| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808 |
- #!/usr/bin/env python3
- # -*- coding: utf-8 -*-
- """
- 从匹配结果中构建帖子与人设的节点边关系图
- 输入:
- 1. filtered_results目录下的匹配结果文件
- 2. 节点列表.json
- 3. 边关系.json
- 输出:
- 1. match_graph目录下的节点边关系文件
- """
- import json
- from pathlib import Path
- from typing import Dict, List, Set, Any, Optional
- import sys
- # 添加项目根目录到路径
- project_root = Path(__file__).parent.parent.parent
- sys.path.insert(0, str(project_root))
- from script.data_processing.path_config import PathConfig
- def build_post_node_id(dimension: str, node_type: str, name: str) -> str:
- """构建帖子节点ID
- Args:
- dimension: 维度(灵感点/关键点/目的点)
- node_type: 节点类型(点/标签)
- name: 节点名称
- """
- return f"帖子_{dimension}_{node_type}_{name}"
- def build_persona_node_id(dimension: str, node_type: str, name: str) -> str:
- """构建人设节点ID"""
- return f"{dimension}_{node_type}_{name}"
- def extract_matched_nodes_and_edges(filtered_data: Dict) -> tuple:
- """
- 从匹配结果中提取帖子节点(点+标签)、人设节点和边
- Args:
- filtered_data: 匹配结果数据
- Returns:
- (帖子节点列表, 人设节点ID集合, 边列表)
- 帖子节点包括:点节点(灵感点/关键点/目的点)和标签节点
- 边包括:点→标签的属于边 + 标签→人设的匹配边
- """
- post_nodes = []
- persona_node_ids = set()
- edges = [] # 包含属于边和匹配边
- how_result = filtered_data.get("how解构结果", {})
- # 维度映射
- dimension_mapping = {
- "灵感点列表": "灵感点",
- "目的点列表": "目的点",
- "关键点列表": "关键点"
- }
- for list_key, dimension in dimension_mapping.items():
- points = how_result.get(list_key, [])
- for point in points:
- point_name = point.get("名称", "")
- point_desc = point.get("描述", "")
- if not point_name:
- continue
- # 创建帖子点节点
- point_node_id = build_post_node_id(dimension, "点", point_name)
- point_node = {
- "节点ID": point_node_id,
- "节点名称": point_name,
- "节点类型": "点",
- "节点层级": dimension,
- "描述": point_desc,
- "source": "帖子"
- }
- # 避免重复添加点节点
- if not any(n["节点ID"] == point_node_id for n in post_nodes):
- post_nodes.append(point_node)
- # 遍历how步骤列表,提取标签节点
- how_steps = point.get("how步骤列表", [])
- for step in how_steps:
- features = step.get("特征列表", [])
- for feature in features:
- feature_name = feature.get("特征名称", "")
- weight = feature.get("权重", 0)
- match_results = feature.get("匹配结果", [])
- if not feature_name:
- continue
- # 创建帖子标签节点(无论是否有匹配结果)
- tag_node_id = build_post_node_id(dimension, "标签", feature_name)
- tag_node = {
- "节点ID": tag_node_id,
- "节点名称": feature_name,
- "节点类型": "标签",
- "节点层级": dimension,
- "权重": weight,
- "source": "帖子",
- "已匹配": len(match_results) > 0 # 标记是否有匹配
- }
- # 避免重复添加标签节点
- if not any(n["节点ID"] == tag_node_id for n in post_nodes):
- post_nodes.append(tag_node)
- # 创建标签→点的属于边
- belong_edge = {
- "源节点ID": tag_node_id,
- "目标节点ID": point_node_id,
- "边类型": "属于",
- "边详情": {
- "说明": f"标签「{feature_name}」属于点「{point_name}」"
- }
- }
- # 避免重复添加属于边
- edge_key = (tag_node_id, point_node_id, "属于")
- if not any((e["源节点ID"], e["目标节点ID"], e["边类型"]) == edge_key for e in edges):
