| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453 |
- #!/usr/bin/env python3
- # -*- coding: utf-8 -*-
- """
- 创作起点分析 - 数据准备脚本
- 第一步:根据帖子图谱 + 人设图谱,把信息压缩到待分析节点中
- 输入:帖子图谱 + 人设图谱
- 输出:待分析数据结构
- """
- import json
- from pathlib import Path
- from typing import Dict, List, Optional
- import sys
- # 添加项目根目录到路径
- project_root = Path(__file__).parent.parent.parent
- sys.path.insert(0, str(project_root))
- from script.data_processing.path_config import PathConfig
- # ===== 数据加载函数 =====
- def load_json(file_path: Path) -> Dict:
- """加载JSON文件"""
- with open(file_path, "r", encoding="utf-8") as f:
- return json.load(f)
- def get_post_graph_files(config: PathConfig) -> List[Path]:
- """获取所有帖子图谱文件"""
- post_graph_dir = config.intermediate_dir / "post_graph"
- return sorted(post_graph_dir.glob("*_帖子图谱.json"))
- # ===== 数据提取函数 =====
- def extract_post_detail(post_graph: Dict) -> Dict:
- """
- 提取帖子详情(保留原始字段名)
- """
- meta = post_graph.get("meta", {})
- post_detail = meta.get("postDetail", {})
- return {
- "postId": meta.get("postId", ""),
- "postTitle": meta.get("postTitle", ""),
- "body_text": post_detail.get("body_text", ""),
- "images": post_detail.get("images", []),
- "video": post_detail.get("video"),
- "publish_time": post_detail.get("publish_time", ""),
- "like_count": post_detail.get("like_count", 0),
- "collect_count": post_detail.get("collect_count", 0),
- }
- def extract_analysis_nodes(post_graph: Dict, persona_graph: Dict) -> List[Dict]:
- """
- 提取待分析节点列表
- 待分析节点 = 灵感点 + 目的点(不包括关键点,关键点是支撑信息)
- """
- nodes = post_graph.get("nodes", {})
- edges = post_graph.get("edges", {})
- persona_nodes = persona_graph.get("nodes", {})
- persona_index = persona_graph.get("index", {})
- # 1. 收集关键点信息(用于支撑信息)
- keypoints = {}
- for node_id, node in nodes.items():
- if node.get("type") == "标签" and node.get("dimension") == "关键点":
- keypoints[node_id] = {
- "名称": node.get("name", ""),
- "描述": node.get("detail", {}).get("description", ""),
- }
- # 2. 分析支撑关系:关键点 → 灵感点/目的点
- support_map = {} # {target_node_id: [支撑的关键点信息]}
- for edge_id, edge in edges.items():
- if edge.get("type") == "支撑":
- source_id = edge.get("source", "")
- target_id = edge.get("target", "")
- if source_id in keypoints:
- if target_id not in support_map:
- support_map[target_id] = []
- support_map[target_id].append(keypoints[source_id])
- # 3. 分析关联关系
- relation_map = {} # {node_id: [关联的节点名称]}
- for edge_id, edge in edges.items():
- if edge.get("type") == "关联":
- source_id = edge.get("source", "")
- target_id = edge.get("target", "")
- source_name = nodes.get(source_id, {}).get("name", "")
- target_name = nodes.get(target_id, {}).get("name", "")
- # 双向记录
- if source_id not in relation_map:
- relation_map[source_id] = []
- relation_map[source_id].append(target_name)
- if target_id not in relation_map:
- relation_map[target_id] = []
- relation_map[target_id].append(source_name)
- # 4. 分析人设匹配
- match_map = {} # {node_id: 匹配信息}
- persona_out_edges = persona_index.get("outEdges", {})
- def get_node_info(node_id: str) -> Optional[Dict]:
- """获取人设节点的标准信息"""
- node = persona_nodes.get(node_id, {})
- if not node:
- return None
- detail = node.get("detail", {})
- parent_path = detail.get("parentPath", [])
- return {
- "节点ID": node_id,
- "节点名称": node.get("name", ""),
- "节点分类": "/".join(parent_path) if parent_path else "",
- "节点维度": node.get("dimension", ""),
- "节点类型": node.get("type", ""),
- "人设全局占比": detail.get("probGlobal", 0),
- "父类下占比": detail.get("probToParent", 0),
- }
- def get_parent_category_id(node_id: str) -> Optional[str]:
- """通过属于边获取父分类节点ID"""
- belong_edges = persona_out_edges.get(node_id, {}).get("属于", [])
- for edge in belong_edges:
- target_id = edge.get("target", "")
- target_node = persona_nodes.get(target_id, {})
- if target_node.get("type") == "分类":
- return target_id
- return None
- for edge_id, edge in edges.items():
- if edge.get("type") == "匹配":
- source_id = edge.get("source", "")
