| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870 |
- #!/usr/bin/env python3
- """
- Tab3内容生成器 - 脚本点(元素列表)
- """
- import html as html_module
- from typing import Dict, Any, List
- def calculate_intent_support_count(element: Dict[str, Any]) -> int:
- """
- 计算元素的意图支撑数量
- 统计元素支撑的意图点总数
- 支撑的意图点越多,说明该元素与意图的关联越强
- Args:
- element: 元素数据
- Returns:
- 支撑的意图点总数
- """
- # 区分实质元素和形式元素的统计方式
- dimension = element.get('维度') or {}
- if isinstance(dimension, dict) and dimension.get('一级') == '形式':
- # 形式元素:基于多维度评分,使用最高相似度作为"意图支撑强度"的代表
- # 兼容两种结构:
- # 1)新版:{"名称": "...", "相似度结果": [{"点","语义相似度","文本相似度",...}, ...]}
- # 2)旧版:直接列表 [{"点","语义相似度","文本相似度",...}, ...]
- multi_scores = element.get('多维度评分') or {}
- best_score = 0.0
- for point_type in ['灵感点', '目的点', '关键点']:
- for item in multi_scores.get(point_type, []) or []:
- if not isinstance(item, dict):
- continue
- similarity_results = item.get('相似度结果')
- # 新结构:在相似度结果列表里取最大值
- if similarity_results:
- for sim in similarity_results or []:
- if not isinstance(sim, dict):
- continue
- semantic = float(sim.get('语义相似度', 0) or 0)
- text_sim = float(sim.get('文本相似度', 0) or 0)
- best_score = max(best_score, semantic, text_sim)
- else:
- # 旧结构:当前item本身就带语义/文本相似度
- semantic = float(item.get('语义相似度', 0) or 0)
- text_sim = float(item.get('文本相似度', 0) or 0)
- best_score = max(best_score, semantic, text_sim)
- return best_score
- else:
- # 实质元素:按意图支撑的数量统计
- intent_support = element.get('意图支撑') or {}
- total_support_count = 0
- for point_type in ['灵感点', '目的点', '关键点']:
- if point_type in intent_support and intent_support[point_type]:
- total_support_count += len(intent_support[point_type])
- return total_support_count
- def determine_dominant_factor(element: Dict[str, Any], all_elements: List[Dict[str, Any]]) -> str:
- """
- 判断元素排序的主导因素
- 排序规则:覆盖率 > 频次 > 意图支撑数
- 主导因素判断:哪个指标在当前元素中相对最显著
- Args:
- element: 当前元素
- all_elements: 同组所有元素
- Returns:
- 主导因素: 'coverage' | 'frequency' | 'intent_support'
- """
- if not all_elements:
- return 'coverage'
- # 获取当前元素的指标
- commonality = element.get('共性分析') or {}
- coverage = commonality.get('段落覆盖率', 0.0)
- frequency = commonality.get('出现频次', 0)
- intent_count = calculate_intent_support_count(element)
- # 将所有指标归一化到同一量级,然后比较
- # 覆盖率已经是0-1范围
- # 频次归一化:假设最大频次为10
- normalized_frequency = min(frequency / 10.0, 1.0)
- # 意图支撑数归一化:假设最大支撑数为10
- normalized_intent = min(intent_count / 10.0, 1.0)
- # 比较归一化后的值,取最大的作为主导因素
- scores = {
- 'coverage': coverage,
- 'frequency': normalized_frequency,
- 'intent_support': normalized_intent
- }
- return max(scores, key=scores.get)
- def sort_elements_by_coverage_and_frequency(elements: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
- """
- 按照覆盖率、频次和意图支撑数对元素排序
- 排序规则:
- 1. 第一优先级:共性(段落覆盖率)- 倒序
- 2. 第二优先级:共性(出现频次)- 倒序
- 3. 第三优先级:意图支撑数 - 倒序
- Args:
- elements: 元素列表
- Returns:
- 排序后的元素列表
- """
- def get_sort_key(elem):
- # 获取共性分析,防止为None
- commonality = elem.get('共性分析') or {}
- # 获取段落覆盖率
- coverage = commonality.get('段落覆盖率', 0.0)
- # 获取出现频次
- frequency = commonality.get('出现频次', 0)
- # 计算意图支撑数
- intent_count = calculate_intent_support_count(elem)
- # 返回排序键(负数用于倒序)
- return (-coverage, -frequency, -intent_count)
- return sorted(elements, key=get_sort_key)
- def get_element_category(element: Dict[str, Any]) -> str:
- """
- 获取元素的分类名称(支持新旧两种数据结构)
- Args:
- element: 元素数据
- Returns:
- 分类名称字符串
- """
- category = element.get('分类', '未分类')
- if isinstance(category, dict):
- # 新结构:分类是对象,包含一级分类和二级分类
- level1 = category.get('一级分类', '')
- level2 = category.get('二级分类', '')
- if level1 and level2:
- return f"{level1} - {level2}"
- elif level1:
- return level1
- else:
- return '未分类'
- else:
- # 旧结构:分类是字符串或列表
- if isinstance(category, list):
