# encoding: utf-8 import pandas as pd import json import numpy as np # import faiss import time class EmbeddingManagerUser(object): def __init__(self, fpath, key_name, value_name): begin_time = time.time() # pandas.dataframe self.df = pd.read_csv(fpath) read_time = time.time() print("read csv embedding file cost time is: " + str(read_time - begin_time)) # 将文件中的embedding加载到内存 self.dict_embedding = self.load_embedding_to_dict(key_name, value_name) emb_time = time.time() print("load embedding to dict cost time is: " + str(emb_time - read_time)) def get_embedding(self, key): if str(key) in self.dict_embedding.keys(): return self.dict_embedding[str(key)] else: return "" def load_embedding_to_dict(self, key_name, value_name): return { str(row[key_name]): row[value_name] for index, row in self.df.iterrows() }