123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257 |
- # encoding: utf-8
- import tensorflow as tf
- import numpy as np
- import pandas as pd
- import gc
- import os
- import time
- from sklearn.preprocessing import LabelEncoder
- from tensorflow.python.keras.preprocessing.sequence import pad_sequences
- begin_time = time.time()
- data = pd.read_csv("/work/xielixun/dwa_sum_graphembedding_user_action_feature_app_20210225.csv")
- sparse_features = ["videoid", "mid",
- "videoGenre1", "videoGenre2", "userRatedVideo1", "userRatedVideo2", "userRatedVideo3", "userGenre1", "userGenre2", "userCity",
- "authorid", "userRealplayCount", "videoRealPlayCount", "videoDuration"]
- target = ['label']
- data = data.sort_values(by='logtimestamp', ascending=False)
- # 需要把生成的label id 都保留下来,供后面线上使用,拼接特征
- feature_max_idx = {}
- data = data[data["mid"] != "unknown"].copy()
- data["mid"].replace("unknown", "N000111111D", inplace=True)
- data = data[data["mid"] != "N000111111D"].copy()
- # 和上面函数的功能是一样的,见 deepMatch DSSM
- def add_index_column(param_df, column_name):
- values = list(param_df[column_name].unique())
- value_index_dict = {value: idx for idx, value in enumerate(values)}
- if column_name == "mid":
- param_df["uidx"] = param_df[column_name].copy()
- param_df["mid"] = param_df[column_name].map(value_index_dict) + 1
- feature_max_idx["mid"] = param_df["mid"].max() + 1
- add_index_column(data, "mid")
- for column_name in sparse_features:
- lbe = LabelEncoder()
- print("\n\n-------------- " + column_name)
- print(data[column_name])
- if column_name == "videoGenre1" or column_name == "videoGenre2" or \
- column_name == "videoGenre3" or column_name == "userGenre1" or column_name == "userGenre2" or column_name == "userGenre3":
- data[column_name].fillna("社会", inplace=True)
- continue
- if column_name == "userCity":
- data[column_name].fillna("北京", inplace=True)
- if column_name == "mid":
- continue
- if column_name == "videoid":
- data["vidx"] = data[column_name].copy()
- data["videoid"] = lbe.fit_transform(data[column_name]) + 1
- feature_max_idx["videoid"] = data["videoid"].max() + 1
- # print(data["videoid"])
- else:
- data[column_name] = lbe.fit_transform(data[column_name])
- feature_max_idx[column_name] = data[column_name].max() + 1
- key2index = {}
- print("\n\n ************ data process finish")
- user_video_list_df = data[data["label"] > 0].copy().groupby("mid")['videoid'].apply(list).reset_index()
- user_video_list_df.rename(columns={'videoid': 'hist_video_id'}, inplace=True)
- max_len = 50
- mid_list = list(user_video_list_df["mid"])
- user_video_list_df["hist_len"] = user_video_list_df["hist_video_id"].apply(lambda x: len(x))
- emb_dim = 10
- df_merge = pd.merge(left=data,
- right=user_video_list_df,
- left_on="mid",
- right_on="mid",
- how="right")
- df_merge.head()
- df_merge = df_merge.sample(frac=1.0)
- g1 = data["videoGenre1"].values
- g2 = data["videoGenre2"].values
- g4 = data["userGenre1"].values
- g5 = data["userGenre2"].values
- del data, user_video_list_df
- gc.collect()
- model_input = {name: df_merge[name] for name in sparse_features}
- video_hist_seq_pad = pad_sequences(df_merge["hist_video_id"], maxlen=max_len, padding='post', truncating='post', value=0)
- model_input["hist_video_id"] = video_hist_seq_pad
- model_input["hist_len"] = df_merge["hist_len"]
- genre_set = g1 + g2 + g4 + g5
- genre_vocab = list(set(genre_set))
- GENRE_FEATURES = {
- 'userGenre1': genre_vocab,