- return ' - '.join(category) if category else '未分类'
- return category if category else '未分类'
- def group_elements_by_hierarchical_category(elements: List[Dict[str, Any]]) -> Dict[str, Any]:
- """
- 按树形分类结构组织元素(一级分类 → 二级分类 → 元素)
- 优化规则:同一个父节点下的所有子节点采用统一的分类格式展示
- - 如果一级分类下既有元素又有分类,将元素归入"未分类"二级分类
- Args:
- elements: 元素列表
- Returns:
- 树形分类结构字典
- """
- # 1. 按一级分类和二级分类分组
- level1_groups = {}
- for elem in elements:
- category_data = elem.get('分类', {})
- if isinstance(category_data, dict):
- level1 = category_data.get('一级分类', '未分类')
- level2 = category_data.get('二级分类', '')
- elif isinstance(category_data, list):
- # 列表格式:第一个元素作为一级分类,第二个作为二级分类
- level1 = category_data[0] if len(category_data) > 0 else '未分类'
- level2 = category_data[1] if len(category_data) > 1 else ''
- else:
- # 旧结构:分类是字符串
- level1 = str(category_data) if category_data else '未分类'
- level2 = ''
- # 初始化一级分类
- if level1 not in level1_groups:
- level1_groups[level1] = {
- 'elements': [],
- 'level2_groups': {}
- }
- # 如果有二级分类,放入二级分类组;否则放入一级分类的直接元素列表(临时)
- if level2:
- if level2 not in level1_groups[level1]['level2_groups']:
- level1_groups[level1]['level2_groups'][level2] = []
- level1_groups[level1]['level2_groups'][level2].append(elem)
- else:
- level1_groups[level1]['elements'].append(elem)
- # 1.5 优化:仅当一级分类下既有直接元素又有二级分类时,才将直接元素移到"未分类"二级分类中
- # 如果一级分类下只有直接元素,没有二级分类,则保持原样(不需要"未分类"概念)
- for level1_name, level1_data in level1_groups.items():
- if level1_data['elements'] and level1_data['level2_groups']:
- # 将直接元素移到"未分类"分类
- if '未分类' not in level1_data['level2_groups']:
- level1_data['level2_groups']['未分类'] = []
- level1_data['level2_groups']['未分类'].extend(level1_data['elements'])
- level1_data['elements'] = []
- # 如果只有直接元素,没有二级分类,则保持level1_data['elements']不变
- # 2. 对每个分类内的元素排序
- for level1_data in level1_groups.values():
- # 排序一级分类直接包含的元素
- if level1_data['elements']:
- level1_data['elements'] = sort_elements_by_coverage_and_frequency(level1_data['elements'])
- # 排序每个二级分类的元素
- for level2_name in level1_data['level2_groups']:
- level1_data['level2_groups'][level2_name] = sort_elements_by_coverage_and_frequency(
- level1_data['level2_groups'][level2_name]
- )
- # 3. 计算每个一级分类的统计信息用于排序
- level1_scores = {}
- for level1_name, level1_data in level1_groups.items():
- # 收集该一级分类下的所有元素(包括二级分类下的)
- all_elements = level1_data['elements'][:]
- for level2_elements in level1_data['level2_groups'].values():
- all_elements.extend(level2_elements)
- if not all_elements:
- level1_scores[level1_name] = (0.0, 0, 0.0)
- continue
- # 计算统计指标
- avg_coverage = sum((e.get('共性分析') or {}).get('段落覆盖率', 0.0) for e in all_elements) / len(all_elements)
- avg_frequency = sum((e.get('共性分析') or {}).get('出现频次', 0) for e in all_elements) / len(all_elements)
- avg_intent_count = sum(calculate_intent_support_count(e) for e in all_elements) / len(all_elements)
- level1_scores[level1_name] = (avg_coverage, avg_frequency, avg_intent_count)
- # 4. 对一级分类排序
- sorted_level1 = sorted(
- level1_scores.keys(),
- key=lambda c: (-level1_scores[c][0], -level1_scores[c][1], -level1_scores[c][2])
- )
- # 5. 对每个一级分类内的二级分类排序
- for level1_name in sorted_level1:
- level1_data = level1_groups[level1_name]
- level2_groups = level1_data['level2_groups']
- if not level2_groups:
- continue
- # 计算二级分类的统计信息
- level2_scores = {}
- for level2_name, level2_elements in level2_groups.items():
- if not level2_elements:
- level2_scores[level2_name] = (0.0, 0, 0.0)
- continue
- avg_coverage = sum((e.get('共性分析') or {}).get('段落覆盖率', 0.0) for e in level2_elements) / len(level2_elements)
- avg_frequency = sum((e.get('共性分析') or {}).get('出现频次', 0) for e in level2_elements) / len(level2_elements)
