analyze_node_origin_v4.py 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. """
  4. 节点来源分析脚本 V4
  5. 采用两步法:
  6. 1. 第一步(筛选):筛选可能的来源特征
  7. 2. 第二步(评估):对筛选出的特征进行可能性评估
  8. 输入:post_graph 目录中的帖子图谱文件
  9. 输出:节点来源分析结果
  10. """
  11. import asyncio
  12. import json
  13. from pathlib import Path
  14. from typing import Dict, List
  15. import sys
  16. # 添加项目根目录到路径
  17. project_root = Path(__file__).parent.parent.parent
  18. sys.path.insert(0, str(project_root))
  19. from agents import Agent, Runner, ModelSettings, trace
  20. from agents.tracing.create import custom_span
  21. from lib.client import get_model
  22. from lib.my_trace import set_trace_smith as set_trace
  23. from script.data_processing.path_config import PathConfig
  24. # 模型配置
  25. MODEL_NAME = "google/gemini-3-pro-preview"
  26. # MODEL_NAME = 'deepseek/deepseek-v3.2'
  27. # MODEL_NAME = 'anthropic/claude-sonnet-4.5'
  28. # 第一步筛选 Agent
  29. filter_agent = Agent(
  30. name="Feature Filter",
  31. model=get_model(MODEL_NAME),
  32. model_settings=ModelSettings(
  33. temperature=0.0,
  34. max_tokens=16384,
  35. ),
  36. tools=[],
  37. )
  38. # 第二步评估 Agent
  39. evaluate_agent = Agent(
  40. name="Feature Evaluator",
  41. model=get_model(MODEL_NAME),
  42. model_settings=ModelSettings(
  43. temperature=0.0,
  44. max_tokens=32768,
  45. ),
  46. tools=[],
  47. )
  48. # ===== 数据提取函数 =====
  49. def get_post_graph_files(config: PathConfig) -> List[Path]:
  50. """获取所有帖子图谱文件"""
  51. post_graph_dir = config.intermediate_dir / "post_graph"
  52. return sorted(post_graph_dir.glob("*_帖子图谱.json"))
  53. def load_post_graph(file_path: Path) -> Dict:
  54. """加载帖子图谱"""
  55. with open(file_path, "r", encoding="utf-8") as f:
  56. return json.load(f)
  57. def extract_tags_from_post_graph(post_graph: Dict) -> List[Dict]:
  58. """从帖子图谱中提取标签节点"""
  59. tags = []
  60. for node_id, node in post_graph.get("nodes", {}).items():
  61. if node.get("type") == "标签" and node.get("domain") == "帖子":
  62. tags.append({
  63. "id": node_id,
  64. "name": node.get("name", ""),
  65. "dimension": node.get("dimension", ""),
  66. })
  67. return tags
  68. def prepare_analyze_input(post_graph: Dict, target_name: str = None) -> Dict:
  69. """准备分析输入数据"""
  70. tags = extract_tags_from_post_graph(post_graph)
  71. if not tags:
  72. raise ValueError("帖子图谱中没有找到标签节点")
  73. # 确定目标节点
  74. if target_name:
  75. target_tag = next((t for t in tags if t["name"] == target_name), None)
  76. if not target_tag:
  77. raise ValueError(f"未找到目标节点: {target_name}")
  78. else:
  79. key_point_tags = [t for t in tags if t["dimension"] == "关键点"]
  80. if not key_point_tags:
  81. raise ValueError("没有找到关键点标签")
  82. target_tag = key_point_tags[0]
  83. # 候选节点筛选:灵感点/目的点的候选集排除关键点
  84. target_dimension = target_tag["dimension"]
  85. candidate_tags = []
  86. for t in tags:
  87. if t["name"] == target_tag["name"]:
  88. continue
  89. if target_dimension in ["灵感点", "目的点"] and t["dimension"] == "关键点":
  90. continue
  91. candidate_tags.append(t)
  92. return {
  93. "目标特征": {
  94. "特征名称": target_tag["name"],
  95. "特征类型": target_tag["dimension"]
  96. },
  97. "候选特征": [
  98. {
  99. "特征名称": t["name"],
  100. "特征类型": t["dimension"]
  101. }
  102. for t in candidate_tags
  103. ]
  104. }
  105. # ===== Prompt 构建 =====
  106. def build_filter_prompt(input_data: Dict) -> str:
  107. """构建第一步筛选 prompt"""
  108. target = input_data["目标特征"]
  109. candidates = input_data["候选特征"]
  110. # 构建候选特征列表
  111. candidates_text = []
  112. for c in candidates:
  113. candidates_text.append(f"- {c['特征名称']} ({c['特征类型']})")
  114. candidates_section = "\n".join(candidates_text)
  115. return f'''# 背景
  116. 推理一个小红书帖子选题前脑海中的点,在创作者脑中的因果顺序
  117. # Task
  118. 请分析【输入数据】与【目标点】的关系,按以下两类筛选证据:
  119. 1. **单独推理**:哪个特征单凭自己就能有可能指向目标特征?
