Pārlūkot izejas kodu

feat: 添加节点来源分析脚本 V4

采用两步法:
1. 第一步(筛选):根据4条原则筛选候选特征
   - 实质推形式
   - 因推果
   - 目的推手段
   - 充分必要条件
2. 第二步(评估):对筛选结果进行可能性评分

新增功能:
- --rebuild-graph 从已有分析文件重建图谱(不消耗token)
- 修复图谱边构建逻辑

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
yangxiaohui 23 stundas atpakaļ
vecāks
revīzija
48e978b20a
1 mainītis faili ar 827 papildinājumiem un 0 dzēšanām
  1. 827 0
      script/data_processing/analyze_node_origin_v4.py

+ 827 - 0
script/data_processing/analyze_node_origin_v4.py

@@ -0,0 +1,827 @@
+#!/usr/bin/env python3
+# -*- coding: utf-8 -*-
+"""
+节点来源分析脚本 V4
+
+采用两步法:
+1. 第一步(筛选):筛选可能的来源特征
+2. 第二步(评估):对筛选出的特征进行可能性评估
+
+输入:post_graph 目录中的帖子图谱文件
+输出:节点来源分析结果
+"""
+
+import asyncio
+import json
+from pathlib import Path
+from typing import Dict, List
+import sys
+
+# 添加项目根目录到路径
+project_root = Path(__file__).parent.parent.parent
+sys.path.insert(0, str(project_root))
+
+from agents import Agent, Runner, ModelSettings, trace
+from agents.tracing.create import custom_span
+from lib.client import get_model
+from lib.my_trace import set_trace_smith as set_trace
+from script.data_processing.path_config import PathConfig
+
+# 模型配置
+MODEL_NAME = "google/gemini-3-pro-preview"
+# MODEL_NAME = 'deepseek/deepseek-v3.2'
+# MODEL_NAME = 'anthropic/claude-sonnet-4.5'
+
+# 第一步筛选 Agent
+filter_agent = Agent(
+    name="Feature Filter",
+    model=get_model(MODEL_NAME),
+    model_settings=ModelSettings(
+        temperature=0.0,
+        max_tokens=16384,
+    ),
+    tools=[],
+)
+
+# 第二步评估 Agent
+evaluate_agent = Agent(
+    name="Feature Evaluator",
+    model=get_model(MODEL_NAME),
+    model_settings=ModelSettings(
+        temperature=0.0,
+        max_tokens=32768,
+    ),
+    tools=[],
+)
+
+
+# ===== 数据提取函数 =====
+
+def get_post_graph_files(config: PathConfig) -> List[Path]:
+    """获取所有帖子图谱文件"""
+    post_graph_dir = config.intermediate_dir / "post_graph"
+    return sorted(post_graph_dir.glob("*_帖子图谱.json"))
+
+
+def load_post_graph(file_path: Path) -> Dict:
+    """加载帖子图谱"""
+    with open(file_path, "r", encoding="utf-8") as f:
+        return json.load(f)
+
+
+def extract_tags_from_post_graph(post_graph: Dict) -> List[Dict]:
+    """从帖子图谱中提取标签节点"""
+    tags = []
+    for node_id, node in post_graph.get("nodes", {}).items():
+        if node.get("type") == "标签" and node.get("domain") == "帖子":
+            tags.append({
+                "id": node_id,
+                "name": node.get("name", ""),
+                "dimension": node.get("dimension", ""),
+            })
+    return tags
+
+
+def prepare_analyze_input(post_graph: Dict, target_name: str = None) -> Dict:
+    """准备分析输入数据"""
+    tags = extract_tags_from_post_graph(post_graph)
+
+    if not tags:
+        raise ValueError("帖子图谱中没有找到标签节点")
+
+    # 确定目标节点
+    if target_name:
+        target_tag = next((t for t in tags if t["name"] == target_name), None)
+        if not target_tag:
+            raise ValueError(f"未找到目标节点: {target_name}")
+    else:
+        key_point_tags = [t for t in tags if t["dimension"] == "关键点"]
+        if not key_point_tags:
+            raise ValueError("没有找到关键点标签")
+        target_tag = key_point_tags[0]
+
+    # 候选节点筛选:灵感点/目的点的候选集排除关键点
+    target_dimension = target_tag["dimension"]