- avg_intent_count = sum(calculate_intent_support_count(e) for e in level2_elements) / len(level2_elements)
- level2_scores[level2_name] = (avg_coverage, avg_frequency, avg_intent_count)
- # 排序二级分类
- sorted_level2_names = sorted(
- level2_scores.keys(),
- key=lambda c: (-level2_scores[c][0], -level2_scores[c][1], -level2_scores[c][2])
- )
- # 重新组织为有序字典
- sorted_level2_groups = {name: level2_groups[name] for name in sorted_level2_names}
- level1_data['level2_groups'] = sorted_level2_groups
- # 6. 返回排序后的结构
- return {level1_name: level1_groups[level1_name] for level1_name in sorted_level1}
- def render_element_item(element: Dict[str, Any], all_elements: List[Dict[str, Any]] = None) -> str:
- """渲染单个元素项的HTML(支持详情展开,兼容新旧数据结构)
- Args:
- element: 元素数据
- all_elements: 同组所有元素(用于计算主导因素)
- """
- elem_id = element.get('id', '')
- name = element.get('名称') or '' # 处理None的情况
- description = element.get('描述') or '' # 处理None的情况
- # 获取类型和维度(兼容新旧结构)
- dimension = element.get('维度', {})
- if isinstance(dimension, dict):
- elem_type = dimension.get('一级', '')
- elem_type_level2 = dimension.get('二级', '')
- else:
- elem_type = element.get('类型', '')
- elem_type_level2 = ''
- # 获取分类(兼容新旧结构)
- category_data = element.get('分类', '')
- if isinstance(category_data, dict):
- category_level1 = category_data.get('一级分类', '')
- category_level2 = category_data.get('二级分类', '')
- category = get_element_category(element)
- elif isinstance(category_data, list):
- category_level1 = category_data[0] if len(category_data) > 0 else ''
- category_level2 = category_data[1] if len(category_data) > 1 else ''
- category = get_element_category(element)
- else:
- category = category_data
- category_level1 = ''
- category_level2 = ''
- category_def = element.get('分类定义', '')
- # 获取共性分析(防止为None)
- commonality = element.get('共性分析') or {}
- coverage = commonality.get('段落覆盖率', 0.0)
- frequency = commonality.get('出现频次', 0)
- paragraphs_list = commonality.get('出现段落列表', [])
- source = element.get('来源', [])
- intent_count = calculate_intent_support_count(element)
- intent_support = element.get('意图支撑', {})
- # 检查是否有详细信息
- has_details = bool(elem_type or category or category_def or paragraphs_list or source or intent_support)
- # 计算主导因素
- dominant_factor = 'coverage' # 默认
- if all_elements:
- dominant_factor = determine_dominant_factor(element, all_elements)
- # 根据主导因素确定边框颜色
- border_color_class = f'dominant-{dominant_factor}'
- html = f'<li class="element-item {border_color_class}" data-elem-id="{elem_id}">\n'
- html += '<div class="element-header" onclick="toggleElementDetails(this)">\n'
- # 添加展开/收起图标
- if has_details:
- html += '<span class="element-toggle-icon">▶</span>\n'
- # 显示ID和名称
- if elem_id:
- html += f'<span class="element-id">#{elem_id}</span>\n'
- html += f'<span class="element-name">{html_module.escape(name)}</span>\n'
- # 显示统计指标(根据主导因素高亮)
- # 判断是否为形式元素
- is_form = isinstance(dimension, dict) and dimension.get('一级') == '形式'
- html += '<div class="element-stats">\n'
- if is_form:
- # 形式元素:显示最高相似度(基于多维度评分)
- html += f'<span class="stat-badge stat-intent">最高相似度: {intent_count:.2f}</span>\n'
- else:
- # 实质元素显示全部三个指标
- coverage_highlight = 'stat-highlight' if dominant_factor == 'coverage' else ''
- frequency_highlight = 'stat-highlight' if dominant_factor == 'frequency' else ''
- intent_highlight = 'stat-highlight' if dominant_factor == 'intent_support' else ''
- html += f'<span class="stat-badge stat-coverage {coverage_highlight}">覆盖率: {coverage:.2%}</span>\n'
- html += f'<span class="stat-badge stat-frequency {frequency_highlight}">频次: {frequency}</span>\n'
- html += f'<span class="stat-badge stat-intent {intent_highlight}">意图支撑: {intent_count}</span>\n'