- 'userGenre2': genre_vocab,
- 'videoGenre1': genre_vocab,
- 'videoGenre2': genre_vocab,
- }
- emb_dim1 = 10
- emb_dim2 = 32
- categorical_columns = []
- for feature, vocab in GENRE_FEATURES.items():
- cat_col = tf.feature_column.categorical_column_with_vocabulary_list(
- key=feature, vocabulary_list=vocab)
- emb_col = tf.feature_column.embedding_column(cat_col, emb_dim1)
- categorical_columns.append(emb_col)
- # video id embedding feature
- video_col = tf.feature_column.categorical_column_with_identity(key='videoid', num_buckets=feature_max_idx["videoid"])
- video_emb_col = tf.feature_column.embedding_column(video_col, emb_dim2)
- categorical_columns.append(video_emb_col)
- # user id embedding feature
- user_col = tf.feature_column.categorical_column_with_identity(key='mid', num_buckets=feature_max_idx["mid"])
- # user_emb_col = tf.feature_column.embedding_column(user_col, 10)
- user_emb_col = tf.feature_column.embedding_column(user_col, emb_dim2)
- categorical_columns.append(user_emb_col)
- user_city_col = tf.feature_column.categorical_column_with_identity(key='userCity', num_buckets=feature_max_idx["userCity"])
- user_city_emb_col = tf.feature_column.embedding_column(user_city_col, emb_dim1)
- categorical_columns.append(user_city_emb_col)
- authorid_col = tf.feature_column.categorical_column_with_identity(key='authorid', num_buckets=feature_max_idx["authorid"])
- authorid_emb_col = tf.feature_column.embedding_column(authorid_col, emb_dim2)
- categorical_columns.append(authorid_emb_col)
- numerical_columns = [
- tf.feature_column.numeric_column("userRealplayCount"),
- tf.feature_column.numeric_column("videoRealPlayCount"),
- tf.feature_column.numeric_column("videoDuration")
- ]
- # cross feature between current video and user historical video
- rated_video1 = tf.feature_column.categorical_column_with_identity(key='userRatedVideo1', num_buckets=feature_max_idx["videoid"])
- rated_video2 = tf.feature_column.categorical_column_with_identity(key='userRatedVideo2', num_buckets=feature_max_idx["videoid"])
- rated_video3 = tf.feature_column.categorical_column_with_identity(key='userRatedVideo3', num_buckets=feature_max_idx["videoid"])
- crossed_feature = tf.feature_column.indicator_column(tf.feature_column.crossed_column([video_col, rated_video1, rated_video2, rated_video3], feature_max_idx["videoid"]))
- user_features = ["uidx", "mid",
- "userRatedVideo1", "userRatedVideo2", "userRatedVideo3",
- "userGenre1", "userGenre2", "userCity",
- "userRealplayCount", "hist_video_id", "hist_len"]
- item_features = ["vidx","videoid", "videoGenre1", "videoGenre2",
- "authorid", "videoRealPlayCount", "videoDuration"]
- df_merge["hist_video_id"] = list(map(lambda x: ' '.join(list(map(str, x))), video_hist_seq_pad)) # 上下两条功能相同
- user_df = df_merge[user_features].drop_duplicates('uidx')
- video_df = df_merge[item_features].drop_duplicates('vidx')
- df_target = df_merge[target].copy()
- del df_merge
- gc.collect()
- from datetime import datetime
- TIMESTAMP = "{0:%Y-%m-%dT%H-%M-%S}".format(datetime.now())
- user_df.to_csv("user_df" + TIMESTAMP + ".csv", index=False)
- video_df.to_csv("video_df" + TIMESTAMP + ".csv", index=False)
- del user_df, video_df
- gc.collect()
- inputs = {
- 'videoid': tf.keras.layers.Input(name='videoid', shape=(), dtype='int32'),
- 'mid': tf.keras.layers.Input(name='mid', shape=(), dtype='int32'),
- 'userRatedVideo1': tf.keras.layers.Input(name='userRatedVideo1', shape=(), dtype='int32'),
