| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375 |
- """
- Step3: 基于匹配节点生成灵感点
- 基于 Step1 的 Top1 匹配结果,以匹配到的人设要素作为锚点,
- 让 Agent 分析可以产生哪些灵感点
- """
- import os
- import sys
- import json
- import asyncio
- from pathlib import Path
- from agents import Agent, Runner, trace
- from agents.tracing.create import custom_span
- from lib.my_trace import set_trace_smith as set_trace
- from lib.client import get_model
- from lib.data_loader import load_persona_data, load_inspiration_list, select_inspiration
- # 模型配置
- MODEL_NAME = "google/gemini-2.5-pro"
- # ========== System Prompt ==========
- GENERATE_INSPIRATIONS_PROMPT = """
- # 任务
- 基于给定的人设要素(锚点),分析和生成可能的灵感点。
- ## 输入说明
- - **<人设要素></人设要素>**: 作为锚点的人设要素(一级或二级分类)
- - **<要素上下文></要素上下文>**: 该要素的上下文信息(所属视角、一级分类等)
- - **<参考灵感></参考灵感>**: 一个已匹配到该要素的灵感点示例(可选)
- ## 分析方法
- ### 核心原则:基于要素特征发散灵感
- 从人设要素的核心特征出发,思考可能触发该要素的各种灵感来源。
- ### 分析步骤
- 1. **理解要素核心**
- - 分析人设要素的核心特征
- - 理解该要素代表的内容类型或表达方式
- - 结合上下文理解要素的定位
- 2. **参考已有灵感**(如果提供)
- - 分析参考灵感如何触发该要素
- - 识别灵感的关键特征
- 3. **发散思考**
- - 从不同角度思考可能的灵感来源
- - 考虑不同的场景、话题、情感、事件等
- - 保持与要素核心特征的相关性
- 4. **生成灵感点列表**
- - 每个灵感点应该简洁明确
- - 灵感点之间应有一定的多样性
- - 灵感点应该能够触发该人设要素
- ---
- ## 输出格式(严格JSON)
- ```json
- {
- "要素分析": {
- "核心特征": "简要描述该要素的核心特征(1-2句话)",
- "适用场景": "该要素适用的内容场景或表达方式"
- },
- "灵感点列表": [
- {
- "灵感点": "具体的灵感点描述",
- "说明": "为什么这个灵感可能触发该要素"
- },
- {
- "灵感点": "具体的灵感点描述",
- "说明": "为什么这个灵感可能触发该要素"
- }
- ]
- }
- ```
- **输出要求**:
- 1. 必须严格按照上述JSON格式输出
- 2. 所有字段都必须填写
- 3. **要素分析**:包含核心特征和适用场景
- 4. **灵感点列表**:生成 5-10 个灵感点
- 5. 每个灵感点包含:
- - **灵感点**:简洁的灵感描述(一句话)
- - **说明**:解释为什么这个灵感可能触发该要素(1-2句话)
- 6. 灵感点应该多样化,覆盖不同角度和场景
- """.strip()
- def create_generate_agent(model_name: str) -> Agent:
- """创建灵感生成的 Agent
- Args:
- model_name: 模型名称
- Returns:
- Agent 实例
- """
- agent = Agent(
- name="Inspiration Generator Expert",
- instructions=GENERATE_INSPIRATIONS_PROMPT,
- model=get_model(model_name),
- tools=[],
- )
- return agent
- def parse_generate_response(response_content: str) -> dict:
- """解析生成响应
- Args:
- response_content: Agent 返回的响应内容
- Returns:
- 解析后的字典
- """
- try:
- # 如果响应包含在 markdown 代码块中,提取 JSON 部分
- if "```json" in response_content:
- json_start = response_content.index("```json") + 7
- json_end = response_content.index("```", json_start)
- json_text = response_content[json_start:json_end].strip()
- elif "```" in response_content:
- json_start = response_content.index("```") + 3
- json_end = response_content.index("```", json_start)
- json_text = response_content[json_start:json_end].strip()
- else:
- json_text = response_content.strip()
- return json.loads(json_text)
- except Exception as e:
- print(f"解析响应失败: {e}")
- return {
- "要素分析": {
- "核心特征": "解析失败",
- "适用场景": "解析失败"
- },
- "灵感点列表": []