- html += '</div>\n'
- html += '</div>\n'
- # 描述(始终显示)
- if description:
- html += f'<div class="element-description">{html_module.escape(description)}</div>\n'
- # 详细信息(可展开)
- if has_details:
- html += '<div class="element-details collapsed">\n'
- # 维度/类型 - 已移除,不再展示
- # if elem_type:
- # html += '<div class="detail-section">\n'
- # html += '<strong>维度:</strong>\n'
- # html += '<div class="detail-content">\n'
- # html += f'<span class="detail-tag dimension-level1">{html_module.escape(elem_type)}</span>\n'
- # if elem_type_level2:
- # html += f'<span class="detail-tag dimension-level2">{html_module.escape(elem_type_level2)}</span>\n'
- # html += '</div>\n'
- # html += '</div>\n'
- # 分类 - 已移除,不再展示
- # if category_level1 or category:
- # html += '<div class="detail-section">\n'
- # html += '<strong>分类:</strong>\n'
- # html += '<div class="detail-content">\n'
- # if category_level1:
- # html += f'<span class="detail-tag category-level1">{html_module.escape(category_level1)}</span>\n'
- # if category_level2:
- # html += f'<span class="detail-tag category-level2">{html_module.escape(category_level2)}</span>\n'
- # else:
- # html += f'<span class="detail-tag">{html_module.escape(str(category))}</span>\n'
- # html += '</div>\n'
- # html += '</div>\n'
- # 分类定义
- if category_def:
- html += '<div class="detail-section">\n'
- html += '<strong>分类定义:</strong>\n'
- html += f'<div class="detail-text">{html_module.escape(category_def)}</div>\n'
- html += '</div>\n'
- # 针对"形式"维度,显示"支撑"、"推理"和"多维度评分"
- if isinstance(dimension, dict) and dimension.get('一级') == '形式':
- # 支撑
- zhicheng = element.get('支撑')
- if zhicheng:
- html += '<div class="detail-section">\n'
- html += '<strong>支撑:</strong>\n'
- html += '<div class="detail-content">\n'
- if isinstance(zhicheng, list):
- for item in zhicheng:
- if isinstance(item, dict):
- item_id = item.get('id', '')
- item_name = item.get('名称', '')
- html += f'<span class="detail-tag">{html_module.escape(f"{item_id}: {item_name}")}</span>\n'
- else:
- html += f'<span class="detail-tag">{html_module.escape(str(item))}</span>\n'
- elif isinstance(zhicheng, dict):
- # 支撑可能是对象(包含具体元素、具象概念等)
- for key, values in zhicheng.items():
- if isinstance(values, list):
- html += f'<div class="detail-tag category-level1">{html_module.escape(key)}</div>\n'
- for item in values:
- if isinstance(item, dict):
- item_id = item.get('id', '')
- item_name = item.get('名称', '')
- html += f'<span class="detail-tag">{html_module.escape(f"{item_id}: {item_name}")}</span>\n'
- else:
- html += f'<span class="detail-tag">{html_module.escape(str(item))}</span>\n'
- else:
- html += f'<span class="detail-tag">{html_module.escape(str(values))}</span>\n'
- else:
- html += f'<span class="detail-tag">{html_module.escape(str(zhicheng))}</span>\n'
- html += '</div>\n'
- html += '</div>\n'
- # 推理
- tuili = element.get('推理')
- if tuili:
- html += '<div class="detail-section">\n'
- html += '<strong>推理:</strong>\n'
- html += f'<div class="detail-text">{html_module.escape(tuili)}</div>\n'
- html += '</div>\n'
- # 多维度评分(形式元素专用,简化为分类列表展示)
- multi_scores = element.get('多维度评分') or {}
- if multi_scores:
- html += '<div class="detail-section">\n'
- html += '<strong>多维度评分:</strong>\n'
- for score_type in ['灵感点', '目的点', '关键点']:
- score_items = multi_scores.get(score_type) or []
- if not score_items:
- continue
- html += f'<div class="score-type">{score_type}</div>\n'
- html += '<ul class="score-list simple-score-list">\n'
- for score_item in score_items:
- if not isinstance(score_item, dict):
- continue
- # 兼容两种结构:
- # 1)新结构:{"名称": "...", "相似度结果": [ {...}, ... ]}
- # 2)旧结构:直接列表 [{"点","语义相似度","文本相似度",...}, ...]