+    candidate_tags = []
+    for t in tags:
+        if t["name"] == target_tag["name"]:
+            continue
+        if target_dimension in ["灵感点", "目的点"] and t["dimension"] == "关键点":
+            continue
+        candidate_tags.append(t)
+
+    return {
+        "目标特征": {
+            "特征名称": target_tag["name"],
+            "特征类型": target_tag["dimension"]
+        },
+        "候选特征": [
+            {
+                "特征名称": t["name"],
+                "特征类型": t["dimension"]
+            }
+            for t in candidate_tags
+        ]
+    }
+
+
+# ===== Prompt 构建 =====
+
+def build_filter_prompt(input_data: Dict) -> str:
+    """构建第一步筛选 prompt"""
+    target = input_data["目标特征"]
+    candidates = input_data["候选特征"]
+
+    # 构建候选特征列表
+    candidates_text = []
+    for c in candidates:
+        candidates_text.append(f"- {c['特征名称']} ({c['特征类型']})")
+    candidates_section = "\n".join(candidates_text)
+
+    return f'''# 背景
+推理一个小红书帖子选题前脑海中的点,在创作者脑中的因果顺序
+
+# Task
+请分析【输入数据】与【目标点】的关系,按以下两类筛选证据:
+1. **单独推理**:哪个特征单凭自己就能有可能指向目标特征?
+2. **组合推理**:哪几个特征必须结合在一起,才能指向目标特征?(缺一不可才算组合)
+
+如果能独立推出则无需组合。
+
+# 筛选原则
+1. 实质推形式,而不是形式推实质
+2. 因推果而不是果推因
+3. 目的推理手段而不是手段推理目的
+4. 只有当 A 是 B 的充分必要条件的时候,A 可以推理出 B
+
+**本次分析的目标特征是:{target['特征名称']}({target['特征类型']})**
+
+# 输入数据
+{candidates_section}
+
+# 输出格式
+请严格按照以下 JSON 结构输出:
+
+```json
+{{
+  "目标特征": "{target['特征名称']}",
+  "预备分析列表": {{
+    "单独推理": [
+      {{
+        "来源特征": "特征A",
+        "来源特征类型": "灵感点/目的点/关键点",
+        "初步理由": "简要说明为什么这个特征可能推导出目标"
+      }}
+    ],
+    "组合推理": [
+      {{
+        "组合成员": ["特征B", "特征C"],
+        "成员类型": ["目的点", "关键点"],
+        "初步理由": "简要说明为什么这些特征需要组合才能推导出目标"
+      }}
+    ]
+  }}
+}}
+```
+
+注意:
+- 单独推理的来源特征必须是输入数据中的原话
+- 组合推理的成员数量通常为 2-3 个
+- 如果某个特征完全无法推导出目标,不要勉强添加
+'''.strip()
+
+
+def build_evaluate_prompt(input_data: Dict, filter_result: Dict) -> str:
+    """构建第二步评估 prompt"""
+    target = input_data["目标特征"]
+    prep_list = filter_result.get("预备分析列表", {})
+
+    # 构建单独推理列表
+    single_items = prep_list.get("单独推理", [])
+    single_text = ""
+    if single_items:
+        for item in single_items:
+            single_text += f"- {item.get('来源特征', '')}({item.get('来源特征类型', '')})\n"
+    else:
+        single_text = "(无)\n"
+
+    # 构建组合推理列表
+    combo_items = prep_list.get("组合推理", [])
+    combo_text = ""
+    if combo_items:
+        for item in combo_items:
+            members = " + ".join(item.get("组合成员", []))
+            combo_text += f"- {members}\n"
+    else:
+        combo_text = "(无)\n"
+
+    return f'''# 背景
+推理一个小红书帖子选题前的点,在创作者脑中的因果顺序
+
+# Task
+请判断以下筛选出的特征推理出【{target['特征名称']}】的可能性
+
+## 待评估的单独推理特征:
+{single_text}
+## 待评估的组合推理特征:
+{combo_text}
+# 推理约束
+1. 实质推形式,而不是形式推实质
+2. 因推果而不是果推因
+3. 目的推理手段而不是手段推理目的
+4. 只有当 A 是 B 的充分必要条件的时候,A 可以推理出 B
+
+# 评分标准
+| 分数范围 | 等级 | 说明 |
+|---------|------|------|
+| 0.80 - 1.00 | 逻辑必然 | A 是 B 的充分必要条件,必然推导 |
+| 0.50 - 0.79 | 高可能性 | A 高度倾向于推导出 B,但非唯一选择 |
+| 0.20 - 0.49 | 创意偏好 | A 可以推导出 B,但其他选择同样可行 |
+| 0.00 - 0.19 | 弱关联 | A 与 B 关联性很弱,不建议保留 |
+
+# 输出格式
+请严格按照以下 JSON 结构输出:
+
+```json
+{{
+  "目标关键特征": "{target['特征名称']}",
+  "推理分析": {{
+    "单独推理": [
+      {{
+        "来源特征": "特征A",
+        "来源特征类型": "灵感点/目的点/关键点",
+        "可能性": 0.xx,
+        "结论": "详细说明推导逻辑..."
