = f"""
|
|
|
|
|
+<原始问题>
|
|
|
|
|
+{o}
|
|
|
|
|
+</原始问题>
|
|
|
|
|
+
|
|
|
|
|
+<当前Seed>
|
|
|
|
|
+{seed.text}
|
|
|
|
|
+</当前Seed>
|
|
|
|
|
+
|
|
|
|
|
+<候选词列表>
|
|
|
|
|
+{', '.join([w.text for w in candidate_words])}
|
|
|
|
|
+</候选词列表>
|
|
|
|
|
+
|
|
|
|
|
+请从候选词中选择一个最合适的词,与当前seed组合成新的query。
|
|
|
|
|
+"""
|
|
|
|
|
+ result = await Runner.run(word_selector, selection_input)
|
|
|
|
|
+ selection: WordSelection = result.final_output
|
|
|
|
|
+
|
|
|
|
|
+ # 验证选择的词是否在候选列表中
|
|
|
|
|
+ if selection.selected_word not in [w.text for w in candidate_words]:
|
|
|
|
|
+ print(f" ✗ Agent选择的词 '{selection.selected_word}' 不在候选列表中,跳过")
|
|
|
|
|
+ continue
|
|
|
|
|
+
|
|
|
|
|
+ print(f" ✓ 选择词: {selection.selected_word}")
|
|
|
|
|
+ print(f" ✓ 新query: {selection.combined_query}")
|
|
|
|
|
+ print(f" 理由: {selection.reasoning}")
|
|
|
|
|
+
|
|
|
|
|
+ # 评估新query
|
|
|
|
|
+ new_q_score, new_q_reason = await evaluate_with_o(selection.combined_query, o)
|
|
|
|
|
+ print(f" 新query评分: {new_q_score:.2f}")
|
|
|
|
|
+
|
|
|
|
|
+ # 创建新的q
|
|
|
|
|
+ new_q = Q(
|
|
|
|
|
+ text=selection.combined_query,
|
|
|
|
|
+ score_with_o=new_q_score,
|
|
|
|
|
+ reason=new_q_reason,
|
|
|
|
|
+ from_source="add"
|
|
|
|
|
+ )
|
|
|
|
|
+ q_list_next.append(new_q)
|
|
|
|
|
+
|
|
|
|
|
+ # 更新seed的added_words
|
|
|
|
|
+ seed.added_words.append(selection.selected_word)
|
|
|
|
|
+
|
|
|
|
|
+ # 保存到add_word_details
|
|
|
|
|
+ if seed.text not in add_word_details:
|
|
|
|
|
+ add_word_details[seed.text] = []
|
|
|
|
|
+ add_word_details[seed.text].append({
|
|
|
|
|
+ "text": selection.combined_query,
|
|
|
|
|
+ "score": new_q_score,
|
|
|
|
|
+ "reason": new_q_reason,
|
|
|
|
|
+ "selected_word": selection.selected_word
|
|
|
|
|
+ })
|
|
|
|
|
+
|
|
|
|
|
+ # 5.2 对于sug_list_list中,每个sug大于来自的query分数,加到q_list_next
|
|
|
|
|
+ print(f"\n 5.2 将高分sug加入q_list_next...")
|
|
|
|
|
+ for sug in all_sugs:
|
|
|
|
|
+ if sug.from_q and sug.score_with_o > sug.from_q.score_with_o:
|
|
|
|
|
+ new_q = Q(
|
|
|
|
|
+ text=sug.text,
|
|
|
|
|
+ score_with_o=sug.score_with_o,
|
|
|
|
|
+ reason=sug.reason,
|
|
|
|
|
+ from_source="sug"
|
|
|
|
|
+ )
|
|
|
|
|
+ q_list_next.append(new_q)
|
|
|
|
|
+ print(f" ✓ {sug.text} (分数: {sug.score_with_o:.2f} > {sug.from_q.score_with_o:.2f})")
|
|
|
|
|
+
|
|
|
|
|
+ # 6. 更新seed_list
|
|
|
|
|
+ print(f"\n[步骤6] 更新seed_list...")