- }
- def find_step1_file(persona_dir: str, inspiration: str, model_name: str) -> str:
- """查找 step1 输出文件
- Args:
- persona_dir: 人设目录
- inspiration: 灵感点名称
- model_name: 模型名称
- Returns:
- step1 文件路径
- Raises:
- SystemExit: 找不到文件时退出
- """
- step1_dir = os.path.join(persona_dir, "how", "灵感点", inspiration)
- model_name_short = model_name.replace("google/", "").replace("/", "_")
- step1_file_pattern = f"*_step1_*_{model_name_short}.json"
- step1_files = list(Path(step1_dir).glob(step1_file_pattern))
- if not step1_files:
- print(f"❌ 找不到 step1 输出文件")
- print(f"查找路径: {step1_dir}/{step1_file_pattern}")
- sys.exit(1)
- return str(step1_files[0])
- async def process_step3_generate_inspirations(
- step1_top1: dict,
- reference_inspiration: str,
- current_time: str = None,
- log_url: str = None
- ) -> dict:
- """执行灵感生成分析(核心业务逻辑)
- Args:
- step1_top1: step1 的 top1 匹配结果
- reference_inspiration: 参考灵感(step1 输入的灵感)
- current_time: 当前时间戳
- log_url: trace URL
- Returns:
- 生成结果字典
- """
- # 从 step1 结果中提取信息
- business_info = step1_top1.get("业务信息", {})
- input_info = step1_top1.get("输入信息", {})
- matched_element = business_info.get("匹配要素", "")
- element_context = input_info.get("A_Context", "")
- print(f"\n开始灵感生成分析")
- print(f"锚点要素: {matched_element}")
- print(f"参考灵感: {reference_inspiration}")
- print(f"模型: {MODEL_NAME}\n")
- # 构建任务描述
- task_description = f"""## 本次分析任务
- <人设要素>
- {matched_element}
- </人设要素>
- <要素上下文>
- {element_context}
- </要素上下文>
- <参考灵感>
- {reference_inspiration}
- </参考灵感>
- 请基于上述人设要素作为锚点,分析并生成可能的灵感点列表,严格按照系统提示中的 JSON 格式输出结果。"""
- # 构造消息
- messages = [{
- "role": "user",
- "content": [
- {
- "type": "input_text",
- "text": task_description
- }
- ]
- }]
- # 使用 custom_span 追踪生成过程
- with custom_span(
- name=f"Step3: 灵感生成 - {matched_element}",
- data={
- "锚点要素": matched_element,
- "参考灵感": reference_inspiration,
- "模型": MODEL_NAME,
- "步骤": "基于要素生成灵感点"
- }
- ):
- # 创建 Agent
- agent = create_generate_agent(MODEL_NAME)
- # 运行 Agent
- result = await Runner.run(agent, input=messages)
- # 解析响应
- parsed_result = parse_generate_response(result.final_output)
- # 构建输出
- return {
- "元数据": {
- "current_time": current_time,
- "log_url": log_url,
- "model": MODEL_NAME,
- "步骤": "Step3: 基于匹配节点生成灵感点"
- },
- "锚点信息": {
- "人设要素": matched_element,
- "要素上下文": element_context,
- "参考灵感": reference_inspiration
- },
- "step1_结果": step1_top1,
- "生成结果": parsed_result
- }
- async def main(current_time: str, log_url: str):
- """主函数"""
- # 解析命令行参数
- persona_dir = sys.argv[1] if len(sys.argv) > 1 else "data/阿里多多酱/out/人设_1110"
- inspiration_arg = sys.argv[2] if len(sys.argv) > 2 else "0"
- print(f"{'=' * 80}")
- print(f"Step3: 基于匹配节点生成灵感点")
- print(f"{'=' * 80}")
- print(f"人设目录: {persona_dir}")
