| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383 |
- """
- 测试脚本:运行 待解构帖子.json(带历史帖子)
- 功能:
- 1. 加载最近3篇历史帖子(从早到晚排序)
- 2. 加载待解构帖子
- 3. 运行 WhatDeconstructionWorkflow
- """
- import json
- import sys
- import os
- import argparse
- from pathlib import Path
- from datetime import datetime
- # 添加项目根目录到路径
- project_root = Path(__file__).parent.parent
- sys.path.insert(0, str(project_root))
- # 手动加载.env文件
- def load_env_file(env_path):
- """手动加载.env文件"""
- if not env_path.exists():
- return False
- with open(env_path, 'r') as f:
- for line in f:
- line = line.strip()
- # 跳过注释和空行
- if not line or line.startswith('#'):
- continue
- # 解析KEY=VALUE
- if '=' in line:
- key, value = line.split('=', 1)
- os.environ[key.strip()] = value.strip()
- return True
- env_path = project_root / ".env"
- if load_env_file(env_path):
- print(f"✅ 已加载环境变量从: {env_path}")
- # 验证API密钥
- api_key = os.environ.get("GEMINI_API_KEY", "")
- if api_key:
- print(f" GEMINI_API_KEY: {api_key[:10]}...")
- else:
- print(f"⚠️ 未找到.env文件: {env_path}")
- from src.workflows.what_deconstruction_workflow import WhatDeconstructionWorkflow
- from src.utils.logger import get_logger
- logger = get_logger(__name__)
- def load_historical_posts(history_dir, target_timestamp=None, target_post_id=None, max_count=10):
- """
- 加载历史帖子(根据publish_timestamp从新到旧排序)
- 选择比目标帖子早发布,并且是最近发布的帖子,排除目标帖子本身
- Args:
- history_dir: 历史帖子目录
- target_timestamp: 目标帖子的发布时间戳(可选)
- target_post_id: 目标帖子的ID(用于过滤重复,可选)
- max_count: 最多加载的帖子数量
- Returns:
- list: 历史帖子列表(从新到旧排序)
- """
- history_path = Path(history_dir)
- if not history_path.exists():
- print(f"⚠️ 历史帖子目录不存在: {history_path}")
- return []
- # 获取所有JSON文件
- json_files = list(history_path.glob("*.json"))
- if not json_files:
- print(f"⚠️ 未找到历史帖子文件")
- return []
- print(f"\n📁 找到 {len(json_files)} 个历史帖子文件")
- # 读取所有帖子并提取publish_timestamp
- posts_with_timestamp = []
- for file_path in json_files:
- try:
- with open(file_path, 'r', encoding='utf-8') as f:
- post_data = json.load(f)
- # 获取发布时间戳,如果不存在则使用0
- timestamp = post_data.get("publish_timestamp", 0)
- post_id = post_data.get("channel_content_id", "")
- posts_with_timestamp.append({
- "file_path": file_path,
- "post_data": post_data,
- "timestamp": timestamp,
- "post_id": post_id
- })
- except Exception as e:
- print(f" ⚠️ 读取文件失败 {file_path.name}: {e}")
- continue
- if not posts_with_timestamp:
- print(f"⚠️ 没有成功读取到任何帖子")
- return []
- # 过滤掉目标帖子本身
- if target_post_id is not None:
- original_count = len(posts_with_timestamp)
- posts_with_timestamp = [
- post for post in posts_with_timestamp
- if post["post_id"] != target_post_id
- ]
- filtered_count = original_count - len(posts_with_timestamp)
- if filtered_count > 0:
- print(f"🔍 过滤掉 {filtered_count} 个重复帖子(目标帖子本身)")
- # 如果提供了目标时间戳,只保留比目标帖子早的帖子
- if target_timestamp is not None:
- posts_with_timestamp = [
- post for post in posts_with_timestamp
- if post["timestamp"] < target_timestamp
- ]
- print(f"📊 筛选出 {len(posts_with_timestamp)} 个比目标帖子早的历史帖子")
- if not posts_with_timestamp:
- print(f"⚠️ 没有找到比目标帖子早的历史帖子")
- return []
- # 按照publish_timestamp排序(从新到旧)
- posts_with_timestamp.sort(key=lambda x: x["timestamp"], reverse=True)
- # 选择最近的N篇(从新到旧)
