backend.py 103 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749
  1. # This file is dual licensed under the terms of the Apache License, Version
  2. # 2.0, and the BSD License. See the LICENSE file in the root of this repository
  3. # for complete details.
  4. import collections
  5. import contextlib
  6. import itertools
  7. import warnings
  8. from contextlib import contextmanager
  9. from cryptography import utils, x509
  10. from cryptography.exceptions import UnsupportedAlgorithm, _Reasons
  11. from cryptography.hazmat._der import (
  12. INTEGER,
  13. NULL,
  14. SEQUENCE,
  15. encode_der,
  16. encode_der_integer,
  17. )
  18. from cryptography.hazmat.backends.interfaces import (
  19. CMACBackend,
  20. CipherBackend,
  21. DERSerializationBackend,
  22. DHBackend,
  23. DSABackend,
  24. EllipticCurveBackend,
  25. HMACBackend,
  26. HashBackend,
  27. PBKDF2HMACBackend,
  28. PEMSerializationBackend,
  29. RSABackend,
  30. ScryptBackend,
  31. X509Backend,
  32. )
  33. from cryptography.hazmat.backends.openssl import aead
  34. from cryptography.hazmat.backends.openssl.ciphers import _CipherContext
  35. from cryptography.hazmat.backends.openssl.cmac import _CMACContext
  36. from cryptography.hazmat.backends.openssl.decode_asn1 import (
  37. _CRL_ENTRY_REASON_ENUM_TO_CODE,
  38. _CRL_EXTENSION_HANDLERS,
  39. _EXTENSION_HANDLERS_BASE,
  40. _EXTENSION_HANDLERS_SCT,
  41. _OCSP_BASICRESP_EXTENSION_HANDLERS,
  42. _OCSP_REQ_EXTENSION_HANDLERS,
  43. _OCSP_SINGLERESP_EXTENSION_HANDLERS_SCT,
  44. _REVOKED_EXTENSION_HANDLERS,
  45. _X509ExtensionParser,
  46. )
  47. from cryptography.hazmat.backends.openssl.dh import (
  48. _DHParameters,
  49. _DHPrivateKey,
  50. _DHPublicKey,
  51. _dh_params_dup,
  52. )
  53. from cryptography.hazmat.backends.openssl.dsa import (
  54. _DSAParameters,
  55. _DSAPrivateKey,
  56. _DSAPublicKey,
  57. )
  58. from cryptography.hazmat.backends.openssl.ec import (
  59. _EllipticCurvePrivateKey,
  60. _EllipticCurvePublicKey,
  61. )
  62. from cryptography.hazmat.backends.openssl.ed25519 import (
  63. _Ed25519PrivateKey,
  64. _Ed25519PublicKey,
  65. )
  66. from cryptography.hazmat.backends.openssl.ed448 import (
  67. _ED448_KEY_SIZE,
  68. _Ed448PrivateKey,
  69. _Ed448PublicKey,
  70. )
  71. from cryptography.hazmat.backends.openssl.encode_asn1 import (
  72. _CRL_ENTRY_EXTENSION_ENCODE_HANDLERS,
  73. _CRL_EXTENSION_ENCODE_HANDLERS,
  74. _EXTENSION_ENCODE_HANDLERS,
  75. _OCSP_BASICRESP_EXTENSION_ENCODE_HANDLERS,
  76. _OCSP_REQUEST_EXTENSION_ENCODE_HANDLERS,
  77. _encode_asn1_int_gc,
  78. _encode_asn1_str_gc,
  79. _encode_name_gc,
  80. _txt2obj_gc,
  81. )
  82. from cryptography.hazmat.backends.openssl.hashes import _HashContext
  83. from cryptography.hazmat.backends.openssl.hmac import _HMACContext
  84. from cryptography.hazmat.backends.openssl.ocsp import (
  85. _OCSPRequest,
  86. _OCSPResponse,
  87. )
  88. from cryptography.hazmat.backends.openssl.poly1305 import (
  89. _POLY1305_KEY_SIZE,
  90. _Poly1305Context,
  91. )
  92. from cryptography.hazmat.backends.openssl.rsa import (
  93. _RSAPrivateKey,
  94. _RSAPublicKey,
  95. )
  96. from cryptography.hazmat.backends.openssl.x25519 import (
  97. _X25519PrivateKey,
  98. _X25519PublicKey,
  99. )
  100. from cryptography.hazmat.backends.openssl.x448 import (
  101. _X448PrivateKey,
  102. _X448PublicKey,
  103. )
  104. from cryptography.hazmat.backends.openssl.x509 import (
  105. _Certificate,
  106. _CertificateRevocationList,
  107. _CertificateSigningRequest,
  108. _RevokedCertificate,
  109. )
  110. from cryptography.hazmat.bindings.openssl import binding
  111. from cryptography.hazmat.primitives import hashes, serialization
  112. from cryptography.hazmat.primitives.asymmetric import (
  113. dh,
  114. dsa,
  115. ec,
  116. ed25519,
  117. ed448,
  118. rsa,
  119. )
  120. from cryptography.hazmat.primitives.asymmetric.padding import (
  121. MGF1,
  122. OAEP,
  123. PKCS1v15,
  124. PSS,
  125. )
  126. from cryptography.hazmat.primitives.ciphers.algorithms import (
  127. AES,
  128. ARC4,
  129. Blowfish,
  130. CAST5,
  131. Camellia,
  132. ChaCha20,
  133. IDEA,
  134. SEED,
  135. TripleDES,
  136. )
  137. from cryptography.hazmat.primitives.ciphers.modes import (
  138. CBC,
  139. CFB,
  140. CFB8,
  141. CTR,
  142. ECB,
  143. GCM,
  144. OFB,
  145. XTS,
  146. )
  147. from cryptography.hazmat.primitives.kdf import scrypt
  148. from cryptography.hazmat.primitives.serialization import pkcs7, ssh
  149. from cryptography.x509 import ocsp
  150. _MemoryBIO = collections.namedtuple("_MemoryBIO", ["bio", "char_ptr"])
  151. # Not actually supported, just used as a marker for some serialization tests.
