ClientQuery.py 1.3 KB

1234567891011121314151617181920212223242526272829303132
  1. import gradio as gr
  2. import BertQuery
  3. def queryColelctionByText(text):
  4. docs = BertQuery.queryCollection(BertQuery.text_to_vector(text))
  5. if docs is None or len(docs) == 0:
  6. return '查询失败'
  7. # docs 返回id和fields
  8. result = []
  9. result.append("videoId\t标题\t回流人数\t分享次数\t分享人数\t曝光次数\t曝光人数\t播放次数\t播放人数\t相似度")
  10. for doc in docs:
  11. videoId = doc.id
  12. title = doc.fields['title']
  13. rntHeadCount = doc.fields['rntHeadCount']
  14. shareCount = doc.fields['shareCount']
  15. shareHeadCount = doc.fields['shareHeadCount']
  16. exposureCount = doc.fields['exposureCount']
  17. exposureHeadCount = doc.fields['exposureHeadCount']
  18. playCount = doc.fields['playCount']
  19. playHeadCount = doc.fields['playHeadCount']
  20. result.append(
  21. f'{videoId}\t{title}\t{rntHeadCount}\t{shareCount}\t{shareHeadCount}\t{exposureCount}\t{exposureHeadCount}\t{playCount}\t{playHeadCount}\t{doc.score}')
  22. return '\n\n'.join(result)
  23. iface = gr.Interface(fn=queryColelctionByText,
  24. inputs=gr.components.Textbox(
  25. lines=7, label="请输入文本内容"),
  26. outputs="text",
  27. title="视频内容向量检索,相似度匹配")
  28. iface.launch(share=True)