- similarity_results = score_item.get('相似度结果')
- if similarity_results:
- # 新结构:对每个相似度结果生成一条列表项
- for sim in similarity_results or []:
- if not isinstance(sim, dict):
- continue
- point = sim.get('点', '')
- semantic = sim.get('语义相似度', 0)
- text_sim = sim.get('文本相似度', 0)
- html += '<li class="score-item simple-score-item">\n'
- if point:
- html += f'<span class="score-point-name">{html_module.escape(point)}</span>\n'
- html += f'<span class="score-badge">语义 {semantic:.2f}</span>\n'
- html += f'<span class="score-badge">文本 {text_sim:.2f}</span>\n'
- html += '</li>\n'
- else:
- # 旧结构:当前条目本身就是一个点的评分
- point = score_item.get('点', '')
- semantic = score_item.get('语义相似度', 0)
- text_sim = score_item.get('文本相似度', 0)
- html += '<li class="score-item simple-score-item">\n'
- if point:
- html += f'<span class="score-point-name">{html_module.escape(point)}</span>\n'
- html += f'<span class="score-badge">语义 {semantic:.2f}</span>\n'
- html += f'<span class="score-badge">文本 {text_sim:.2f}</span>\n'
- html += '</li>\n'
- html += '</ul>\n' # end score-list
- html += '</div>\n' # end detail-section
- # 针对"隐含概念",显示"来源"(声音特征、语气语调、BGM、音效等)和"时间范围"
- elem_type = element.get('类型', '')
- if elem_type == '隐含概念':
- # 来源(隐含概念的来源包含声音特征、语气语调、背景音乐、音效等)
- laiyuan = element.get('来源')
- if laiyuan and isinstance(laiyuan, dict):
- html += '<div class="detail-section">\n'
- html += '<strong>来源:</strong>\n'
- html += '<div class="detail-content">\n'
- for key, values in laiyuan.items():
- if isinstance(values, list) and values:
- html += f'<div class="detail-tag category-level1">{html_module.escape(key)}</div>\n'
- for item in values:
- html += f'<span class="detail-tag">{html_module.escape(str(item))}</span>\n'
- elif values:
- html += f'<span class="detail-tag">{html_module.escape(str(values))}</span>\n'
- html += '</div>\n'
- html += '</div>\n'
- # 时间范围
- time_range = element.get('时间范围')
- if time_range:
- html += '<div class="detail-section">\n'
- html += '<strong>时间范围:</strong>\n'
- html += '<div class="detail-content">\n'
- if isinstance(time_range, list):
- for tr in time_range:
- html += f'<span class="detail-tag source-tag">{html_module.escape(str(tr))}</span>\n'
- else:
- html += f'<span class="detail-tag source-tag">{html_module.escape(str(time_range))}</span>\n'
- html += '</div>\n'
- html += '</div>\n'
- # 针对"抽象概念"(实质-抽象概念),显示"类型"、"来源"和"推理过程"
- # 注意:排除隐含概念(隐含概念有自己的显示逻辑)
- elif isinstance(dimension, dict) and dimension.get('二级') == '抽象概念':
- # 类型
- leixing = element.get('类型')
- if leixing:
- html += '<div class="detail-section">\n'
- html += '<strong>类型:</strong>\n'
- html += f'<div class="detail-text">{html_module.escape(str(leixing))}</div>\n'
- html += '</div>\n'
- # 来源(抽象概念的来源可能是复杂对象)
- laiyuan = element.get('来源')
- if laiyuan and isinstance(laiyuan, dict):
- html += '<div class="detail-section">\n'
- html += '<strong>来源:</strong>\n'
- html += '<div class="detail-content">\n'
- for key, values in laiyuan.items():
- if isinstance(values, list):
- html += f'<div class="detail-tag category-level1">{html_module.escape(key)}</div>\n'
- for item in values:
- if isinstance(item, dict):
- item_id = item.get('id', '')
- item_name = item.get('名称', '')
- html += f'<span class="detail-tag">{html_module.escape(f"{item_id}: {item_name}")}</span>\n'
- else:
- html += f'<span class="detail-tag">{html_module.escape(str(item))}</span>\n'