- edges.append(belong_edge)
- # 如果有匹配结果,创建匹配边
- if match_results:
- for match in match_results:
- persona_name = match.get("人设特征名称", "")
- persona_dimension = match.get("人设特征层级", "")
- persona_type = match.get("特征类型", "标签")
- match_detail = match.get("匹配结果", {})
- if not persona_name or not persona_dimension:
- continue
- # 构建人设节点ID
- persona_node_id = build_persona_node_id(
- persona_dimension, persona_type, persona_name
- )
- persona_node_ids.add(persona_node_id)
- # 创建匹配边(根据相似度区分类型)
- similarity = match_detail.get("相似度", 0)
- if similarity >= 0.8:
- edge_type = "匹配_相同"
- else:
- edge_type = "匹配_相似"
- match_edge = {
- "源节点ID": tag_node_id,
- "目标节点ID": persona_node_id,
- "边类型": edge_type,
- "边详情": {
- "相似度": similarity,
- "说明": match_detail.get("说明", "")
- }
- }
- edges.append(match_edge)
- return post_nodes, persona_node_ids, edges
- def get_persona_nodes_details(
- persona_node_ids: Set[str],
- nodes_data: Dict
- ) -> List[Dict]:
- """
- 从节点列表中获取人设节点的详细信息
- Args:
- persona_node_ids: 人设节点ID集合
- nodes_data: 节点列表数据
- Returns:
- 人设节点详情列表
- """
- persona_nodes = []
- all_nodes = nodes_data.get("节点列表", [])
- for node in all_nodes:
- if node["节点ID"] in persona_node_ids:
- persona_nodes.append(node)
- return persona_nodes
- def get_edges_between_nodes(
- node_ids: Set[str],
- edges_data: Dict
- ) -> List[Dict]:
- """
- 获取指定节点之间的边关系
- Args:
- node_ids: 节点ID集合
- edges_data: 边关系数据
- Returns:
- 节点之间的边列表
- """
- edges_between = []
- all_edges = edges_data.get("边列表", [])
- for edge in all_edges:
- source_id = edge["源节点ID"]
- target_id = edge["目标节点ID"]
- # 两个节点都在集合中
- if source_id in node_ids and target_id in node_ids:
- edges_between.append(edge)
- return edges_between
- def create_mirrored_post_edges(
- match_edges: List[Dict],
- persona_edges: List[Dict]
- ) -> List[Dict]:
- """
- 根据人设节点之间的边,创建帖子节点之间的镜像边
- 逻辑:如果人设节点A和B之间有边,且帖子节点X匹配A,帖子节点Y匹配B,
- 则创建帖子节点X和Y之间的镜像边
- Args:
- match_edges: 匹配边列表(帖子节点 -> 人设节点)
- persona_edges: 人设节点之间的边列表
- Returns:
- 帖子节点之间的镜像边列表
- """
- # 构建人设节点到帖子节点的反向映射
- # persona_id -> [post_id1, post_id2, ...]
- persona_to_posts = {}
- for edge in match_edges:
- post_id = edge["源节点ID"]
- persona_id = edge["目标节点ID"]
- if persona_id not in persona_to_posts:
- persona_to_posts[persona_id] = []
- if post_id not in persona_to_posts[persona_id]:
- persona_to_posts[persona_id].append(post_id)
- # 根据人设边创建帖子镜像边
- post_edges = []
- seen_edges = set()
- for persona_edge in persona_edges:
- source_persona = persona_edge["源节点ID"]
- target_persona = persona_edge["目标节点ID"]
- edge_type = persona_edge["边类型"]
- # 获取匹配到这两个人设节点的帖子节点
- source_posts = persona_to_posts.get(source_persona, [])
- target_posts = persona_to_posts.get(target_persona, [])
- # 为每对帖子节点创建镜像边
- for src_post in source_posts:
- for tgt_post in target_posts:
- if src_post == tgt_post:
- continue
- # 使用排序后的key避免重复(A-B 和 B-A 视为同一条边)
- edge_key = tuple(sorted([src_post, tgt_post])) + (edge_type,)
- if edge_key in seen_edges:
- continue
- seen_edges.add(edge_key)
- post_edge = {
- "源节点ID": src_post,
- "目标节点ID": tgt_post,
- "边类型": f"镜像_{edge_type}", # 标记为镜像边
- "边详情": {
- "原始边类型": edge_type,
- "源人设节点": source_persona,
- "目标人设节点": target_persona
- }
- }
- post_edges.append(post_edge)
- return post_edges
- def expand_one_layer(
- node_ids: Set[str],
- edges_data: Dict,
- nodes_data: Dict,
- edge_types: List[str] = None,
- direction: str = "both"
- ) -> tuple:
- """
- 从指定节点扩展一层,获取相邻节点和连接边
- Args:
- node_ids: 起始节点ID集合
- edges_data: 边关系数据
- nodes_data: 节点列表数据
- edge_types: 要扩展的边类型列表,None表示所有类型
- direction: 扩展方向
- - "outgoing": 只沿出边扩展(源节点在集合中,扩展到目标节点)
- - "incoming": 只沿入边扩展(目标节点在集合中,扩展到源节点)
- - "both": 双向扩展
- Returns:
- (扩展的节点列表, 扩展的边列表, 扩展的节点ID集合)
- """
- expanded_node_ids = set()
- expanded_edges = []
- all_edges = edges_data.get("边列表", [])
- # 找出所有与起始节点相连的边和节点
- for edge in all_edges:
- # 过滤边类型
- if edge_types and edge["边类型"] not in edge_types:
- continue
- source_id = edge["源节点ID"]
- target_id = edge["目标节点ID"]
- # 沿出边扩展:源节点在集合中,扩展到目标节点
- if direction in ["outgoing", "both"]:
- if source_id in node_ids and target_id not in node_ids:
- expanded_node_ids.add(target_id)
- expanded_edges.append(edge)
- # 沿入边扩展:目标节点在集合中,扩展到源节点
- if direction in ["incoming", "both"]:
- if target_id in node_ids and source_id not in node_ids:
- expanded_node_ids.add(source_id)
- expanded_edges.append(edge)
- # 获取扩展节点的详情
- expanded_nodes = []
- all_nodes = nodes_data.get("节点列表", [])
- for node in all_nodes:
- if node["节点ID"] in expanded_node_ids:
- # 标记为扩展节点
- node_copy = node.copy()
- node_copy["是否扩展"] = True
- node_copy["source"] = "人设"
- expanded_nodes.append(node_copy)
- return expanded_nodes, expanded_edges, expanded_node_ids
- def expand_and_filter_useful_nodes(
- matched_persona_ids: Set[str],
- match_edges: List[Dict],
- edges_data: Dict,
- nodes_data: Dict,
- exclude_edge_types: List[str] = None
- ) -> tuple:
- """
- 扩展人设节点一层,只保留能产生新帖子连线的扩展节点
- 逻辑:如果扩展节点E连接了2个以上的已匹配人设节点,
- 那么通过E可以产生新的帖子间连线,保留E
- Args:
- matched_persona_ids: 已匹配的人设节点ID集合
- match_edges: 匹配边列表
- edges_data: 边关系数据
- nodes_data: 节点列表数据
- exclude_edge_types: 要排除的边类型列表
- Returns:
- (有效扩展节点列表, 扩展边列表, 通过扩展节点的帖子镜像边列表)
- """
- if exclude_edge_types is None:
- exclude_edge_types = []
- all_edges = edges_data.get("边列表", [])
- # 构建人设节点到帖子节点的映射
- persona_to_posts = {}
- for edge in match_edges:
- post_id = edge["源节点ID"]
- persona_id = edge["目标节点ID"]
- if persona_id not in persona_to_posts:
- persona_to_posts[persona_id] = []
- if post_id not in persona_to_posts[persona_id]:
- persona_to_posts[persona_id].append(post_id)
- # 找出所有扩展节点及其连接的已匹配人设节点
- # expanded_node_id -> [(matched_persona_id, edge), ...]