|
|
|
|
|
+ seed_list_next = seed_list.copy() # 保留原有的seed
|
|
|
|
|
+
|
|
|
|
|
+ # 对于sug_list_list中,每个sug分数大于来源query分数的,且没在seed_list中出现过的,加入
|
|
|
|
|
+ existing_seed_texts = {seed.text for seed in seed_list_next}
|
|
|
|
|
+ for sug in all_sugs:
|
|
|
|
|
+ # 新逻辑:sug分数 > 对应query分数
|
|
|
|
|
+ if sug.from_q and sug.score_with_o > sug.from_q.score_with_o and sug.text not in existing_seed_texts:
|
|
|
|
|
+ new_seed = Seed(
|
|
|
|
|
+ text=sug.text,
|
|
|
|
|
+ added_words=[],
|
|
|
|
|
+ from_type="sug",
|
|
|
|
|
+ score_with_o=sug.score_with_o
|
|
|
|
|
+ )
|
|
|
|
|
+ seed_list_next.append(new_seed)
|
|
|
|
|
+ existing_seed_texts.add(sug.text)
|
|
|
|
|
+ print(f" ✓ 新seed: {sug.text} (分数: {sug.score_with_o:.2f} > 来源query: {sug.from_q.score_with_o:.2f})")
|
|
|
|
|
+
|
|
|
|
|
+ # 序列化搜索结果数据(包含帖子详情)
|
|
|
|
|
+ search_results_data = []
|
|
|
|
|
+ for search in search_list:
|
|
|
|
|
+ search_results_data.append({
|
|
|
|
|
+ "text": search.text,
|
|
|
|
|
+ "score_with_o": search.score_with_o,
|
|
|
|
|
+ "post_list": [
|
|
|
|
|
+ {
|
|
|
|
|
+ "note_id": post.note_id,
|
|
|
|
|
+ "note_url": post.note_url,
|
|
|
|
|
+ "title": post.title,
|
|
|
|
|
+ "body_text": post.body_text,
|
|
|
|
|
+ "images": post.images,
|
|
|
|
|
+ "interact_info": post.interact_info
|
|
|
|
|
+ }
|
|
|
|
|
+ for post in search.post_list
|
|
|
|
|
+ ]
|
|
|
|
|
+ })
|
|
|
|
|
+
|
|
|
|
|
+ # 记录本轮数据
|
|
|
|
|
+ round_data.update({
|
|
|
|
|
+ "sug_count": len(all_sugs),
|
|
|
|
|
+ "high_score_sug_count": len(high_score_sugs),
|
|
|
|
|
+ "search_count": len(search_list),
|
|
|
|
|
+ "total_posts": sum(len(s.post_list) for s in search_list),
|
|
|
|
|
+ "q_list_next_size": len(q_list_next),
|
|
|
|
|
+ "seed_list_next_size": len(seed_list_next),
|
|
|
|
|
+ "word_list_next_size": len(word_list_next),
|
|
|
|
|
+ "output_q_list": [{"text": q.text, "score": q.score_with_o, "reason": q.reason, "from": q.from_source} for q in q_list_next],
|
|
|
|
|
+ "seed_list_next": [{"text": seed.text, "from": seed.from_type, "score": seed.score_with_o} for seed in seed_list_next], # 下一轮种子列表
|
|
|
|
|
+ "sug_details": sug_details, # 每个Q对应的sug列表
|
|
|
|
|
+ "add_word_details": add_word_details, # 每个seed对应的组合词列表
|
|
|
|
|
+ "search_results": search_results_data # 搜索结果(包含帖子详情)
|
|
|
|
|
+ })
|
|
|
|
|
+ context.rounds.append(round_data)
|
|
|
|
|
+
|
|
|
|
|
+ print(f"\n本轮总结:")
|
|
|
|
|
+ print(f" 建议词数量: {len(all_sugs)}")
|
|
|
|
|
+ print(f" 高分建议词: {len(high_score_sugs)}")
|
|
|
|
|
+ print(f" 搜索数量: {len(search_list)}")
|
|
|
|
|
+ print(f" 帖子总数: {sum(len(s.post_list) for s in search_list)}")