- else:
- html += f'<span class="detail-tag">{html_module.escape(str(values))}</span>\n'
- html += '</div>\n'
- html += '</div>\n'
- # 推理过程
- tuili_guocheng = element.get('推理过程')
- if tuili_guocheng:
- html += '<div class="detail-section">\n'
- html += '<strong>推理过程:</strong>\n'
- html += f'<div class="detail-text">{html_module.escape(tuili_guocheng)}</div>\n'
- html += '</div>\n'
- else:
- if source:
- html += '<div class="detail-section">\n'
- html += '<strong>来源:</strong>\n'
- html += '<div class="detail-content">\n'
- for src in source:
- html += f'<span class="detail-tag source-tag">{html_module.escape(str(src))}</span>\n'
- html += '</div>\n'
- html += '</div>\n'
- # 上下文验证(适用于具象概念)
- context_verification = element.get('上下文验证')
- if context_verification:
- html += '<div class="detail-section">\n'
- html += '<strong>上下文验证:</strong>\n'
- html += '<div class="context-verification" style="margin-top: 8px; padding: 12px; background-color: #f8f9fa; border-radius: 4px; border-left: 3px solid #6c757d;">\n'
- # 原文位置
- original_position = context_verification.get('原文位置', '')
- if original_position:
- html += '<div class="context-item" style="margin-bottom: 8px;">\n'
- html += '<strong style="color: #495057; font-size: 13px;">原文位置:</strong>\n'
- html += f'<div style="margin-top: 4px; padding: 6px 10px; background-color: #fff; border-radius: 3px; color: #212529; font-style: italic;">{html_module.escape(original_position)}</div>\n'
- html += '</div>\n'
- # 语法成分
- grammar_component = context_verification.get('语法成分', '')
- if grammar_component:
- html += '<div class="context-item" style="margin-bottom: 8px;">\n'
- html += '<strong style="color: #495057; font-size: 13px;">语法成分:</strong>\n'
- html += f'<span style="margin-left: 8px; padding: 3px 10px; background-color: #e7f3ff; color: #0066cc; border-radius: 3px; font-size: 12px;">{html_module.escape(grammar_component)}</span>\n'
- html += '</div>\n'
- # 语境判断
- context_judgment = context_verification.get('语境判断', '')
- if context_judgment:
- html += '<div class="context-item" style="margin-bottom: 0;">\n'
- html += '<strong style="color: #495057; font-size: 13px;">语境判断:</strong>\n'
- html += f'<div style="margin-top: 4px; padding: 8px 10px; background-color: #fff; border-radius: 3px; color: #495057; line-height: 1.6;">{html_module.escape(context_judgment)}</div>\n'
- html += '</div>\n'
- html += '</div>\n'
- html += '</div>\n'
- # 出现段落
- if paragraphs_list:
- html += '<div class="detail-section">\n'
- html += '<strong>出现段落:</strong>\n'
- html += '<div class="paragraphs-detail-list">\n'
- for para in paragraphs_list:
- if isinstance(para, dict):
- # 新结构:对象包含段落ID和如何体现
- para_id = para.get('段落ID', '')
- how = para.get('如何体现', '')
- html += '<div class="paragraph-detail-item">\n'
- html += f'<span class="detail-tag para-id-tag">{html_module.escape(para_id)}</span>\n'
- if how:
- html += f'<div class="para-how">{html_module.escape(how)}</div>\n'
- html += '</div>\n'
- else:
- # 旧结构:字符串
- html += f'<span class="detail-tag">{html_module.escape(str(para))}</span>\n'
- html += '</div>\n'
- html += '</div>\n'
- # 意图支撑
- if intent_support:
- html += '<div class="detail-section">\n'
- html += '<strong>意图支撑:</strong>\n'
- for point_type in ['灵感点', '目的点', '关键点']:
- if point_type in intent_support and intent_support[point_type]:
- html += f'<div class="score-type">{point_type}</div>\n'