  120. 2. **组合推理**:哪几个特征必须结合在一起,才能指向目标特征?(缺一不可才算组合)
  121. 如果能独立推出则无需组合。
  122. # 筛选原则
  123. 1. 实质推形式,而不是形式推实质
  124. 2. 因推果而不是果推因
  125. 3. 目的推理手段而不是手段推理目的
  126. 4. 只有当 A 是 B 的充分必要条件的时候,A 可以推理出 B
  127. **本次分析的目标特征是:{target['特征名称']}({target['特征类型']})**
  128. # 输入数据
  129. {candidates_section}
  130. # 输出格式
  131. 请严格按照以下 JSON 结构输出:
  132. ```json
  133. {{
  134. "目标特征": "{target['特征名称']}",
  135. "预备分析列表": {{
  136. "单独推理": [
  137. {{
  138. "来源特征": "特征A",
  139. "来源特征类型": "灵感点/目的点/关键点",
  140. "初步理由": "简要说明为什么这个特征可能推导出目标"
  141. }}
  142. ],
  143. "组合推理": [
  144. {{
  145. "组合成员": ["特征B", "特征C"],
  146. "成员类型": ["目的点", "关键点"],
  147. "初步理由": "简要说明为什么这些特征需要组合才能推导出目标"
  148. }}
  149. ]
  150. }}
  151. }}
  152. ```
  153. 注意:
  154. - 单独推理的来源特征必须是输入数据中的原话
  155. - 组合推理的成员数量通常为 2-3 个
  156. - 如果某个特征完全无法推导出目标,不要勉强添加
  157. '''.strip()
  158. def build_evaluate_prompt(input_data: Dict, filter_result: Dict) -> str:
  159. """构建第二步评估 prompt"""
  160. target = input_data["目标特征"]
  161. prep_list = filter_result.get("预备分析列表", {})
  162. # 构建单独推理列表
  163. single_items = prep_list.get("单独推理", [])
  164. single_text = ""
  165. if single_items:
  166. for item in single_items:
  167. single_text += f"- {item.get('来源特征', '')}({item.get('来源特征类型', '')})\n"
  168. else:
  169. single_text = "(无)\n"
  170. # 构建组合推理列表
  171. combo_items = prep_list.get("组合推理", [])
  172. combo_text = ""
  173. if combo_items:
  174. for item in combo_items:
  175. members = " + ".join(item.get("组合成员", []))
  176. combo_text += f"- {members}\n"
  177. else:
  178. combo_text = "(无)\n"
  179. return f'''# 背景
  180. 推理一个小红书帖子选题前的点,在创作者脑中的因果顺序
  181. # Task
  182. 请判断以下筛选出的特征推理出【{target['特征名称']}】的可能性
  183. ## 待评估的单独推理特征:
  184. {single_text}
  185. ## 待评估的组合推理特征:
  186. {combo_text}
  187. # 推理约束
  188. 1. 实质推形式,而不是形式推实质
  189. 2. 因推果而不是果推因
  190. 3. 目的推理手段而不是手段推理目的
  191. 4. 只有当 A 是 B 的充分必要条件的时候,A 可以推理出 B
  192. # 评分标准
  193. | 分数范围 | 等级 | 说明 |
  194. |---------|------|------|
  195. | 0.80 - 1.00 | 逻辑必然 | A 是 B 的充分必要条件,必然推导 |
  196. | 0.50 - 0.79 | 高可能性 | A 高度倾向于推导出 B,但非唯一选择 |
  197. | 0.20 - 0.49 | 创意偏好 | A 可以推导出 B,但其他选择同样可行 |
  198. | 0.00 - 0.19 | 弱关联 | A 与 B 关联性很弱,不建议保留 |
  199. # 输出格式
  200. 请严格按照以下 JSON 结构输出:
  201. ```json
  202. {{
  203. "目标关键特征": "{target['特征名称']}",
  204. "推理分析": {{
  205. "单独推理": [
  206. {{
  207. "来源特征": "特征A",
  208. "来源特征类型": "灵感点/目的点/关键点",
  209. "可能性": 0.xx,
  210. "结论": "详细说明推导逻辑..."