  152. class _RC2(object):
  153. pass
  154. @utils.register_interface(CipherBackend)
  155. @utils.register_interface(CMACBackend)
  156. @utils.register_interface(DERSerializationBackend)
  157. @utils.register_interface(DHBackend)
  158. @utils.register_interface(DSABackend)
  159. @utils.register_interface(EllipticCurveBackend)
  160. @utils.register_interface(HashBackend)
  161. @utils.register_interface(HMACBackend)
  162. @utils.register_interface(PBKDF2HMACBackend)
  163. @utils.register_interface(RSABackend)
  164. @utils.register_interface(PEMSerializationBackend)
  165. @utils.register_interface(X509Backend)
  166. @utils.register_interface_if(
  167. binding.Binding().lib.Cryptography_HAS_SCRYPT, ScryptBackend
  168. )
  169. class Backend(object):
  170. """
  171. OpenSSL API binding interfaces.
  172. """
  173. name = "openssl"
  174. # FIPS has opinions about acceptable algorithms and key sizes, but the
  175. # disallowed algorithms are still present in OpenSSL. They just error if
  176. # you try to use them. To avoid that we allowlist the algorithms in
  177. # FIPS 140-3. This isn't ideal, but FIPS 140-3 is trash so here we are.
  178. _fips_aead = {
  179. b"aes-128-ccm",
  180. b"aes-192-ccm",
  181. b"aes-256-ccm",
  182. b"aes-128-gcm",
  183. b"aes-192-gcm",
  184. b"aes-256-gcm",
  185. }
  186. _fips_ciphers = (AES, TripleDES)
  187. _fips_hashes = (
  188. hashes.SHA1,
  189. hashes.SHA224,
  190. hashes.SHA256,
  191. hashes.SHA384,
  192. hashes.SHA512,
  193. hashes.SHA512_224,
  194. hashes.SHA512_256,
  195. hashes.SHA3_224,
  196. hashes.SHA3_256,
  197. hashes.SHA3_384,
  198. hashes.SHA3_512,
  199. hashes.SHAKE128,
  200. hashes.SHAKE256,
  201. )
  202. _fips_rsa_min_key_size = 2048
  203. _fips_rsa_min_public_exponent = 65537
  204. _fips_dsa_min_modulus = 1 << 2048
  205. _fips_dh_min_key_size = 2048
  206. _fips_dh_min_modulus = 1 << _fips_dh_min_key_size
  207. def __init__(self):
  208. self._binding = binding.Binding()
  209. self._ffi = self._binding.ffi
  210. self._lib = self._binding.lib
  211. self._fips_enabled = self._is_fips_enabled()
  212. self._cipher_registry = {}
  213. self._register_default_ciphers()
  214. self._register_x509_ext_parsers()
  215. self._register_x509_encoders()
  216. if self._fips_enabled and self._lib.CRYPTOGRAPHY_NEEDS_OSRANDOM_ENGINE:
  217. warnings.warn(
  218. "OpenSSL FIPS mode is enabled. Can't enable DRBG fork safety.",
  219. UserWarning,
  220. )
  221. else:
  222. self.activate_osrandom_engine()
  223. self._dh_types = [self._lib.EVP_PKEY_DH]
  224. if self._lib.Cryptography_HAS_EVP_PKEY_DHX:
  225. self._dh_types.append(self._lib.EVP_PKEY_DHX)
  226. def openssl_assert(self, ok, errors=None):
  227. return binding._openssl_assert(self._lib, ok, errors=errors)
  228. def _is_fips_enabled(self):
  229. fips_mode = getattr(self._lib, "FIPS_mode", lambda: 0)
  230. mode = fips_mode()
  231. if mode == 0:
  232. # OpenSSL without FIPS pushes an error on the error stack
  233. self._lib.ERR_clear_error()
  234. return bool(mode)
  235. def activate_builtin_random(self):
  236. if self._lib.CRYPTOGRAPHY_NEEDS_OSRANDOM_ENGINE:
  237. # Obtain a new structural reference.