- target_id = edge.get("target", "")
- # 只处理 帖子节点 → 人设节点 的匹配
- if source_id.startswith("帖子:") and target_id.startswith("人设:"):
- match_score = edge.get("score", 0)
- persona_node = persona_nodes.get(target_id, {})
- if persona_node:
- node_type = persona_node.get("type", "")
- # 获取匹配节点信息
- match_node_info = get_node_info(target_id)
- if not match_node_info:
- continue
- # 确定所属分类节点
- if node_type == "标签":
- # 标签:找父分类
- category_id = get_parent_category_id(target_id)
- else:
- # 分类:就是自己
- category_id = target_id
- # 获取所属分类信息和常见搭配
- category_info = None
- if category_id:
- category_node = persona_nodes.get(category_id, {})
- if category_node:
- category_detail = category_node.get("detail", {})
- category_path = category_detail.get("parentPath", [])
- category_info = {
- "节点ID": category_id,
- "节点名称": category_node.get("name", ""),
- "节点分类": "/".join(category_path) if category_path else "",
- "节点维度": category_node.get("dimension", ""),
- "节点类型": "分类",
- "人设全局占比": category_detail.get("probGlobal", 0),
- "父类下占比": category_detail.get("probToParent", 0),
- "历史共现分类": [],
- }
- # 获取分类共现节点(按共现度降序排列)
- co_occur_edges = persona_out_edges.get(category_id, {}).get("分类共现", [])
- co_occur_edges_sorted = sorted(co_occur_edges, key=lambda x: x.get("score", 0), reverse=True)
- for co_edge in co_occur_edges_sorted[:5]: # 取前5个
- co_target_id = co_edge.get("target", "")
- co_score = co_edge.get("score", 0)
- co_node = persona_nodes.get(co_target_id, {})
- if co_node:
- co_detail = co_node.get("detail", {})
- co_path = co_detail.get("parentPath", [])
- category_info["历史共现分类"].append({
- "节点ID": co_target_id,
- "节点名称": co_node.get("name", ""),
- "节点分类": "/".join(co_path) if co_path else "",
- "节点维度": co_node.get("dimension", ""),
- "节点类型": "分类",
- "人设全局占比": co_detail.get("probGlobal", 0),
- "父类下占比": co_detail.get("probToParent", 0),
- "共现度": round(co_score, 4),
- })
- match_map[source_id] = {
- "匹配节点": match_node_info,
- "匹配分数": round(match_score, 4),
- "所属分类": category_info,
- }
- # 5. 构建待分析节点列表(灵感点、目的点、关键点)
- analysis_nodes = []
- for node_id, node in nodes.items():
- if node.get("type") == "标签" and node.get("domain") == "帖子":
- dimension = node.get("dimension", "")
- if dimension in ["灵感点", "目的点", "关键点"]:
- # 人设匹配信息
- match_info = match_map.get(node_id)
- analysis_nodes.append({
- "节点ID": node_id,
- "节点名称": node.get("name", ""),
- "节点分类": node.get("category", ""), # 根分类:意图/实质/形式
- "节点维度": dimension,
- "节点类型": node.get("type", ""),
- "节点描述": node.get("detail", {}).get("description", ""),
- "人设匹配": match_info,
- })
- # 6. 构建可能的关系列表
- relation_list = []
- # 支撑关系:关键点 → 灵感点/目的点
- for edge_id, edge in edges.items():
- if edge.get("type") == "支撑":
- source_id = edge.get("source", "")
- target_id = edge.get("target", "")
- if source_id in keypoints:
- relation_list.append({
- "来源节点": source_id,
- "目标节点": target_id,
- "关系类型": "支撑",
- })
- # 关联关系:节点之间的关联(去重,只记录一次)
- seen_relations = set()
- for edge_id, edge in edges.items():
- if edge.get("type") == "关联":
- source_id = edge.get("source", "")
- target_id = edge.get("target", "")
- # 用排序后的元组作为key去重
- key = tuple(sorted([source_id, target_id]))
- if key not in seen_relations:
- seen_relations.add(key)
- relation_list.append({
- "来源节点": source_id,
- "目标节点": target_id,
- "关系类型": "关联",
- })
- return analysis_nodes, relation_list
- def prepare_analysis_data(post_graph: Dict, persona_graph: Dict) -> Dict:
- """
- 准备完整的分析数据
- Returns:
- {
- "帖子详情": {...},
- "待分析节点列表": [...],
- "可能的关系列表": [...]
- }
- """
- analysis_nodes, relation_list = extract_analysis_nodes(post_graph, persona_graph)
- return {
- "帖子详情": extract_post_detail(post_graph),
- "待分析节点列表": analysis_nodes,
- "可能的关系列表": relation_list,
- }
- # ===== 显示函数 =====
- def display_prepared_data(data: Dict):
- """显示准备好的数据"""
- post = data["帖子详情"]
- nodes = data["待分析节点列表"]
- relations = data["可能的关系列表"]
- print(f"\n帖子: {post['postId']}")
- print(f"标题: {post['postTitle']}")
- print(f"正文: {post['body_text'][:100]}...")