  211. }}
  212. ],
  213. "组合推理": [
  214. {{
  215. "组合成员": ["特征B", "特征C"],
  216. "成员类型": ["目的点", "关键点"],
  217. "可能性": 0.xx,
  218. "结论": "详细说明组合推导逻辑..."
  219. }}
  220. ]
  221. }}
  222. }}
  223. ```
  224. 注意:
  225. - 如果某个特征经评估后可能性低于 0.2,可以标注但建议说明原因
  226. - 结论要清晰说明推导逻辑,避免空洞表述
  227. '''.strip()
  228. # ===== 主分析函数 =====
  229. async def analyze_node_origin(
  230. post_id: str = None,
  231. target_name: str = None,
  232. config: PathConfig = None
  233. ) -> Dict:
  234. """分析目标节点可能由哪些候选节点推导而来(两步法)"""
  235. if config is None:
  236. config = PathConfig()
  237. # 获取帖子图谱文件
  238. post_graph_files = get_post_graph_files(config)
  239. if not post_graph_files:
  240. raise ValueError("没有找到帖子图谱文件")
  241. # 选择帖子
  242. if post_id:
  243. target_file = next(
  244. (f for f in post_graph_files if post_id in f.name),
  245. None
  246. )
  247. if not target_file:
  248. raise ValueError(f"未找到帖子: {post_id}")
  249. else:
  250. target_file = post_graph_files[0]
  251. # 加载帖子图谱
  252. post_graph = load_post_graph(target_file)
  253. actual_post_id = post_graph.get("meta", {}).get("postId", "unknown")
  254. # 准备输入数据
  255. input_data = prepare_analyze_input(post_graph, target_name)
  256. actual_target_name = input_data["目标特征"]["特征名称"]
  257. print(f"帖子ID: {actual_post_id}")
  258. print(f"目标特征: {actual_target_name}")
  259. print(f"候选特征数: {len(input_data['候选特征'])}")
  260. # ===== 第一步:筛选 =====
  261. filter_prompt = build_filter_prompt(input_data)
  262. with custom_span(
  263. name=f"Step1 筛选 - {actual_target_name}",
  264. data={"目标特征": actual_target_name}
  265. ):
  266. filter_result_raw = await Runner.run(filter_agent, input=filter_prompt)
  267. filter_output = filter_result_raw.final_output
  268. # 解析筛选结果
  269. try:
  270. filter_result = parse_json_output(filter_output)
  271. except Exception as e:
  272. return {
  273. "帖子id": actual_post_id,
  274. "目标节点": actual_target_name,
  275. "模型": MODEL_NAME,
  276. "输入": input_data,
  277. "输出": None,
  278. "错误": f"筛选步骤解析失败: {str(e)}",
  279. "原始输出_筛选": filter_output
  280. }
  281. # 检查是否有可评估的特征
  282. prep_list = filter_result.get("预备分析列表", {})
  283. single_count = len(prep_list.get("单独推理", []))
  284. combo_count = len(prep_list.get("组合推理", []))
  285. if single_count == 0 and combo_count == 0:
  286. return {
  287. "帖子id": actual_post_id,
  288. "目标节点": actual_target_name,
  289. "模型": MODEL_NAME,
  290. "输入": input_data,
  291. "筛选结果": filter_result,
  292. "输出": {
  293. "目标关键特征": actual_target_name,
  294. "推理分析": {
  295. "单独推理": [],
  296. "组合推理": []
  297. }
  298. },
  299. "说明": "筛选步骤未找到可推导的特征"
  300. }
  301. print(f" 筛选结果: 单独推理 {single_count} 个, 组合推理 {combo_count} 个")
  302. # ===== 第二步:评估 =====
  303. evaluate_prompt = build_evaluate_prompt(input_data, filter_result)
  304. with custom_span(
  305. name=f"Step2 评估 - {actual_target_name}",
  306. data={"单独推理数": single_count, "组合推理数": combo_count}
  307. ):
  308. evaluate_result_raw = await Runner.run(evaluate_agent, input=evaluate_prompt)
  309. evaluate_output = evaluate_result_raw.final_output
  310. # 解析评估结果
  311. try:
  312. evaluate_result = parse_json_output(evaluate_output)
  313. except Exception as e:
  314. return {