+      }}
+    ],
+    "组合推理": [
+      {{
+        "组合成员": ["特征B", "特征C"],
+        "成员类型": ["目的点", "关键点"],
+        "可能性": 0.xx,
+        "结论": "详细说明组合推导逻辑..."
+      }}
+    ]
+  }}
+}}
+```
+
+注意:
+- 如果某个特征经评估后可能性低于 0.2,可以标注但建议说明原因
+- 结论要清晰说明推导逻辑,避免空洞表述
+'''.strip()
+
+
+# ===== 主分析函数 =====
+
+async def analyze_node_origin(
+    post_id: str = None,
+    target_name: str = None,
+    config: PathConfig = None
+) -> Dict:
+    """分析目标节点可能由哪些候选节点推导而来(两步法)"""
+    if config is None:
+        config = PathConfig()
+
+    # 获取帖子图谱文件
+    post_graph_files = get_post_graph_files(config)
+    if not post_graph_files:
+        raise ValueError("没有找到帖子图谱文件")
+
+    # 选择帖子
+    if post_id:
+        target_file = next(
+            (f for f in post_graph_files if post_id in f.name),
+            None
+        )
+        if not target_file:
+            raise ValueError(f"未找到帖子: {post_id}")
+    else:
+        target_file = post_graph_files[0]
+
+    # 加载帖子图谱
+    post_graph = load_post_graph(target_file)
+    actual_post_id = post_graph.get("meta", {}).get("postId", "unknown")
+
+    # 准备输入数据
+    input_data = prepare_analyze_input(post_graph, target_name)
+    actual_target_name = input_data["目标特征"]["特征名称"]
+
+    print(f"帖子ID: {actual_post_id}")
+    print(f"目标特征: {actual_target_name}")
+    print(f"候选特征数: {len(input_data['候选特征'])}")
+
+    # ===== 第一步:筛选 =====
+    filter_prompt = build_filter_prompt(input_data)
+
+    with custom_span(
+        name=f"Step1 筛选 - {actual_target_name}",
+        data={"目标特征": actual_target_name}
+    ):
+        filter_result_raw = await Runner.run(filter_agent, input=filter_prompt)
+        filter_output = filter_result_raw.final_output
+
+    # 解析筛选结果
+    try:
+        filter_result = parse_json_output(filter_output)
+    except Exception as e:
+        return {
+            "帖子id": actual_post_id,
+            "目标节点": actual_target_name,
+            "模型": MODEL_NAME,
+            "输入": input_data,
+            "输出": None,
+            "错误": f"筛选步骤解析失败: {str(e)}",
+            "原始输出_筛选": filter_output
+        }
+
+    # 检查是否有可评估的特征
+    prep_list = filter_result.get("预备分析列表", {})
+    single_count = len(prep_list.get("单独推理", []))
+    combo_count = len(prep_list.get("组合推理", []))
+
+    if single_count == 0 and combo_count == 0:
+        return {
+            "帖子id": actual_post_id,
+            "目标节点": actual_target_name,
+            "模型": MODEL_NAME,
+            "输入": input_data,
+            "筛选结果": filter_result,
+            "输出": {
+                "目标关键特征": actual_target_name,
+                "推理分析": {
+                    "单独推理": [],
+                    "组合推理": []
+                }
+            },
+            "说明": "筛选步骤未找到可推导的特征"
+        }
+
+    print(f"  筛选结果: 单独推理 {single_count} 个, 组合推理 {combo_count} 个")
+
+    # ===== 第二步:评估 =====
+    evaluate_prompt = build_evaluate_prompt(input_data, filter_result)
+
+    with custom_span(
+        name=f"Step2 评估 - {actual_target_name}",
+        data={"单独推理数": single_count, "组合推理数": combo_count}
+    ):
+        evaluate_result_raw = await Runner.run(evaluate_agent, input=evaluate_prompt)
+        evaluate_output = evaluate_result_raw.final_output
+
+    # 解析评估结果
+    try:
+        evaluate_result = parse_json_output(evaluate_output)
+    except Exception as e:
+        return {
+            "帖子id": actual_post_id,
+            "目标节点": actual_target_name,
+            "模型": MODEL_NAME,
+            "输入": input_data,
+            "筛选结果": filter_result,