- html += '<div class="score-list">\n'
- for item in intent_support[point_type]:
- point = item.get('点', '')
- point_intention = item.get('点的意图', '')
- support_reason = item.get('支撑理由', '')
- html += '<div class="score-item">\n'
- html += f'<div class="score-point">{html_module.escape(point)}</div>\n'
- # 显示点的意图
- if point_intention:
- html += '<div class="point-intention">\n'
- html += f'<strong style="color: #666;">点的意图:</strong>{html_module.escape(point_intention)}\n'
- html += '</div>\n'
- # 显示支撑理由
- if support_reason:
- html += '<div class="score-reasons">\n'
- html += f'<strong style="color: #666;">支撑理由:</strong>\n'
- html += f'<div class="score-reason">{html_module.escape(support_reason)}</div>\n'
- html += '</div>\n'
- html += '</div>\n'
- html += '</div>\n'
- html += '</div>\n'
- html += '</div>\n'
- html += '</li>\n'
- return html
- def generate_tab3_content(data: Dict[str, Any]) -> str:
- """生成Tab3内容:按层次展示(实质/形式 → 具体元素/具体概念/抽象概念 → 树形展示)"""
- html = '<div class="tab-content" id="tab3" style="display:none;">\n'
- # 添加全局控制按钮
- html += '<div class="global-controls">\n'
- html += ' <div class="color-legend">\n'
- html += ' <span class="legend-title">颜色图例(主导因素):</span>\n'
- html += ' <span class="legend-item legend-coverage">覆盖率</span>\n'
- html += ' <span class="legend-item legend-frequency">频次</span>\n'
- html += ' <span class="legend-item legend-intent">意图支撑</span>\n'
- html += ' </div>\n'
- html += ' <button class="control-btn" onclick="toggleAllLevels(true)">全部展开</button>\n'
- html += ' <button class="control-btn" onclick="toggleAllLevels(false)">全部收起</button>\n'
- html += '</div>\n'
- if '脚本理解' in data:
- script = data['脚本理解']
- # 尝试获取元素列表,如果不存在则合并实质列表和形式列表
- elements = script.get('元素列表', [])
- if not elements:
- substance_list = script.get('实质列表', [])
- form_list = script.get('形式列表', [])
- elements = substance_list + form_list
- # 第一层:按维度.一级分组(实质 vs 形式)
- level1_groups = {}
- for elem in elements:
- dimension = elem.get('维度', {})
- if isinstance(dimension, dict):
- level1 = dimension.get('一级', '实质')
- else:
- # 兼容旧结构
- level1 = elem.get('类型', '实质')
- if level1 not in level1_groups:
- level1_groups[level1] = []
- level1_groups[level1].append(elem)
- # 按顺序渲染:实质、形式
- for level1_name in ['实质', '形式']:
- if level1_name not in level1_groups:
- continue
- level1_elements = level1_groups[level1_name]
- html += '<div class="section level1-section">\n'
- html += f'<div class="level1-header collapsible" onclick="toggleLevel1(this)">\n'
- html += '<span class="level-toggle-icon">▼</span>\n'
- html += f'<h2 class="level1-title">{level1_name} ({len(level1_elements)}个)</h2>\n'
- html += '</div>\n'
- html += '<div class="level1-content">\n'
- # 第二层:按维度.二级分组
- level2_groups = {}
- for elem in level1_elements:
- dimension = elem.get('维度', {})
- elem_type = elem.get('类型', '')
-
- # 隐含概念:优先通过类型判断(因为维度二级可能是"隐含概念"或"抽象概念")
- if elem_type == '隐含概念':
- level2 = '隐含概念'
- elif isinstance(dimension, dict):
- level2 = dimension.get('二级', '具体元素')
- else:
- # 兼容旧结构
- elem_type_old = elem.get('类型', '实质')
- if elem_type_old == '实质':
- level2 = '具体元素'
- elif elem_type_old == '具象概念':
- level2 = '具体概念'
- else:
- level2 = '抽象概念'
- if level2 not in level2_groups:
- level2_groups[level2] = []
- level2_groups[level2].append(elem)
- # 根据一级维度确定二级维度遍历顺序
- if level1_name == '实质':
- level2_order = ['具体元素', '具象概念', '隐含概念', '抽象概念']