  315. "帖子id": actual_post_id,
  316. "目标节点": actual_target_name,
  317. "模型": MODEL_NAME,
  318. "输入": input_data,
  319. "筛选结果": filter_result,
  320. "输出": None,
  321. "错误": f"评估步骤解析失败: {str(e)}",
  322. "原始输出_评估": evaluate_output
  323. }
  324. return {
  325. "帖子id": actual_post_id,
  326. "目标节点": actual_target_name,
  327. "模型": MODEL_NAME,
  328. "输入": input_data,
  329. "筛选结果": filter_result,
  330. "输出": evaluate_result
  331. }
  332. def parse_json_output(output: str) -> Dict:
  333. """解析 JSON 输出"""
  334. if "```json" in output:
  335. json_start = output.find("```json") + 7
  336. json_end = output.find("```", json_start)
  337. json_str = output[json_start:json_end].strip()
  338. elif "{" in output and "}" in output:
  339. json_start = output.find("{")
  340. json_end = output.rfind("}") + 1
  341. json_str = output[json_start:json_end]
  342. else:
  343. json_str = output
  344. return json.loads(json_str)
  345. # ===== 图谱构建函数 =====
  346. def build_origin_graph(all_results: List[Dict], post_id: str) -> Dict:
  347. """将分析结果转换为图谱格式"""
  348. nodes = {}
  349. edges = {}
  350. for result in all_results:
  351. target_input = result.get("输入", {})
  352. # 添加目标节点
  353. target_info = target_input.get("目标特征", {})
  354. target_name = target_info.get("特征名称", "")
  355. target_type = target_info.get("特征类型", "关键点")
  356. node_id = f"帖子:{target_type}:标签:{target_name}"
  357. if node_id not in nodes:
  358. nodes[node_id] = {
  359. "name": target_name,
  360. "type": "标签",
  361. "dimension": target_type,
  362. "domain": "帖子",
  363. "detail": {}
  364. }
  365. # 添加候选特征节点
  366. for candidate in target_input.get("候选特征", []):
  367. c_name = candidate.get("特征名称", "")
  368. c_type = candidate.get("特征类型", "关键点")
  369. c_node_id = f"帖子:{c_type}:标签:{c_name}"
  370. if c_node_id not in nodes:
  371. nodes[c_node_id] = {
  372. "name": c_name,
  373. "type": "标签",
  374. "dimension": c_type,
  375. "domain": "帖子",
  376. "detail": {}
  377. }
  378. # 构建推导边
  379. for result in all_results:
  380. target_name = result.get("目标特征", "")
  381. target_input = result.get("输入", {})
  382. target_info = target_input.get("目标特征", {})
  383. target_type = target_info.get("特征类型", "关键点")
  384. target_node_id = f"帖子:{target_type}:标签:{target_name}"
  385. # V4 的推理分析在顶层,不是在 输出 下面
  386. reasoning = result.get("推理分析", {})
  387. # 单独推理的边
  388. for item in reasoning.get("单独推理", []):
  389. source_name = item.get("来源特征", "")
  390. source_type = item.get("来源特征类型", "关键点")
  391. source_node_id = f"帖子:{source_type}:标签:{source_name}"
  392. probability = item.get("可能性", 0)
  393. edge_id = f"{source_node_id}|推导|{target_node_id}"
  394. edges[edge_id] = {
  395. "source": source_node_id,
  396. "target": target_node_id,
  397. "type": "推导",
  398. "score": probability,
  399. "detail": {
  400. "推理类型": "单独推理",
  401. "结论": item.get("结论", "")
  402. }
  403. }
  404. # 组合推理的边
  405. for item in reasoning.get("组合推理", []):
  406. members = item.get("组合成员", [])
  407. member_types = item.get("成员类型", [])
  408. probability = item.get("可能性", 0)
  409. # 创建组合虚拟节点
  410. member_pairs = list(zip(members, member_types)) if len(member_types) == len(members) else [(m, "关键点") for m in members]