- expanded_connections = {}
- for edge in all_edges:
- # 跳过排除的边类型
- if edge["边类型"] in exclude_edge_types:
- continue
- source_id = edge["源节点ID"]
- target_id = edge["目标节点ID"]
- # 源节点是已匹配的,目标节点是扩展候选
- if source_id in matched_persona_ids and target_id not in matched_persona_ids:
- if target_id not in expanded_connections:
- expanded_connections[target_id] = []
- expanded_connections[target_id].append((source_id, edge))
- # 目标节点是已匹配的,源节点是扩展候选
- if target_id in matched_persona_ids and source_id not in matched_persona_ids:
- if source_id not in expanded_connections:
- expanded_connections[source_id] = []
- expanded_connections[source_id].append((target_id, edge))
- # 过滤:只保留连接2个以上已匹配人设节点的扩展节点
- useful_expanded_ids = set()
- useful_edges = []
- post_mirror_edges = []
- seen_mirror_edges = set()
- for expanded_id, connections in expanded_connections.items():
- connected_personas = list(set([c[0] for c in connections]))
- if len(connected_personas) >= 2:
- useful_expanded_ids.add(expanded_id)
- # 收集边
- for persona_id, edge in connections:
- useful_edges.append(edge)
- # 为通过此扩展节点连接的每对人设节点,创建帖子镜像边
- for i, p1 in enumerate(connected_personas):
- for p2 in connected_personas[i+1:]:
- posts1 = persona_to_posts.get(p1, [])
- posts2 = persona_to_posts.get(p2, [])
- # 找出连接p1和p2的边类型
- edge_types_p1 = [c[1]["边类型"] for c in connections if c[0] == p1]
- edge_types_p2 = [c[1]["边类型"] for c in connections if c[0] == p2]
- # 用第一个边类型作为代表
- edge_type = edge_types_p1[0] if edge_types_p1 else (edge_types_p2[0] if edge_types_p2 else "扩展")
- for post1 in posts1:
- for post2 in posts2:
- if post1 == post2:
- continue
- # 避免重复
- edge_key = tuple(sorted([post1, post2])) + (f"二阶_{edge_type}",)
- if edge_key in seen_mirror_edges:
- continue
- seen_mirror_edges.add(edge_key)
- post_mirror_edges.append({
- "源节点ID": post1,
- "目标节点ID": post2,
- "边类型": f"二阶_{edge_type}",
- "边详情": {
- "原始边类型": edge_type,
- "扩展节点": expanded_id,
- "源人设节点": p1,
- "目标人设节点": p2
- }
- })
- # 获取扩展节点详情
- useful_expanded_nodes = []
- all_nodes = nodes_data.get("节点列表", [])
- for node in all_nodes:
- if node["节点ID"] in useful_expanded_ids:
- node_copy = node.copy()
- node_copy["是否扩展"] = True
- useful_expanded_nodes.append(node_copy)
- # 边去重
- seen_edges = set()
- unique_edges = []
- for edge in useful_edges:
- edge_key = (edge["源节点ID"], edge["目标节点ID"], edge["边类型"])
- if edge_key not in seen_edges:
- seen_edges.add(edge_key)
- unique_edges.append(edge)
- return useful_expanded_nodes, unique_edges, post_mirror_edges
- def process_filtered_result(
- filtered_file: Path,
- nodes_data: Dict,
- edges_data: Dict,
- output_dir: Path
- ) -> Dict:
- """
- 处理单个匹配结果文件
- Args:
- filtered_file: 匹配结果文件路径
- nodes_data: 节点列表数据
- edges_data: 边关系数据
- output_dir: 输出目录
- Returns:
- 处理结果统计
- """
- # 读取匹配结果
- with open(filtered_file, "r", encoding="utf-8") as f:
- filtered_data = json.load(f)
- post_id = filtered_data.get("帖子id", "")
- post_detail = filtered_data.get("帖子详情", {})