+            "输出": None,
+            "错误": f"评估步骤解析失败: {str(e)}",
+            "原始输出_评估": evaluate_output
+        }
+
+    return {
+        "帖子id": actual_post_id,
+        "目标节点": actual_target_name,
+        "模型": MODEL_NAME,
+        "输入": input_data,
+        "筛选结果": filter_result,
+        "输出": evaluate_result
+    }
+
+
+def parse_json_output(output: str) -> Dict:
+    """解析 JSON 输出"""
+    if "```json" in output:
+        json_start = output.find("```json") + 7
+        json_end = output.find("```", json_start)
+        json_str = output[json_start:json_end].strip()
+    elif "{" in output and "}" in output:
+        json_start = output.find("{")
+        json_end = output.rfind("}") + 1
+        json_str = output[json_start:json_end]
+    else:
+        json_str = output
+
+    return json.loads(json_str)
+
+
+# ===== 图谱构建函数 =====
+
+def build_origin_graph(all_results: List[Dict], post_id: str) -> Dict:
+    """将分析结果转换为图谱格式"""
+    nodes = {}
+    edges = {}
+
+    for result in all_results:
+        target_input = result.get("输入", {})
+
+        # 添加目标节点
+        target_info = target_input.get("目标特征", {})
+        target_name = target_info.get("特征名称", "")
+        target_type = target_info.get("特征类型", "关键点")
+        node_id = f"帖子:{target_type}:标签:{target_name}"
+        if node_id not in nodes:
+            nodes[node_id] = {
+                "name": target_name,
+                "type": "标签",
+                "dimension": target_type,
+                "domain": "帖子",
+                "detail": {}
+            }
+
+        # 添加候选特征节点
+        for candidate in target_input.get("候选特征", []):
+            c_name = candidate.get("特征名称", "")
+            c_type = candidate.get("特征类型", "关键点")
+            c_node_id = f"帖子:{c_type}:标签:{c_name}"
+            if c_node_id not in nodes:
+                nodes[c_node_id] = {
+                    "name": c_name,
+                    "type": "标签",
+                    "dimension": c_type,
+                    "domain": "帖子",
+                    "detail": {}
+                }
+
+    # 构建推导边
+    for result in all_results:
+        target_name = result.get("目标特征", "")
+        target_input = result.get("输入", {})
+        target_info = target_input.get("目标特征", {})
+        target_type = target_info.get("特征类型", "关键点")
+        target_node_id = f"帖子:{target_type}:标签:{target_name}"
+
+        # V4 的推理分析在顶层,不是在 输出 下面
+        reasoning = result.get("推理分析", {})
+
+        # 单独推理的边
+        for item in reasoning.get("单独推理", []):
+            source_name = item.get("来源特征", "")
+            source_type = item.get("来源特征类型", "关键点")
+            source_node_id = f"帖子:{source_type}:标签:{source_name}"
+            probability = item.get("可能性", 0)
+
+            edge_id = f"{source_node_id}|推导|{target_node_id}"
+            edges[edge_id] = {
+                "source": source_node_id,
+                "target": target_node_id,
+                "type": "推导",
+                "score": probability,
+                "detail": {
+                    "推理类型": "单独推理",
+                    "结论": item.get("结论", "")
+                }
+            }
+
+        # 组合推理的边
+        for item in reasoning.get("组合推理", []):
+            members = item.get("组合成员", [])
+            member_types = item.get("成员类型", [])
+            probability = item.get("可能性", 0)
+
+            # 创建组合虚拟节点
+            member_pairs = list(zip(members, member_types)) if len(member_types) == len(members) else [(m, "关键点") for m in members]