- print(f"灵感参数: {inspiration_arg}")
- # 加载数据
- persona_data = load_persona_data(persona_dir)
- inspiration_list = load_inspiration_list(persona_dir)
- # 选择灵感
- try:
- inspiration_index = int(inspiration_arg)
- if 0 <= inspiration_index < len(inspiration_list):
- test_inspiration = inspiration_list[inspiration_index]
- print(f"使用灵感[{inspiration_index}]: {test_inspiration}")
- else:
- print(f"❌ 灵感索引超出范围: {inspiration_index}")
- sys.exit(1)
- except ValueError:
- if inspiration_arg in inspiration_list:
- test_inspiration = inspiration_arg
- print(f"使用灵感: {test_inspiration}")
- else:
- print(f"❌ 找不到灵感: {inspiration_arg}")
- sys.exit(1)
- # 查找并加载 step1 结果
- step1_file = find_step1_file(persona_dir, test_inspiration, MODEL_NAME)
- step1_filename = os.path.basename(step1_file)
- step1_basename = os.path.splitext(step1_filename)[0]
- print(f"Step1 输入文件: {step1_file}")
- with open(step1_file, 'r', encoding='utf-8') as f:
- step1_data = json.load(f)
- actual_inspiration = step1_data.get("灵感", "")
- step1_results = step1_data.get("匹配结果列表", [])
- if not step1_results:
- print("❌ step1 结果为空")
- sys.exit(1)
- print(f"灵感: {actual_inspiration}")
- # 默认处理 top1
- result_index = 0
- selected_result = step1_results[result_index]
- print(f"处理第 {result_index + 1} 个匹配结果(Top{result_index + 1})\n")
- # 执行核心业务逻辑
- output = await process_step3_generate_inspirations(
- step1_top1=selected_result,
- reference_inspiration=actual_inspiration,
- current_time=current_time,
- log_url=log_url
- )
- # 在元数据中添加 step1 匹配索引
- output["元数据"]["step1_匹配索引"] = result_index + 1
- # 保存结果
- output_dir = os.path.join(persona_dir, "how", "灵感点", test_inspiration)
- model_name_short = MODEL_NAME.replace("google/", "").replace("/", "_")
- # 提取 step1 的范围标识(all 或 top10 等)
- scope_prefix = step1_basename.split("_")[0]
- output_filename = f"{scope_prefix}_step3_top{result_index + 1}_生成灵感_{model_name_short}.json"
- os.makedirs(output_dir, exist_ok=True)
- output_file = os.path.join(output_dir, output_filename)
- with open(output_file, 'w', encoding='utf-8') as f:
- json.dump(output, f, ensure_ascii=False, indent=2)
- # 输出生成的灵感点预览
- generated = output.get("生成结果", {})
- inspirations = generated.get("灵感点列表", [])
- print(f"\n{'=' * 80}")
- print(f"生成了 {len(inspirations)} 个灵感点:")
- print(f"{'=' * 80}")
- for i, item in enumerate(inspirations[:5], 1):
- print(f"{i}. {item.get('灵感点', '')}")
- if len(inspirations) > 5:
- print(f"... 还有 {len(inspirations) - 5} 个")
- print(f"\n完成!结果已保存到: {output_file}")
- if log_url:
- print(f"Trace: {log_url}\n")
- if __name__ == "__main__":
- # 设置 trace
- current_time, log_url = set_trace()
- # 使用 trace 上下文包裹整个执行流程
- with trace("Step3: 生成灵感点"):
- asyncio.run(main(current_time, log_url))
|