- post_title = post_detail.get("title", "")
- # 提取节点和边(包括帖子点节点、标签节点、属于边和匹配边)
- post_nodes, persona_node_ids, post_edges_raw = extract_matched_nodes_and_edges(filtered_data)
- # 分离帖子侧的边:属于边(标签→点)和匹配边(标签→人设)
- post_belong_edges = [e for e in post_edges_raw if e["边类型"] == "属于"]
- match_edges = [e for e in post_edges_raw if e["边类型"].startswith("匹配_")]
- # 统计帖子点节点和标签节点
- post_point_nodes = [n for n in post_nodes if n["节点类型"] == "点"]
- post_tag_nodes = [n for n in post_nodes if n["节点类型"] == "标签"]
- # 获取人设节点详情(直接匹配的,标记为非扩展)
- persona_nodes = get_persona_nodes_details(persona_node_ids, nodes_data)
- for node in persona_nodes:
- node["是否扩展"] = False
- node["source"] = "人设"
- # 获取人设节点之间的边
- persona_edges = get_edges_between_nodes(persona_node_ids, edges_data)
- # 创建帖子节点之间的镜像边(基于直接人设边的投影)
- post_edges = create_mirrored_post_edges(match_edges, persona_edges)
- # 扩展人设节点一层,只对标签类型的节点通过"属于"边扩展到分类
- # 过滤出标签类型的人设节点(只有标签才能"属于"分类)
- tag_persona_ids = {pid for pid in persona_node_ids if "_标签_" in pid}
- expanded_nodes, expanded_edges, _ = expand_one_layer(
- tag_persona_ids, edges_data, nodes_data,
- edge_types=["属于"],
- direction="outgoing" # 只向外扩展:标签->分类
- )
- # 创建通过扩展节点的帖子镜像边(正确逻辑)
- # 逻辑:帖子->标签->分类,分类之间有边,则对应帖子产生二阶边
- # 1. 构建 标签 -> 帖子列表 的映射
- tag_to_posts = {}
- for edge in match_edges:
- post_node_id = edge["源节点ID"]
- tag_id = edge["目标节点ID"]
- if tag_id not in tag_to_posts:
- tag_to_posts[tag_id] = []
- if post_node_id not in tag_to_posts[tag_id]:
- tag_to_posts[tag_id].append(post_node_id)
- # 2. 构建 分类 -> 标签列表 的映射(通过属于边)
- expanded_node_ids = set(n["节点ID"] for n in expanded_nodes)
- category_to_tags = {} # 分类 -> [连接的标签]
- for edge in expanded_edges:
- src, tgt = edge["源节点ID"], edge["目标节点ID"]
- # 属于边:标签 -> 分类
- if tgt in expanded_node_ids and src in persona_node_ids:
- if tgt not in category_to_tags:
- category_to_tags[tgt] = []
- if src not in category_to_tags[tgt]:
- category_to_tags[tgt].append(src)
- # 3. 获取扩展节点(分类)之间的边
- category_edges = []
- for edge in edges_data.get("边列表", []):
- src, tgt = edge["源节点ID"], edge["目标节点ID"]
- # 两端都是扩展节点(分类)
- if src in expanded_node_ids and tgt in expanded_node_ids:
- category_edges.append(edge)
- # 4. 基于分类之间的边,生成帖子之间的二阶镜像边
- post_edges_via_expanded = []
- seen_mirror = set()
- for cat_edge in category_edges:
- cat1, cat2 = cat_edge["源节点ID"], cat_edge["目标节点ID"]
- edge_type = cat_edge["边类型"]
- # 获取连接到这两个分类的标签
- tags1 = category_to_tags.get(cat1, [])
- tags2 = category_to_tags.get(cat2, [])
- # 通过标签找到对应的帖子,产生二阶边
- for tag1 in tags1:
- for tag2 in tags2:
- posts1 = tag_to_posts.get(tag1, [])
- posts2 = tag_to_posts.get(tag2, [])
- for post1 in posts1:
- for post2 in posts2:
- if post1 == post2:
- continue
- edge_key = tuple(sorted([post1, post2])) + (f"二阶_{edge_type}",)
- if edge_key in seen_mirror:
- continue
- seen_mirror.add(edge_key)
- post_edges_via_expanded.append({
- "源节点ID": post1,
- "目标节点ID": post2,
- "边类型": f"二阶_{edge_type}",
- "边详情": {