|
|
|
|
|
+ print(f" 下轮q数量: {len(q_list_next)}")
|
|
|
|
|
+ print(f" seed数量: {len(seed_list_next)}")
|
|
|
|
|
+
|
|
|
|
|
+ return word_list_next, q_list_next, seed_list_next, search_list
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+async def iterative_loop(
|
|
|
|
|
+ context: RunContext,
|
|
|
|
|
+ max_rounds: int = 2,
|
|
|
|
|
+ sug_threshold: float = 0.7
|
|
|
|
|
+):
|
|
|
|
|
+ """主迭代循环"""
|
|
|
|
|
+
|
|
|
|
|
+ print(f"\n{'='*60}")
|
|
|
|
|
+ print(f"开始迭代循环")
|
|
|
|
|
+ print(f"最大轮数: {max_rounds}")
|
|
|
|
|
+ print(f"sug阈值: {sug_threshold}")
|
|
|
|
|
+ print(f"{'='*60}")
|
|
|
|
|
+
|
|
|
|
|
+ # 初始化
|
|
|
|
|
+ seg_list, word_list, q_list, seed_list = await initialize(context.o, context)
|
|
|
|
|
+
|
|
|
|
|
+ # API实例
|
|
|
|
|
+ xiaohongshu_api = XiaohongshuSearchRecommendations()
|
|
|
|
|
+ xiaohongshu_search = XiaohongshuSearch()
|
|
|
|
|
+
|
|
|
|
|
+ # 保存初始化数据
|
|
|
|
|
+ context.rounds.append({
|
|
|
|
|
+ "round_num": 0,
|
|
|
|
|
+ "type": "initialization",
|
|
|
|
|
+ "seg_list": [{"text": s.text, "score": s.score_with_o, "reason": s.reason} for s in seg_list],
|
|
|
|
|
+ "word_list_1": [{"text": w.text, "score": w.score_with_o} for w in word_list],
|
|
|
|
|
+ "q_list_1": [{"text": q.text, "score": q.score_with_o, "reason": q.reason} for q in q_list],
|
|
|
|
|
+ "seed_list": [{"text": s.text, "from_type": s.from_type, "score": s.score_with_o} for s in seed_list]
|
|
|
|
|
+ })
|
|
|
|
|
+
|
|
|
|
|
+ # 收集所有搜索结果
|
|
|
|
|
+ all_search_list = []
|
|
|
|
|
+
|
|
|
|
|
+ # 迭代
|
|
|
|
|
+ round_num = 1
|
|
|
|
|
+ while q_list and round_num <= max_rounds:
|
|
|
|
|
+ word_list, q_list, seed_list, search_list = await run_round(
|
|
|
|
|
+ round_num=round_num,
|
|
|
|
|
+ q_list=q_list,
|
|
|
|
|
+ word_list=word_list,
|
|
|
|
|
+ seed_list=seed_list,
|
|
|
|
|
+ o=context.o,
|
|
|
|
|
+ context=context,
|
|
|
|
|
+ xiaohongshu_api=xiaohongshu_api,
|
|
|
|
|
+ xiaohongshu_search=xiaohongshu_search,
|
|
|
|
|
+ sug_threshold=sug_threshold
|
|
|
|
|
+ )
|
|
|
|
|
+
|
|
|
|
|
+ all_search_list.extend(search_list)
|
|
|
|
|
+ round_num += 1
|
|
|
|
|
+
|
|
|
|
|
+ print(f"\n{'='*60}")
|
|
|
|
|
+ print(f"迭代完成")
|
|
|
|
|
+ print(f" 总轮数: {round_num - 1}")
|
|
|
|
|
+ print(f" 总搜索次数: {len(all_search_list)}")
|
|
|
|
|
+ print(f" 总帖子数: {sum(len(s.post_list) for s in all_search_list)}")
|
|
|
|
|
+ print(f"{'='*60}")
|
|
|
|
|
+
|
|
|
|
|
+ return all_search_list
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+# ============================================================================