- else: # 形式
- level2_order = ['具体元素形式', '具象概念形式', '整体形式']
- # 按顺序渲染二级维度
- for level2_name in level2_order:
- if level2_name not in level2_groups:
- continue
- level2_elements = level2_groups[level2_name]
- html += '<div class="level2-section">\n'
- html += f'<div class="level2-header collapsible" onclick="toggleLevel2(this)">\n'
- html += '<span class="level-toggle-icon">▼</span>\n'
- html += f'<h3 class="level2-title">{level2_name} ({len(level2_elements)}个)</h3>\n'
- html += '</div>\n'
- html += '<div class="level2-content">\n'
- # 第三层:按树形分类结构组织
- hierarchical_categories = group_elements_by_hierarchical_category(level2_elements)
- # 渲染树形分类结构
- for cat_level1_name, cat_level1_data in hierarchical_categories.items():
- # 收集该一级分类下的所有元素
- all_cat_elements = cat_level1_data['elements'][:]
- for level2_elems in cat_level1_data['level2_groups'].values():
- all_cat_elements.extend(level2_elems)
- if not all_cat_elements:
- continue
- # 计算一级分类的统计信息
- avg_coverage = sum((e.get('共性分析') or {}).get('段落覆盖率', 0.0) for e in all_cat_elements) / len(all_cat_elements)
- avg_intent_count = sum(calculate_intent_support_count(e) for e in all_cat_elements) / len(all_cat_elements)
- html += '<div class="category-group collapsible">\n'
- html += '<div class="category-header" onclick="toggleCategoryGroup(this)">\n'
- html += '<span class="category-toggle-icon">▼</span>\n'
- html += f'<h4 class="category-title">{html_module.escape(cat_level1_name)} ({len(all_cat_elements)}个)</h4>\n'
- html += '<div class="category-stats">\n'
- html += f'<span class="stat-badge">平均覆盖率: {avg_coverage:.2%}</span>\n'
- html += f'<span class="stat-badge">平均意图支撑: {avg_intent_count:.1f}</span>\n'
- html += '</div>\n'
- html += '</div>\n'
- html += '<div class="category-content">\n'
- # 渲染一级分类直接包含的元素
- if cat_level1_data['elements']:
- html += '<ul class="element-list">\n'
- for elem in cat_level1_data['elements']:
- html += render_element_item(elem, all_cat_elements)
- html += '</ul>\n'
- # 渲染二级分类
- for cat_level2_name, cat_level2_elements in cat_level1_data['level2_groups'].items():
- if not cat_level2_elements:
- continue
- # 计算二级分类的统计信息
- avg_coverage_l2 = sum((e.get('共性分析') or {}).get('段落覆盖率', 0.0) for e in cat_level2_elements) / len(cat_level2_elements)
- avg_intent_count_l2 = sum(calculate_intent_support_count(e) for e in cat_level2_elements) / len(cat_level2_elements)
- html += '<div class="subcategory-group collapsible">\n'
- html += '<div class="subcategory-header" onclick="toggleSubcategoryGroup(this)">\n'
- html += '<span class="subcategory-toggle-icon">▼</span>\n'
- html += f'<h5 class="subcategory-title">{html_module.escape(cat_level2_name)} ({len(cat_level2_elements)}个)</h5>\n'
- html += '<div class="subcategory-stats">\n'
- html += f'<span class="stat-badge-small">覆盖率: {avg_coverage_l2:.2%}</span>\n'
- html += '</div>\n'
- html += '</div>\n'
- html += '<div class="subcategory-content">\n'
- html += '<ul class="element-list">\n'
- for elem in cat_level2_elements:
- html += render_element_item(elem, cat_level2_elements)
- html += '</ul>\n'
- html += '</div>\n'
- html += '</div>\n'
- html += '</div>\n'
- html += '</div>\n'
- html += '</div>\n' # level2-content
- html += '</div>\n' # level2-section
- html += '</div>\n' # level1-content
- html += '</div>\n' # level1-section
- html += '</div>\n'
- return html
|