- selected_posts = posts_with_timestamp[:max_count] if len(posts_with_timestamp) > max_count else posts_with_timestamp
- print(f"📋 选择最近 {len(selected_posts)} 篇历史帖子(按发布时间从新到旧):")
- historical_posts = []
- for idx, post_info in enumerate(selected_posts, 1):
- post_data = post_info["post_data"]
- file_path = post_info["file_path"]
- timestamp = post_info["timestamp"]
- # 转换为需要的格式
- historical_post = {
- "text": {
- "title": post_data.get("title", ""),
- "body": post_data.get("body_text", ""),
- "hashtags": ""
- },
- "images": post_data.get("images", [])
- }
- historical_posts.append(historical_post)
- # 格式化时间显示
- publish_time = post_data.get("publish_time", "未知时间")
- print(f" {idx}. {file_path.name}")
- print(f" 标题: {post_data.get('title', '无标题')}")
- print(f" 发布时间: {publish_time}")
- print(f" 图片数: {len(post_data.get('images', []))}")
- return historical_posts
- def load_test_data(directory):
- """
- 加载测试数据
- Args:
- directory: 帖子目录名(如"阿里多多酱"或"G88818")
- """
- test_data_path = Path(__file__).parent / directory / "待解构帖子.json"
- with open(test_data_path, "r", encoding="utf-8") as f:
- data = json.load(f)
- return data
- def convert_to_workflow_input(raw_data, historical_posts=None):
- """
- 将原始数据转换为工作流输入格式
- Args:
- raw_data: 原始帖子数据
- historical_posts: 历史帖子列表(可选)
- """
- images = raw_data.get("images", [])
- input_data = {
- "multimedia_content": {
- "images": images,
- "video": raw_data.get("video", {}),
- "text": {
- "title": raw_data.get("title", ""),
- "body": raw_data.get("body_text", ""),
- "hashtags": ""
- }
- },
- "comments": raw_data.get("comments", []),
- "creator_info": {
- "nickname": raw_data.get("channel_account_name", ""),
- "account_id": raw_data.get("channel_account_id", "")
- }
- }
- # 如果有历史帖子,添加到输入数据中
- if historical_posts:
- input_data["historical_posts"] = historical_posts
- return input_data
- def main():
- """主函数"""
- # 解析命令行参数
- parser = argparse.ArgumentParser(description='运行单个帖子的What解构工作流')
- parser.add_argument('directory', type=str, help='帖子目录名(如"阿里多多酱"或"G88818")')
- args = parser.parse_args()
- directory = args.directory
- print("=" * 80)
- print(f"开始测试 What 解构工作流(带历史帖子)- 目录: {directory}")
- print("=" * 80)
- # 1. 加载测试数据(目标帖子)
- print("\n[1] 加载测试数据(目标帖子)...")
- try:
- raw_data = load_test_data(directory)
- target_timestamp = raw_data.get('publish_timestamp')
- target_post_id = raw_data.get('channel_content_id')
- target_publish_time = raw_data.get('publish_time', '未知时间')
- print(f"✅ 成功加载测试数据")
- print(f" - 标题: {raw_data.get('title')}")
- print(f" - 帖子ID: {target_post_id}")
- print(f" - 发布时间: {target_publish_time}")
- print(f" - 图片数: {len(raw_data.get('images', []))}")
- print(f" - 点赞数: {raw_data.get('like_count')}")
- print(f" - 评论数: {raw_data.get('comment_count')}")
- except Exception as e:
- print(f"❌ 加载测试数据失败: {e}")
- return
- # 2. 加载历史帖子(比目标帖子早的帖子,排除目标帖子本身)
- print("\n[2] 加载历史帖子...")
- history_dir = Path(__file__).parent / directory / "作者历史帖子"
- historical_posts = load_historical_posts(
- history_dir,
- target_timestamp=target_timestamp,
- target_post_id=target_post_id,
- max_count=15
- )
- if historical_posts:
- print(f"✅ 成功加载 {len(historical_posts)} 篇历史帖子")
- else:
- print(f"⚠️ 未加载到历史帖子,将使用常规分析模式")
- # 3. 转换数据格式
- print("\n[3] 转换数据格式...")