|
|
|
|
|
+# 主函数
|
|
|
|
|
+# ============================================================================
|
|
|
|
|
+
|
|
|
|
|
+async def main(input_dir: str, max_rounds: int = 2, sug_threshold: float = 0.7, visualize: bool = False):
|
|
|
|
|
+ """主函数"""
|
|
|
|
|
+ current_time, log_url = set_trace()
|
|
|
|
|
+
|
|
|
|
|
+ # 读取输入
|
|
|
|
|
+ input_context_file = os.path.join(input_dir, 'context.md')
|
|
|
|
|
+ input_q_file = os.path.join(input_dir, 'q.md')
|
|
|
|
|
+
|
|
|
|
|
+ c = read_file_as_string(input_context_file) # 原始需求
|
|
|
|
|
+ o = read_file_as_string(input_q_file) # 原始问题
|
|
|
|
|
+
|
|
|
|
|
+ # 版本信息
|
|
|
|
|
+ version = os.path.basename(__file__)
|
|
|
|
|
+ version_name = os.path.splitext(version)[0]
|
|
|
|
|
+
|
|
|
|
|
+ # 日志目录
|
|
|
|
|
+ log_dir = os.path.join(input_dir, "output", version_name, current_time)
|
|
|
|
|
+
|
|
|
|
|
+ # 创建运行上下文
|
|
|
|
|
+ run_context = RunContext(
|
|
|
|
|
+ version=version,
|
|
|
|
|
+ input_files={
|
|
|
|
|
+ "input_dir": input_dir,
|
|
|
|
|
+ "context_file": input_context_file,
|
|
|
|
|
+ "q_file": input_q_file,
|
|
|
|
|
+ },
|
|
|
|
|
+ c=c,
|
|
|
|
|
+ o=o,
|
|
|
|
|
+ log_dir=log_dir,
|
|
|
|
|
+ log_url=log_url,
|
|
|
|
|
+ )
|
|
|
|
|
+
|
|
|
|
|
+ # 执行迭代
|
|
|
|
|
+ all_search_list = await iterative_loop(
|
|
|
|
|
+ run_context,
|
|
|
|
|
+ max_rounds=max_rounds,
|
|
|
|
|
+ sug_threshold=sug_threshold
|
|
|
|
|
+ )
|
|
|
|
|
+
|
|
|
|
|
+ # 格式化输出
|
|
|
|
|
+ output = f"原始需求:{run_context.c}\n"
|
|
|
|
|
+ output += f"原始问题:{run_context.o}\n"
|
|
|
|
|
+ output += f"总搜索次数:{len(all_search_list)}\n"
|
|
|
|
|
+ output += f"总帖子数:{sum(len(s.post_list) for s in all_search_list)}\n"
|
|
|
|
|
+ output += "\n" + "="*60 + "\n"
|
|
|
|
|
+
|
|
|
|
|
+ if all_search_list:
|
|
|
|
|
+ output += "【搜索结果】\n\n"
|
|
|
|
|
+ for idx, search in enumerate(all_search_list, 1):
|
|
|
|
|
+ output += f"{idx}. 搜索词: {search.text} (分数: {search.score_with_o:.2f})\n"
|
|
|
|
|
+ output += f" 帖子数: {len(search.post_list)}\n"
|
|
|
|
|
+ if search.post_list:
|
|
|
|
|
+ for post_idx, post in enumerate(search.post_list[:3], 1): # 只显示前3个
|
|
|
|
|
+ output += f" {post_idx}) {post.title}\n"
|
|
|
|
|
+ output += f" URL: {post.note_url}\n"
|
|
|
|
|
+ output += "\n"
|
|
|
|
|
+ else:
|
|
|
|
|
+ output += "未找到搜索结果\n"
|
|
|
|
|
+
|
|
|
|
|
+ run_context.final_output = output
|
|
|
|
|
+
|
|
|
|
|
+ print(f"\n{'='*60}")
|
|
|
|
|
+ print("最终结果")
|
|
|
|
|
+ print(f"{'='*60}")
|
|
|
|
|
+ print(output)
|
|
|
|
|
+
|
|
|
|
|
+ # 保存日志
|
|
|
|
|
+ os.makedirs(run_context.log_dir, exist_ok=True)