- "原始边类型": edge_type,
- "分类节点1": cat1,
- "分类节点2": cat2,
- "标签节点1": tag1,
- "标签节点2": tag2
- }
- })
- # 只保留对帖子连接有帮助的扩展节点和边
- # 1. 找出产生了二阶帖子边的扩展节点(分类)
- useful_expanded_ids = set()
- for edge in post_edges_via_expanded:
- cat1 = edge.get("边详情", {}).get("分类节点1")
- cat2 = edge.get("边详情", {}).get("分类节点2")
- if cat1:
- useful_expanded_ids.add(cat1)
- if cat2:
- useful_expanded_ids.add(cat2)
- # 2. 只保留有用的扩展节点
- useful_expanded_nodes = [n for n in expanded_nodes if n["节点ID"] in useful_expanded_ids]
- # 3. 只保留连接到有用扩展节点的属于边
- useful_expanded_edges = [e for e in expanded_edges
- if e["目标节点ID"] in useful_expanded_ids or e["源节点ID"] in useful_expanded_ids]
- # 4. 只保留有用的分类之间的边(产生了二阶帖子边的)
- useful_category_edges = [e for e in category_edges
- if e["源节点ID"] in useful_expanded_ids and e["目标节点ID"] in useful_expanded_ids]
- # 合并节点列表
- all_nodes = post_nodes + persona_nodes + useful_expanded_nodes
- # 合并边列表(加入帖子内的属于边)
- all_edges = post_belong_edges + match_edges + persona_edges + post_edges + useful_expanded_edges + useful_category_edges + post_edges_via_expanded
- # 去重边
- seen_edges = set()
- unique_edges = []
- for edge in all_edges:
- edge_key = (edge["源节点ID"], edge["目标节点ID"], edge["边类型"])
- if edge_key not in seen_edges:
- seen_edges.add(edge_key)
- unique_edges.append(edge)
- all_edges = unique_edges
- # 构建节点边索引
- edges_by_node = {}
- for edge in all_edges:
- source_id = edge["源节点ID"]
- target_id = edge["目标节点ID"]
- edge_type = edge["边类型"]
- if source_id not in edges_by_node:
- edges_by_node[source_id] = {}
- if edge_type not in edges_by_node[source_id]:
- edges_by_node[source_id][edge_type] = {}
- edges_by_node[source_id][edge_type][target_id] = edge
- # 构建输出数据
- output_data = {
- "说明": {
- "帖子ID": post_id,
- "帖子标题": post_title,
- "描述": "帖子与人设的节点匹配关系",
- "统计": {
- "帖子点节点数": len(post_point_nodes),
- "帖子标签节点数": len(post_tag_nodes),
- "帖子节点总数": len(post_nodes),
- "人设节点数(直接匹配)": len(persona_nodes),
- "扩展节点数(有效)": len(useful_expanded_nodes),
- "帖子属于边数": len(post_belong_edges),
- "匹配边数": len(match_edges),
- "人设节点间边数": len(persona_edges),
- "扩展边数(有效)": len(useful_expanded_edges),
- "帖子镜像边数(直接)": len(post_edges),
- "帖子镜像边数(二阶)": len(post_edges_via_expanded),
- "总节点数": len(all_nodes),
- "总边数": len(all_edges)
- }
- },
- "帖子点节点列表": post_point_nodes,
- "帖子标签节点列表": post_tag_nodes,
- "帖子节点列表": post_nodes,
- "人设节点列表": persona_nodes,
- "扩展节点列表": useful_expanded_nodes,
- "帖子属于边列表": post_belong_edges,
- "匹配边列表": match_edges,
- "人设节点间边列表": persona_edges,
- "扩展边列表": useful_expanded_edges,
- "帖子镜像边列表(直接)": post_edges,
- "帖子镜像边列表(二阶)": post_edges_via_expanded,
- "节点列表": all_nodes,
- "边列表": all_edges,
- "节点边索引": edges_by_node
- }
- # 保存输出文件
- output_file = output_dir / f"{post_id}_match_graph.json"
- with open(output_file, "w", encoding="utf-8") as f:
- json.dump(output_data, f, ensure_ascii=False, indent=2)
- return {
- "帖子ID": post_id,
- "帖子点节点数": len(post_point_nodes),
- "帖子标签节点数": len(post_tag_nodes),