+            sorted_pairs = sorted(member_pairs, key=lambda x: x[0])
+            sorted_members = [p[0] for p in sorted_pairs]
+            sorted_types = [p[1] for p in sorted_pairs]
+
+            combo_parts = [f"{sorted_types[i]}:{m}" for i, m in enumerate(sorted_members)]
+            combo_name = " + ".join(combo_parts)
+            combo_node_id = f"帖子:组合:组合:{combo_name}"
+            if combo_node_id not in nodes:
+                nodes[combo_node_id] = {
+                    "name": combo_name,
+                    "type": "组合",
+                    "dimension": "组合",
+                    "domain": "帖子",
+                    "detail": {
+                        "成员": sorted_members,
+                        "成员类型": sorted_types
+                    }
+                }
+
+            # 组合节点到目标的边
+            edge_id = f"{combo_node_id}|推导|{target_node_id}"
+            edges[edge_id] = {
+                "source": combo_node_id,
+                "target": target_node_id,
+                "type": "推导",
+                "score": probability,
+                "detail": {
+                    "推理类型": "组合推理",
+                    "结论": item.get("结论", "")
+                }
+            }
+
+            # 成员到组合节点的边
+            for i, member in enumerate(sorted_members):
+                m_type = sorted_types[i]
+                m_node_id = f"帖子:{m_type}:标签:{member}"
+                m_edge_id = f"{m_node_id}|组成|{combo_node_id}"
+                if m_edge_id not in edges:
+                    edges[m_edge_id] = {
+                        "source": m_node_id,
+                        "target": combo_node_id,
+                        "type": "组成",
+                        "score": 1.0,
+                        "detail": {}
+                    }
+
+    return {
+        "meta": {
+            "postId": post_id,
+            "type": "推导图谱",
+            "version": "v4",
+            "stats": {
+                "nodeCount": len(nodes),
+                "edgeCount": len(edges)
+            }
+        },
+        "nodes": nodes,
+        "edges": edges
+    }
+
+
+# ===== 辅助函数 =====
+
+def get_all_target_names(post_graph: Dict, dimensions: List[str] = None) -> List[str]:
+    """获取所有可作为目标的特征名称"""
+    if dimensions is None:
+        dimensions = ["灵感点", "目的点", "关键点"]
+    tags = extract_tags_from_post_graph(post_graph)
+    return [t["name"] for t in tags if t["dimension"] in dimensions]
+
+
+def get_score_level(score: float) -> str:
+    """根据分数返回等级"""
+    if score >= 0.80:
+        return "逻辑必然"
+    elif score >= 0.50:
+        return "高可能性"
+    elif score >= 0.20:
+        return "创意偏好"
+    else:
+        return "弱关联"
+
+
+def display_result(result: Dict):
+    """显示单个分析结果"""
+    output = result.get("输出")
+    if output:
+        print(f"\n目标关键特征: {output.get('目标关键特征', 'N/A')}")
+
+        reasoning = output.get("推理分析", {})
+
+        # 显示单独推理
+        single = reasoning.get("单独推理", [])
+        if single:
+            print("  【单独推理】")
+            for item in single[:5]:
+                score = item.get("可能性", 0)
+                level = get_score_level(score)
+                print(f"    [{score:.2f} {level}] {item.get('来源特征', '')}")
+
+        # 显示组合推理
+        combo = reasoning.get("组合推理", [])
+        if combo:
+            print("  【组合推理】")
+            for item in combo[:3]:
+                members = " + ".join(item.get("组合成员", []))
+                score = item.get("可能性", 0)
+                level = get_score_level(score)