|
|
|
|
|
+
|
|
|
|
|
+ context_file_path = os.path.join(run_context.log_dir, "run_context.json")
|
|
|
|
|
+ context_dict = run_context.model_dump()
|
|
|
|
|
+ with open(context_file_path, "w", encoding="utf-8") as f:
|
|
|
|
|
+ json.dump(context_dict, f, ensure_ascii=False, indent=2)
|
|
|
|
|
+ print(f"\nRunContext saved to: {context_file_path}")
|
|
|
|
|
+
|
|
|
|
|
+ # 保存详细的搜索结果
|
|
|
|
|
+ search_results_path = os.path.join(run_context.log_dir, "search_results.json")
|
|
|
|
|
+ search_results_data = [s.model_dump() for s in all_search_list]
|
|
|
|
|
+ with open(search_results_path, "w", encoding="utf-8") as f:
|
|
|
|
|
+ json.dump(search_results_data, f, ensure_ascii=False, indent=2)
|
|
|
|
|
+ print(f"Search results saved to: {search_results_path}")
|
|
|
|
|
+
|
|
|
|
|
+ # 可视化
|
|
|
|
|
+ if visualize:
|
|
|
|
|
+ import subprocess
|
|
|
|
|
+ output_html = os.path.join(run_context.log_dir, "visualization.html")
|
|
|
|
|
+ print(f"\n🎨 生成可视化HTML...")
|
|
|
|
|
+
|
|
|
|
|
+ # 获取绝对路径
|
|
|
|
|
+ abs_context_file = os.path.abspath(context_file_path)
|
|
|
|
|
+ abs_output_html = os.path.abspath(output_html)
|
|
|
|
|
+
|
|
|
|
|
+ # 运行可视化脚本
|
|
|
|
|
+ result = subprocess.run([
|
|
|
|
|
+ "node",
|
|
|
|
|
+ "visualization/sug_v6_1_2_8/index.js",
|
|
|
|
|
+ abs_context_file,
|
|
|
|
|
+ abs_output_html
|
|
|
|
|
+ ])
|
|
|
|
|
+
|
|
|
|
|
+ if result.returncode == 0:
|
|
|
|
|
+ print(f"✅ 可视化已生成: {output_html}")
|
|
|
|
|
+ else:
|
|
|
|
|
+ print(f"❌ 可视化生成失败")
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+if __name__ == "__main__":
|
|
|
|
|
+ parser = argparse.ArgumentParser(description="搜索query优化工具 - v6.1.2.8 轮次迭代版")
|
|
|
|
|
+ parser.add_argument(
|
|
|
|
|
+ "--input-dir",
|
|
|
|
|
+ type=str,
|
|
|
|
|
+ default="input/旅游-逸趣玩旅行/如何获取能体现川西秋季特色的高质量风光摄影素材?",
|
|
|
|
|
+ help="输入目录路径,默认: input/旅游-逸趣玩旅行/如何获取能体现川西秋季特色的高质量风光摄影素材?"
|
|
|
|
|
+ )
|
|
|
|
|
+ parser.add_argument(
|
|
|
|
|
+ "--max-rounds",
|
|
|
|
|
+ type=int,
|
|
|
|
|
+ default=4,
|
|
|
|
|
+ help="最大轮数,默认: 2"
|
|
|
|
|
+ )
|
|
|
|
|
+ parser.add_argument(
|
|
|
|
|
+ "--sug-threshold",
|
|
|
|
|
+ type=float,
|
|
|
|
|
+ default=0.7,
|
|
|
|
|
+ help="suggestion阈值,默认: 0.7"
|
|
|
|
|
+ )
|
|
|
|
|
+ parser.add_argument(
|
|
|
|
|
+ "--visualize",
|
|
|
|
|
+ action="store_true",
|
|
|
|
|
+ default=True,
|
|
|
|
|
+ help="运行完成后自动生成可视化HTML"
|
|
|
|
|
+ )
|
|
|
|
|
+ args = parser.parse_args()
|
|
|
|
|
+
|
|
|
|
|
+ asyncio.run(main(args.input_dir, max_rounds=args.max_rounds, sug_threshold=args.sug_threshold, visualize=args.visualize))
|