- "帖子节点数": len(post_nodes),
- "人设节点数": len(persona_nodes),
- "扩展节点数": len(useful_expanded_nodes),
- "帖子属于边数": len(post_belong_edges),
- "匹配边数": len(match_edges),
- "人设边数": len(persona_edges),
- "扩展边数": len(useful_expanded_edges),
- "帖子边数(直接)": len(post_edges),
- "帖子边数(二阶)": len(post_edges_via_expanded),
- "总节点数": len(all_nodes),
- "总边数": len(all_edges),
- "输出文件": str(output_file)
- }
- def main():
- # 使用路径配置
- config = PathConfig()
- config.ensure_dirs()
- print(f"账号: {config.account_name}")
- print(f"输出版本: {config.output_version}")
- print()
- # 输入文件/目录
- filtered_results_dir = config.intermediate_dir / "filtered_results"
- nodes_file = config.intermediate_dir / "节点列表.json"
- edges_file = config.intermediate_dir / "边关系.json"
- # 输出目录
- output_dir = config.intermediate_dir / "match_graph"
- output_dir.mkdir(parents=True, exist_ok=True)
- print(f"输入:")
- print(f" 匹配结果目录: {filtered_results_dir}")
- print(f" 节点列表: {nodes_file}")
- print(f" 边关系: {edges_file}")
- print(f"\n输出目录: {output_dir}")
- print()
- # 读取节点和边数据
- print("正在读取节点列表...")
- with open(nodes_file, "r", encoding="utf-8") as f:
- nodes_data = json.load(f)
- print(f" 共 {len(nodes_data.get('节点列表', []))} 个节点")
- print("正在读取边关系...")
- with open(edges_file, "r", encoding="utf-8") as f:
- edges_data = json.load(f)
- print(f" 共 {len(edges_data.get('边列表', []))} 条边")
- # 处理所有匹配结果文件
- print("\n" + "="*60)
- print("处理匹配结果文件...")
- filtered_files = list(filtered_results_dir.glob("*_filtered.json"))
- print(f"找到 {len(filtered_files)} 个匹配结果文件")
- results = []
- for i, filtered_file in enumerate(filtered_files, 1):
- print(f"\n[{i}/{len(filtered_files)}] 处理: {filtered_file.name}")
- result = process_filtered_result(filtered_file, nodes_data, edges_data, output_dir)
- results.append(result)
- print(f" 帖子节点: {result['帖子节点数']}, 人设节点: {result['人设节点数']}, 扩展节点: {result['扩展节点数']}")
- print(f" 匹配边: {result['匹配边数']}, 人设边: {result['人设边数']}, 扩展边: {result['扩展边数']}")
- print(f" 帖子边(直接): {result['帖子边数(直接)']}, 帖子边(二阶): {result['帖子边数(二阶)']}")
- # 汇总统计
- print("\n" + "="*60)
- print("处理完成!")
- print(f"\n汇总:")
- print(f" 处理文件数: {len(results)}")
- total_post = sum(r['帖子节点数'] for r in results)
- total_persona = sum(r['人设节点数'] for r in results)
- total_expanded = sum(r['扩展节点数'] for r in results)
- total_match = sum(r['匹配边数'] for r in results)
- total_persona_edges = sum(r['人设边数'] for r in results)
- total_expanded_edges = sum(r['扩展边数'] for r in results)
- total_post_edges_direct = sum(r['帖子边数(直接)'] for r in results)
- total_post_edges_2hop = sum(r['帖子边数(二阶)'] for r in results)
- print(f" 总帖子节点: {total_post}")
- print(f" 总人设节点: {total_persona}")
- print(f" 总扩展节点: {total_expanded}")
- print(f" 总匹配边: {total_match}")
- print(f" 总人设边: {total_persona_edges}")
- print(f" 总扩展边: {total_expanded_edges}")
- print(f" 总帖子边(直接): {total_post_edges_direct}")
- print(f" 总帖子边(二阶): {total_post_edges_2hop}")
- print(f"\n输出目录: {output_dir}")
- if __name__ == "__main__":
- main()
|