+                print(f"    [{score:.2f} {level}] {members}")
+    else:
+        error = result.get("错误", "")
+        if error:
+            print(f"  分析失败: {error}")
+        else:
+            print(f"  {result.get('说明', '无结果')}")
+
+
+# ===== 单帖子处理函数 =====
+
+async def process_single_post(
+    post_file: Path,
+    config: PathConfig,
+    target_name: str = None,
+    num_targets: int = 999,
+    dimensions: List[str] = None
+):
+    """处理单个帖子"""
+    if dimensions is None:
+        dimensions = ["灵感点", "目的点", "关键点"]
+
+    # 为每个帖子生成独立的 trace
+    current_time, log_url = set_trace()
+
+    # 加载帖子图谱
+    post_graph = load_post_graph(post_file)
+    actual_post_id = post_graph.get("meta", {}).get("postId", "unknown")
+
+    print(f"\n{'=' * 60}")
+    print(f"帖子ID: {actual_post_id}")
+    print(f"Trace URL: {log_url}")
+
+    # 确定要分析的目标特征列表
+    if target_name:
+        target_names = [target_name]
+    else:
+        all_targets = get_all_target_names(post_graph, dimensions)
+        target_names = all_targets[:num_targets]
+
+    print(f"待分析目标特征: {target_names}")
+    print("-" * 60)
+
+    # 输出目录
+    output_dir = config.intermediate_dir / "node_origin_analysis"
+    output_dir.mkdir(parents=True, exist_ok=True)
+
+    # 使用 trace 上下文包裹单个帖子的分析
+    with trace(f"节点来源分析 V4 - {actual_post_id}"):
+        # 并发分析所有目标特征
+        async def analyze_single(name: str, index: int):
+            print(f"\n[{index}/{len(target_names)}] 开始分析: {name}")
+            result = await analyze_node_origin(
+                post_id=actual_post_id,
+                target_name=name,
+                config=config
+            )
+            print(f"[{index}/{len(target_names)}] 完成: {name}")
+            display_result(result)
+
+            output = result.get("输出", {})
+            return {
+                "目标特征": result.get("目标节点"),
+                "筛选结果": result.get("筛选结果"),
+                "推理分析": output.get("推理分析", {}) if output else {},
+                "输入": result.get("输入"),
+                "错误": result.get("错误"),
+                "说明": result.get("说明")
+            }
+
+        # 创建并发任务
+        tasks = [
+            analyze_single(name, i)
+            for i, name in enumerate(target_names, 1)
+        ]
+
+        # 并发执行
+        all_results = await asyncio.gather(*tasks)
+
+    # 合并保存到一个文件
+    merged_output = {
+        "元数据": {
+            "current_time": current_time,
+            "log_url": log_url,
+            "model": MODEL_NAME,
+            "version": "v4"
+        },
+        "帖子id": actual_post_id,
+        "分析结果列表": all_results
+    }
+
+    output_file = output_dir / f"{actual_post_id}_来源分析_v4.json"
+    with open(output_file, "w", encoding="utf-8") as f:
+        json.dump(merged_output, f, ensure_ascii=False, indent=2)
+
+    # 生成推导关系图谱
+    graph_output = build_origin_graph(all_results, actual_post_id)
+    graph_file = output_dir / f"{actual_post_id}_推导图谱_v4.json"
+    with open(graph_file, "w", encoding="utf-8") as f:
+        json.dump(graph_output, f, ensure_ascii=False, indent=2)
+
+    print(f"\n完成! 共分析 {len(target_names)} 个目标特征")
+    print(f"分析结果: {output_file}")
+    print(f"推导图谱: {graph_file}")
+    print(f"Trace: {log_url}")
+
+    return actual_post_id
+
+
+# ===== 主函数 =====
+
+async def main(
+    post_id: str = None,
+    target_name: str = None,
+    num_targets: int = 999,
+    dimensions: List[str] = None,
+    all_posts: bool = False
+):
+    """主函数"""
+    if dimensions is None:
+        dimensions = ["灵感点", "目的点", "关键点"]