  411. sorted_pairs = sorted(member_pairs, key=lambda x: x[0])
  412. sorted_members = [p[0] for p in sorted_pairs]
  413. sorted_types = [p[1] for p in sorted_pairs]
  414. combo_parts = [f"{sorted_types[i]}:{m}" for i, m in enumerate(sorted_members)]
  415. combo_name = " + ".join(combo_parts)
  416. combo_node_id = f"帖子:组合:组合:{combo_name}"
  417. if combo_node_id not in nodes:
  418. nodes[combo_node_id] = {
  419. "name": combo_name,
  420. "type": "组合",
  421. "dimension": "组合",
  422. "domain": "帖子",
  423. "detail": {
  424. "成员": sorted_members,
  425. "成员类型": sorted_types
  426. }
  427. }
  428. # 组合节点到目标的边
  429. edge_id = f"{combo_node_id}|推导|{target_node_id}"
  430. edges[edge_id] = {
  431. "source": combo_node_id,
  432. "target": target_node_id,
  433. "type": "推导",
  434. "score": probability,
  435. "detail": {
  436. "推理类型": "组合推理",
  437. "结论": item.get("结论", "")
  438. }
  439. }
  440. # 成员到组合节点的边
  441. for i, member in enumerate(sorted_members):
  442. m_type = sorted_types[i]
  443. m_node_id = f"帖子:{m_type}:标签:{member}"
  444. m_edge_id = f"{m_node_id}|组成|{combo_node_id}"
  445. if m_edge_id not in edges:
  446. edges[m_edge_id] = {
  447. "source": m_node_id,
  448. "target": combo_node_id,
  449. "type": "组成",
  450. "score": 1.0,
  451. "detail": {}
  452. }
  453. return {
  454. "meta": {
  455. "postId": post_id,
  456. "type": "推导图谱",
  457. "version": "v4",
  458. "stats": {
  459. "nodeCount": len(nodes),
  460. "edgeCount": len(edges)
  461. }
  462. },
  463. "nodes": nodes,
  464. "edges": edges
  465. }
  466. # ===== 辅助函数 =====
  467. def get_all_target_names(post_graph: Dict, dimensions: List[str] = None) -> List[str]:
  468. """获取所有可作为目标的特征名称"""
  469. if dimensions is None:
  470. dimensions = ["灵感点", "目的点", "关键点"]
  471. tags = extract_tags_from_post_graph(post_graph)
  472. return [t["name"] for t in tags if t["dimension"] in dimensions]
  473. def get_score_level(score: float) -> str:
  474. """根据分数返回等级"""
  475. if score >= 0.80:
  476. return "逻辑必然"
  477. elif score >= 0.50:
  478. return "高可能性"
  479. elif score >= 0.20:
  480. return "创意偏好"
  481. else:
  482. return "弱关联"
  483. def display_result(result: Dict):
  484. """显示单个分析结果"""
  485. output = result.get("输出")
  486. if output:
  487. print(f"\n目标关键特征: {output.get('目标关键特征', 'N/A')}")
  488. reasoning = output.get("推理分析", {})
  489. # 显示单独推理
  490. single = reasoning.get("单独推理", [])
  491. if single:
  492. print(" 【单独推理】")
  493. for item in single[:5]:
  494. score = item.get("可能性", 0)
  495. level = get_score_level(score)
  496. print(f" [{score:.2f} {level}] {item.get('来源特征', '')}")
  497. # 显示组合推理
  498. combo = reasoning.get("组合推理", [])
  499. if combo:
  500. print(" 【组合推理】")
  501. for item in combo[:3]:
  502. members = " + ".join(item.get("组合成员", []))
  503. score = item.get("可能性", 0)
  504. level = get_score_level(score)
  505. print(f" [{score:.2f} {level}] {members}")
  506. else:
  507. error = result.get("错误", "")
  508. if error:
  509. print(f" 分析失败: {error}")
  510. else:
  511. print(f" {result.get('说明', '无结果')}")
  512. # ===== 单帖子处理函数 =====
  513. async def process_single_post(
  514. post_file: Path,