- try:
- input_data = convert_to_workflow_input(raw_data, historical_posts)
- print(f"✅ 数据格式转换成功")
- print(f" - 话题标签: {input_data['multimedia_content']['text']['hashtags']}")
- print(f" - 历史帖子数: {len(input_data.get('historical_posts', []))}")
- except Exception as e:
- print(f"❌ 数据格式转换失败: {e}")
- return
- # 4. 初始化工作流
- print("\n[4] 初始化工作流...")
- try:
- workflow = WhatDeconstructionWorkflow(
- model_provider="google_genai",
- max_depth=10
- )
- print(f"✅ 工作流初始化成功")
- except Exception as e:
- print(f"❌ 工作流初始化失败: {e}")
- import traceback
- traceback.print_exc()
- return
- # 5. 执行工作流
- print("\n[5] 执行工作流...")
- print(" 注意:这可能需要几分钟时间...")
- try:
- result = workflow.invoke(input_data)
- print(f"✅ 工作流执行成功")
- except Exception as e:
- print(f"❌ 工作流执行失败: {e}")
- import traceback
- traceback.print_exc()
- return
- # 6. 保存结果
- print("\n[6] 保存结果...")
- try:
- # 生成带时间戳的文件名
- timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
- output_filename = f"result_{timestamp}.json"
- output_path = Path(__file__).parent / directory / "output" / output_filename
- output_path.parent.mkdir(parents=True, exist_ok=True)
- with open(output_path, "w", encoding="utf-8") as f:
- json.dump(result, f, ensure_ascii=False, indent=2)
- print(f"✅ 结果已保存到: {output_path}")
- print(f" 文件名: {output_filename}")
- except Exception as e:
- print(f"❌ 保存结果失败: {e}")
- return
- # 7. 生成HTML可视化
- # print("\n[7] 生成HTML可视化...")
- # try:
- # visualize_script = Path(__file__).parent / "visualize_result.py"
- # if visualize_script.exists():
- # import subprocess
- # result_viz = subprocess.run(
- # [sys.executable, str(visualize_script), str(output_path)],
- # capture_output=True,
- # text=True
- # )
- # if result_viz.returncode == 0:
- # print(f"✅ HTML可视化生成成功")
- # # 查找生成的HTML文件
- # html_file = output_path.parent / f"{output_path.stem}_visualization.html"
- # if html_file.exists():
- # print(f" 可视化文件: {html_file}")
- # else:
- # print(f"⚠️ HTML可视化生成失败: {result_viz.stderr}")
- # else:
- # print(f"⚠️ 未找到可视化脚本: {visualize_script}")
- # except Exception as e:
- # print(f"⚠️ 生成HTML可视化失败: {e}")
- # 8. 显示结果摘要
- print("\n" + "=" * 80)
- print("结果摘要")
- print("=" * 80)
- if result:
- three_points = result.get("三点解构", {})
- inspiration_data = three_points.get("灵感点", {})
- keypoints_data = three_points.get("关键点", {})
- comments = result.get("评论分析", {}).get("解构维度", [])
- print(f"\n三点解构:")
- print(f" - 灵感点数量: {inspiration_data.get('total_count', 0)}")
- print(f" - 灵感点分析模式: {inspiration_data.get('analysis_mode', '未知')}")
- print(f" - 目的点数量: 1")
- print(f" - 关键点数量: {keypoints_data.get('total_count', 0)}")
- # 显示灵感点详情
- if inspiration_data.get('points'):
- print(f"\n灵感点列表:")
- for idx, point in enumerate(inspiration_data['points'], 1):
- print(f" {idx}. {point.get('灵感点', '')}")
- print(f"\n评论分析:")
- print(f" - 解构维度数: {len(comments)}")
- topic_understanding = result.get("选题理解", {})
- if topic_understanding:
- topic_theme = topic_understanding.get("topic_theme", "")
- print(f"\n选题理解:")
- print(f" - 选题主题: {topic_theme}")
- print("\n" + "=" * 80)
- print("测试完成!")
- print("=" * 80)
- if __name__ == "__main__":
- main()
|