1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071 |
- '''
- Created on Oct 10, 2018
- Tensorflow Implementation of Neural Graph Collaborative Filtering (NGCF) model in:
- Wang Xiang et al. Neural Graph Collaborative Filtering. In SIGIR 2019.
- @author: Xiang Wang (xiangwang@u.nus.edu)
- '''
- import argparse
- def parse_args():
- parser = argparse.ArgumentParser(description="Run NGCF.")
- parser.add_argument('--weights_path', nargs='?', default='',
- help='Store model path.')
- parser.add_argument('--data_path', nargs='?', default='Data/',
- help='Input data path.')
- parser.add_argument('--proj_path', nargs='?', default='',
- help='Project path.')
- parser.add_argument('--dataset', nargs='?', default='gowalla',
- help='Choose a dataset from {gowalla, yelp2018, amazon-book}')
- parser.add_argument('--pretrain', type=int, default=0,
- help='0: No pretrain, -1: Pretrain with the learned embeddings, 1:Pretrain with stored models.')
- parser.add_argument('--verbose', type=int, default=1,
- help='Interval of evaluation.')
- parser.add_argument('--is_norm', type=int, default=1,
- help='Interval of evaluation.')
- parser.add_argument('--epoch', type=int, default=1000,
- help='Number of epoch.')
- parser.add_argument('--embed_size', type=int, default=64,
- help='Embedding size.')
- parser.add_argument('--layer_size', nargs='?', default='[64, 64, 64, 64]',
- help='Output sizes of every layer')
- parser.add_argument('--batch_size', type=int, default=1024,
- help='Batch size.')
- parser.add_argument('--regs', nargs='?', default='[1e-5,1e-5,1e-2]',
- help='Regularizations.')
- parser.add_argument('--lr', type=float, default=0.01,
- help='Learning rate.')
- parser.add_argument('--model_type', nargs='?', default='lightgcn',
- help='Specify the name of model (lightgcn).')
- parser.add_argument('--adj_type', nargs='?', default='pre',
- help='Specify the type of the adjacency (laplacian) matrix from {plain, norm, mean}.')
- parser.add_argument('--alg_type', nargs='?', default='lightgcn',
- help='Specify the type of the graph convolutional layer from {ngcf, gcn, gcmc}.')
- #parser.add_argument('--gpu_id', type=int, default=0,
- # help='0 for NAIS_prod, 1 for NAIS_concat')
- parser.add_argument('--node_dropout_flag', type=int, default=0,
- help='0: Disable node dropout, 1: Activate node dropout')
- parser.add_argument('--node_dropout', nargs='?', default='[0.1]',
- help='Keep probability w.r.t. node dropout (i.e., 1-dropout_ratio) for each deep layer. 1: no dropout.')
- parser.add_argument('--mess_dropout', nargs='?', default='[0.1]',
- help='Keep probability w.r.t. message dropout (i.e., 1-dropout_ratio) for each deep layer. 1: no dropout.')
- parser.add_argument('--Ks', nargs='?', default='[20]',
- help='Top k(s) recommend')
- parser.add_argument('--save_flag', type=int, default=0,
- help='0: Disable model saver, 1: Activate model saver')
- parser.add_argument('--test_flag', nargs='?', default='part',
- help='Specify the test type from {part, full}, indicating whether the reference is done in mini-batch')
- parser.add_argument('--report', type=int, default=0,
- help='0: Disable performance report w.r.t. sparsity levels, 1: Show performance report w.r.t. sparsity levels')
- return parser.parse_args()
|