+
+    config = PathConfig()
+
+    print(f"账号: {config.account_name}")
+    print(f"使用模型: {MODEL_NAME}")
+    print(f"分析维度: {dimensions}")
+    print(f"版本: V4 (两步法: 筛选 + 评估)")
+
+    # 获取帖子图谱文件
+    post_graph_files = get_post_graph_files(config)
+    if not post_graph_files:
+        print("错误: 没有找到帖子图谱文件")
+        return
+
+    # 确定要处理的帖子列表
+    if post_id:
+        target_file = next(
+            (f for f in post_graph_files if post_id in f.name),
+            None
+        )
+        if not target_file:
+            print(f"错误: 未找到帖子 {post_id}")
+            return
+        files_to_process = [target_file]
+    elif all_posts:
+        files_to_process = post_graph_files
+    else:
+        files_to_process = [post_graph_files[0]]
+
+    print(f"待处理帖子数: {len(files_to_process)}")
+
+    # 逐个处理帖子
+    processed_posts = []
+    for i, post_file in enumerate(files_to_process, 1):
+        print(f"\n{'#' * 60}")
+        print(f"# 处理帖子 {i}/{len(files_to_process)}")
+        print(f"{'#' * 60}")
+
+        post_id_result = await process_single_post(
+            post_file=post_file,
+            config=config,
+            target_name=target_name,
+            num_targets=num_targets,
+            dimensions=dimensions
+        )
+        processed_posts.append(post_id_result)
+
+    print(f"\n{'#' * 60}")
+    print(f"# 全部完成! 共处理 {len(processed_posts)} 个帖子")
+    print(f"{'#' * 60}")
+
+
+def rebuild_graph_from_file(analysis_file: Path) -> None:
+    """从已有的分析结果文件重建图谱"""
+    with open(analysis_file, "r", encoding="utf-8") as f:
+        data = json.load(f)
+
+    post_id = data.get("帖子id", "unknown")
+    all_results = data.get("分析结果列表", [])
+
+    print(f"从分析文件重建图谱: {analysis_file.name}")
+    print(f"帖子ID: {post_id}")
+    print(f"分析结果数: {len(all_results)}")
+
+    # 构建图谱
+    graph_output = build_origin_graph(all_results, post_id)
+
+    # 保存图谱
+    graph_file = analysis_file.parent / f"{post_id}_推导图谱_v4.json"
+    with open(graph_file, "w", encoding="utf-8") as f:
+        json.dump(graph_output, f, ensure_ascii=False, indent=2)
+
+    print(f"图谱已保存: {graph_file}")
+    print(f"节点数: {graph_output['meta']['stats']['nodeCount']}")
+    print(f"边数: {graph_output['meta']['stats']['edgeCount']}")
+
+
+if __name__ == "__main__":
+    import argparse
+
+    parser = argparse.ArgumentParser(description="分析节点来源 (V4 两步法)")
+    parser.add_argument("--post-id", type=str, help="帖子ID(指定则只处理该帖子)")
+    parser.add_argument("--target", type=str, help="目标节点名称(指定则只分析这一个特征)")
+    parser.add_argument("--num", type=int, default=999, help="要分析的目标特征数量")
+    parser.add_argument("--dims", type=str, nargs="+",
+                       choices=["灵感点", "目的点", "关键点"],
+                       help="指定要分析的维度(默认全部)")
+    parser.add_argument("--all-posts", action="store_true", help="处理所有帖子")
+    parser.add_argument("--rebuild-graph", type=str, metavar="FILE",
+                       help="从已有分析文件重建图谱(不重新分析)")
+    args = parser.parse_args()
+
+    # 如果指定了 --rebuild-graph,只重建图谱
+    if args.rebuild_graph:
+        rebuild_graph_from_file(Path(args.rebuild_graph))
+    else:
+        # 确定维度(默认所有维度)
+        if args.dims:
+            dimensions = args.dims
+        else:
+            dimensions = ["灵感点", "目的点", "关键点"]
+
+        # 运行主函数
+        asyncio.run(main(
+            post_id=args.post_id,
+            target_name=args.target,
+            num_targets=args.num,
+            dimensions=dimensions,
+            all_posts=args.all_posts
+        ))