- 'userRatedVideo2': tf.keras.layers.Input(name='userRatedVideo2', shape=(), dtype='int32'),
- 'userRatedVideo3': tf.keras.layers.Input(name='userRatedVideo3', shape=(), dtype='int32'),
- 'userRealplayCount': tf.keras.layers.Input(name='userRealplayCount', shape=(), dtype='int32'),
- 'videoRealPlayCount': tf.keras.layers.Input(name='videoRealPlayCount', shape=(), dtype='int32'),
- 'videoDuration': tf.keras.layers.Input(name='videoDuration', shape=(), dtype='int32'),
- "authorid": tf.keras.layers.Input(name='authorid', shape=(), dtype='int32'),
- "userCity": tf.keras.layers.Input(name='userCity', shape=(), dtype='int32'),
- 'userGenre1': tf.keras.layers.Input(name='userGenre1', shape=(), dtype='string'),
- 'userGenre2': tf.keras.layers.Input(name='userGenre2', shape=(), dtype='string'),
- 'videoGenre1': tf.keras.layers.Input(name='videoGenre1', shape=(), dtype='string'),
- 'videoGenre2': tf.keras.layers.Input(name='videoGenre2', shape=(), dtype='string'),
- 'hist_video_id':tf.keras.Input(shape=(50,), name='hist_video_id', dtype='int32'),
- 'hist_len': tf.keras.Input(shape=(), name='hist_len', dtype='int32'),
- }
- from tensorflow.python.feature_column.feature_column import _LazyBuilder
- hist_video_column = tf.feature_column.categorical_column_with_hash_bucket('hist_video_id', 2 * feature_max_idx["videoid"], dtype=tf.int32)
- hist_video_embedded = tf.feature_column.embedding_column(hist_video_column, emb_dim2)
- categorical_columns.append(hist_video_embedded)
- deep = tf.keras.layers.DenseFeatures(numerical_columns + categorical_columns)(inputs)
- deep = tf.keras.layers.Dense(128, activation='relu')(deep)
- deep = tf.keras.layers.Dense(64, activation='relu')(deep)
- # wide part for cross feature
- wide = tf.keras.layers.DenseFeatures(crossed_feature)(inputs)
- both = tf.keras.layers.concatenate([deep, wide])
- output_layer = tf.keras.layers.Dense(1, activation='sigmoid')(both)
- model = tf.keras.Model(inputs, output_layer)
- logdir = os.path.join("log_callbacks") # Tensorboard需要一个文件夹
- if not os.path.exists(logdir):
- os.mkdir(logdir)
- output_model_file = os.path.join(logdir,
- 'wdl_model.h5')
- callbacks = [
- tf.keras.callbacks.TensorBoard(logdir),
- tf.keras.callbacks.ModelCheckpoint(output_model_file,
- save_best_only=True),
- tf.keras.callbacks.EarlyStopping(patience=5, min_delta=1e-3),
- ]
- METRICS = [
- tf.keras.metrics.TruePositives(name='tp'),
- tf.keras.metrics.FalsePositives(name='fp'),
- tf.keras.metrics.TrueNegatives(name='tn'),
- tf.keras.metrics.FalseNegatives(name='fn'),
- tf.keras.metrics.BinaryAccuracy(name='accuracy'),
- tf.keras.metrics.Precision(name='precision'),
- tf.keras.metrics.Recall(name='recall'),
- tf.keras.metrics.AUC(name='auc'),
- tf.keras.metrics.AUC(name='auc-ROC', curve='ROC'),
- tf.keras.metrics.AUC(name='auc-PRC', curve='PR')
- ]
- model.compile(
- loss='binary_crossentropy',
- optimizer='adam',
- metrics=METRICS
- )
- model.fit(model_input, df_target,
- batch_size=4096, epochs=1,
- verbose=2, validation_split=0.2, callbacks=callbacks)
- model.save("./tensorflow_WDL-0416-tzld-2.h5")
- tf.keras.models.save_model(model,
- "file:///work/xielixun/WDL_0416/tensorflow_WDL-0416-tzld/001",
- # "file:///Users/xielixun/Desktop/lixunxie/python_code/DeepMatch/examples/WDL_0416/tensorflow_WDL-0416-tzld/001",
- overwrite=True,
- include_optimizer=True,
- save_format=None,
- signatures=None,
- options=None)
- print("trainning wDL in 2021-0415 cost time: " + str(time.time() - begin_time))
|