- print(f"\n待分析节点 ({len(nodes)} 个):")
- for node in nodes:
- match = node.get("人设匹配")
- category = node.get('节点分类', '')
- print(f" - [{node['节点ID']}] {node['节点名称']} ({node['节点维度']}/{category})")
- if match:
- match_node = match.get("匹配节点", {})
- category_node = match.get("所属分类", {})
- print(f" 匹配: {match_node.get('节点名称', '')} ({match_node.get('节点类型', '')}, 全局占比={match_node.get('人设全局占比', 0):.2%})")
- if category_node:
- co_count = len(category_node.get("历史共现分类", []))
- print(f" 所属分类: {category_node.get('节点名称', '')} (全局占比={category_node.get('人设全局占比', 0):.2%}, {co_count}个历史共现分类)")
- else:
- print(f" 人设: 无匹配")
- print(f"\n可能的关系 ({len(relations)} 条):")
- for rel in relations:
- rel_type = rel["关系类型"]
- if rel_type == "支撑":
- print(f" - {rel['来源节点']} → {rel['目标节点']} [支撑]")
- else:
- print(f" - {rel['来源节点']} ↔ {rel['目标节点']} [关联]")
- # ===== 处理函数 =====
- def process_single_post(
- post_file: Path,
- persona_graph: Dict,
- config: PathConfig,
- save: bool = True,
- ) -> Dict:
- """
- 处理单个帖子
- Args:
- post_file: 帖子图谱文件路径
- persona_graph: 人设图谱数据
- config: 路径配置
- save: 是否保存结果
- Returns:
- 准备好的分析数据
- """
- # 加载帖子图谱
- post_graph = load_json(post_file)
- post_id = post_graph.get("meta", {}).get("postId", "unknown")
- print(f"\n{'=' * 60}")
- print(f"处理帖子: {post_id}")
- print("-" * 60)
- # 准备数据
- data = prepare_analysis_data(post_graph, persona_graph)
- # 显示
- display_prepared_data(data)
- # 保存
- if save:
- output_dir = config.intermediate_dir / "origin_analysis_prepared"
- output_dir.mkdir(parents=True, exist_ok=True)
- output_file = output_dir / f"{post_id}_待分析数据.json"
- with open(output_file, "w", encoding="utf-8") as f:
- json.dump(data, f, ensure_ascii=False, indent=2)
- print(f"\n已保存: {output_file.name}")
- return data
- # ===== 主函数 =====
- def main(
- post_id: str = None,
- all_posts: bool = False,
- save: bool = True,
- ):
- """
- 主函数
- Args:
- post_id: 帖子ID,可选
- all_posts: 是否处理所有帖子
- save: 是否保存结果
- """
- config = PathConfig()
- print(f"账号: {config.account_name}")
- # 加载人设图谱
- persona_graph_file = config.intermediate_dir / "人设图谱.json"
- if not persona_graph_file.exists():
- print(f"错误: 人设图谱文件不存在: {persona_graph_file}")
- return
- persona_graph = load_json(persona_graph_file)
- print(f"人设图谱节点数: {len(persona_graph.get('nodes', {}))}")
- # 获取帖子图谱文件
- post_graph_files = get_post_graph_files(config)
- if not post_graph_files:
- print("错误: 没有找到帖子图谱文件")
- return
- # 确定要处理的帖子
- if post_id:
- target_file = next(
- (f for f in post_graph_files if post_id in f.name),
- None
- )
- if not target_file:
- print(f"错误: 未找到帖子 {post_id}")
- return
- files_to_process = [target_file]
- elif all_posts:
- files_to_process = post_graph_files
- else:
- files_to_process = [post_graph_files[0]]
- print(f"待处理帖子数: {len(files_to_process)}")
- # 处理
- results = []
- for i, post_file in enumerate(files_to_process, 1):
- print(f"\n{'#' * 60}")
- print(f"# 处理帖子 {i}/{len(files_to_process)}")
- print(f"{'#' * 60}")
- data = process_single_post(
- post_file=post_file,
- persona_graph=persona_graph,
- config=config,
- save=save,
- )
- results.append(data)
- print(f"\n{'#' * 60}")
- print(f"# 完成! 共处理 {len(results)} 个帖子")
- print(f"{'#' * 60}")
- return results
- if __name__ == "__main__":
- import argparse
- parser = argparse.ArgumentParser(description="创作起点分析 - 数据准备")
- parser.add_argument("--post-id", type=str, help="帖子ID")
- parser.add_argument("--all-posts", action="store_true", help="处理所有帖子")
- parser.add_argument("--no-save", action="store_true", help="不保存结果")
- args = parser.parse_args()
- main(
- post_id=args.post_id,
- all_posts=args.all_posts,
- save=not args.no_save,
- )
|