  515. config: PathConfig,
  516. target_name: str = None,
  517. num_targets: int = 999,
  518. dimensions: List[str] = None
  519. ):
  520. """处理单个帖子"""
  521. if dimensions is None:
  522. dimensions = ["灵感点", "目的点", "关键点"]
  523. # 为每个帖子生成独立的 trace
  524. current_time, log_url = set_trace()
  525. # 加载帖子图谱
  526. post_graph = load_post_graph(post_file)
  527. actual_post_id = post_graph.get("meta", {}).get("postId", "unknown")
  528. print(f"\n{'=' * 60}")
  529. print(f"帖子ID: {actual_post_id}")
  530. print(f"Trace URL: {log_url}")
  531. # 确定要分析的目标特征列表
  532. if target_name:
  533. target_names = [target_name]
  534. else:
  535. all_targets = get_all_target_names(post_graph, dimensions)
  536. target_names = all_targets[:num_targets]
  537. print(f"待分析目标特征: {target_names}")
  538. print("-" * 60)
  539. # 输出目录
  540. output_dir = config.intermediate_dir / "node_origin_analysis"
  541. output_dir.mkdir(parents=True, exist_ok=True)
  542. # 使用 trace 上下文包裹单个帖子的分析
  543. with trace(f"节点来源分析 V4 - {actual_post_id}"):
  544. # 并发分析所有目标特征
  545. async def analyze_single(name: str, index: int):
  546. print(f"\n[{index}/{len(target_names)}] 开始分析: {name}")
  547. result = await analyze_node_origin(
  548. post_id=actual_post_id,
  549. target_name=name,
  550. config=config
  551. )
  552. print(f"[{index}/{len(target_names)}] 完成: {name}")
  553. display_result(result)
  554. output = result.get("输出", {})
  555. return {
  556. "目标特征": result.get("目标节点"),
  557. "筛选结果": result.get("筛选结果"),
  558. "推理分析": output.get("推理分析", {}) if output else {},
  559. "输入": result.get("输入"),
  560. "错误": result.get("错误"),
  561. "说明": result.get("说明")
  562. }
  563. # 创建并发任务
  564. tasks = [
  565. analyze_single(name, i)
  566. for i, name in enumerate(target_names, 1)
  567. ]
  568. # 并发执行
  569. all_results = await asyncio.gather(*tasks)
  570. # 合并保存到一个文件
  571. merged_output = {
  572. "元数据": {
  573. "current_time": current_time,
  574. "log_url": log_url,
  575. "model": MODEL_NAME,
  576. "version": "v4"
  577. },
  578. "帖子id": actual_post_id,
  579. "分析结果列表": all_results
  580. }
  581. output_file = output_dir / f"{actual_post_id}_来源分析_v4.json"
  582. with open(output_file, "w", encoding="utf-8") as f:
  583. json.dump(merged_output, f, ensure_ascii=False, indent=2)
  584. # 生成推导关系图谱
  585. graph_output = build_origin_graph(all_results, actual_post_id)
  586. graph_file = output_dir / f"{actual_post_id}_推导图谱_v4.json"
  587. with open(graph_file, "w", encoding="utf-8") as f:
  588. json.dump(graph_output, f, ensure_ascii=False, indent=2)
  589. print(f"\n完成! 共分析 {len(target_names)} 个目标特征")
  590. print(f"分析结果: {output_file}")
  591. print(f"推导图谱: {graph_file}")
  592. print(f"Trace: {log_url}")
  593. return actual_post_id
  594. # ===== 主函数 =====
  595. async def main(
  596. post_id: str = None,
  597. target_name: str = None,
  598. num_targets: int = 999,
  599. dimensions: List[str] = None,
  600. all_posts: bool = False
  601. ):
  602. """主函数"""
  603. if dimensions is None:
  604. dimensions = ["灵感点", "目的点", "关键点"]
  605. config = PathConfig()
  606. print(f"账号: {config.account_name}")
  607. print(f"使用模型: {MODEL_NAME}")
  608. print(f"分析维度: {dimensions}")
  609. print(f"版本: V4 (两步法: 筛选 + 评估)")
  610. # 获取帖子图谱文件
  611. post_graph_files = get_post_graph_files(config)
  612. if not post_graph_files:
  613. print("错误: 没有找到帖子图谱文件")
  614. return
  615. # 确定要处理的帖子列表
  616. if post_id:
  617. target_file = next(
  618. (f for f in post_graph_files if post_id in f.name),
  619. None
  620. )
  621. if not target_file:
  622. print(f"错误: 未找到帖子 {post_id}")
  623. return
  624. files_to_process = [target_file]
  625. elif all_posts:
  626. files_to_process = post_graph_files
  627. else:
  628. files_to_process = [post_graph_files[0]]
  629. print(f"待处理帖子数: {len(files_to_process)}")
  630. # 逐个处理帖子
  631. processed_posts = []
  632. for i, post_file in enumerate(files_to_process, 1):
  633. print(f"\n{'#' * 60}")
  634. print(f"# 处理帖子 {i}/{len(files_to_process)}")
  635. print(f"{'#' * 60}")
  636. post_id_result = await process_single_post(
  637. post_file=post_file,
  638. config=config,
  639. target_name=target_name,
  640. num_targets=num_targets,
  641. dimensions=dimensions
  642. )
  643. processed_posts.append(post_id_result)
  644. print(f"\n{'#' * 60}")
  645. print(f"# 全部完成! 共处理 {len(processed_posts)} 个帖子")
  646. print(f"{'#' * 60}")
  647. def rebuild_graph_from_file(analysis_file: Path) -> None:
  648. """从已有的分析结果文件重建图谱"""
  649. with open(analysis_file, "r", encoding="utf-8") as f:
  650. data = json.load(f)
  651. post_id = data.get("帖子id", "unknown")
  652. all_results = data.get("分析结果列表", [])
  653. print(f"从分析文件重建图谱: {analysis_file.name}")
  654. print(f"帖子ID: {post_id}")
  655. print(f"分析结果数: {len(all_results)}")
  656. # 构建图谱
  657. graph_output = build_origin_graph(all_results, post_id)
  658. # 保存图谱
  659. graph_file = analysis_file.parent / f"{post_id}_推导图谱_v4.json"
  660. with open(graph_file, "w", encoding="utf-8") as f:
  661. json.dump(graph_output, f, ensure_ascii=False, indent=2)
  662. print(f"图谱已保存: {graph_file}")
  663. print(f"节点数: {graph_output['meta']['stats']['nodeCount']}")
  664. print(f"边数: {graph_output['meta']['stats']['edgeCount']}")
  665. if __name__ == "__main__":
  666. import argparse
  667. parser = argparse.ArgumentParser(description="分析节点来源 (V4 两步法)")
  668. parser.add_argument("--post-id", type=str, help="帖子ID(指定则只处理该帖子)")
  669. parser.add_argument("--target", type=str, help="目标节点名称(指定则只分析这一个特征)")
  670. parser.add_argument("--num", type=int, default=999, help="要分析的目标特征数量")
  671. parser.add_argument("--dims", type=str, nargs="+",
  672. choices=["灵感点", "目的点", "关键点"],
  673. help="指定要分析的维度(默认全部)")
  674. parser.add_argument("--all-posts", action="store_true", help="处理所有帖子")
  675. parser.add_argument("--rebuild-graph", type=str, metavar="FILE",
  676. help="从已有分析文件重建图谱(不重新分析)")
  677. args = parser.parse_args()
  678. # 如果指定了 --rebuild-graph,只重建图谱
  679. if args.rebuild_graph:
  680. rebuild_graph_from_file(Path(args.rebuild_graph))
  681. else:
  682. # 确定维度(默认所有维度)
  683. if args.dims:
  684. dimensions = args.dims
  685. else:
  686. dimensions = ["灵感点", "目的点", "关键点"]
  687. # 运行主函数
  688. asyncio.run(main(
  689. post_id=args.post_id,
  690. target_name=args.target,
  691. num_targets=args.num,
  692. dimensions=dimensions,
  693. all_posts=args.all_posts
  694. ))