  238. e = self._lib.ENGINE_get_default_RAND()
  239. if e != self._ffi.NULL:
  240. self._lib.ENGINE_unregister_RAND(e)
  241. # Reset the RNG to use the built-in.
  242. res = self._lib.RAND_set_rand_method(self._ffi.NULL)
  243. self.openssl_assert(res == 1)
  244. # decrement the structural reference from get_default_RAND
  245. res = self._lib.ENGINE_finish(e)
  246. self.openssl_assert(res == 1)
  247. @contextlib.contextmanager
  248. def _get_osurandom_engine(self):
  249. # Fetches an engine by id and returns it. This creates a structural
  250. # reference.
  251. e = self._lib.ENGINE_by_id(self._lib.Cryptography_osrandom_engine_id)
  252. self.openssl_assert(e != self._ffi.NULL)
  253. # Initialize the engine for use. This adds a functional reference.
  254. res = self._lib.ENGINE_init(e)
  255. self.openssl_assert(res == 1)
  256. try:
  257. yield e
  258. finally:
  259. # Decrement the structural ref incremented by ENGINE_by_id.
  260. res = self._lib.ENGINE_free(e)
  261. self.openssl_assert(res == 1)
  262. # Decrement the functional ref incremented by ENGINE_init.
  263. res = self._lib.ENGINE_finish(e)
  264. self.openssl_assert(res == 1)
  265. def activate_osrandom_engine(self):
  266. if self._lib.CRYPTOGRAPHY_NEEDS_OSRANDOM_ENGINE:
  267. # Unregister and free the current engine.
  268. self.activate_builtin_random()
  269. with self._get_osurandom_engine() as e:
  270. # Set the engine as the default RAND provider.
  271. res = self._lib.ENGINE_set_default_RAND(e)
  272. self.openssl_assert(res == 1)
  273. # Reset the RNG to use the engine
  274. res = self._lib.RAND_set_rand_method(self._ffi.NULL)
  275. self.openssl_assert(res == 1)
  276. def osrandom_engine_implementation(self):
  277. buf = self._ffi.new("char[]", 64)
  278. with self._get_osurandom_engine() as e:
  279. res = self._lib.ENGINE_ctrl_cmd(
  280. e, b"get_implementation", len(buf), buf, self._ffi.NULL, 0
  281. )
  282. self.openssl_assert(res > 0)
  283. return self._ffi.string(buf).decode("ascii")
  284. def openssl_version_text(self):
  285. """
  286. Friendly string name of the loaded OpenSSL library. This is not
  287. necessarily the same version as it was compiled against.
  288. Example: OpenSSL 1.1.1d 10 Sep 2019
  289. """
  290. return self._ffi.string(
  291. self._lib.OpenSSL_version(self._lib.OPENSSL_VERSION)
  292. ).decode("ascii")
  293. def openssl_version_number(self):
  294. return self._lib.OpenSSL_version_num()
  295. def create_hmac_ctx(self, key, algorithm):
  296. return _HMACContext(self, key, algorithm)
  297. def _evp_md_from_algorithm(self, algorithm):
  298. if algorithm.name == "blake2b" or algorithm.name == "blake2s":
  299. alg = "{}{}".format(
  300. algorithm.name, algorithm.digest_size * 8
  301. ).encode("ascii")
  302. else:
  303. alg = algorithm.name.encode("ascii")
  304. evp_md = self._lib.EVP_get_digestbyname(alg)
  305. return evp_md
  306. def _evp_md_non_null_from_algorithm(self, algorithm):
  307. evp_md = self._evp_md_from_algorithm(algorithm)
  308. self.openssl_assert(evp_md != self._ffi.NULL)
  309. return evp_md
  310. def hash_supported(self, algorithm):
  311. if self._fips_enabled and not isinstance(algorithm, self._fips_hashes):
  312. return False
  313. evp_md = self._evp_md_from_algorithm(algorithm)
  314. return evp_md != self._ffi.NULL
  315. def hmac_supported(self, algorithm):
  316. return self.hash_supported(algorithm)
  317. def create_hash_ctx(self, algorithm):
  318. return _HashContext(self, algorithm)
  319. def cipher_supported(self, cipher, mode):
  320. if self._fips_enabled and not isinstance(cipher, self._fips_ciphers):
  321. return False
  322. try:
  323. adapter = self._cipher_registry[type(cipher), type(mode)]
  324. except KeyError:
  325. return False
  326. evp_cipher = adapter(self, cipher, mode)
  327. return self._ffi.NULL != evp_cipher
  328. def register_cipher_adapter(self, cipher_cls, mode_cls, adapter):
  329. if (cipher_cls, mode_cls) in self._cipher_registry:
  330. raise ValueError(
  331. "Duplicate registration for: {} {}.".format(
  332. cipher_cls, mode_cls
  333. )
  334. )
  335. self._cipher_registry[cipher_cls, mode_cls] = adapter
  336. def _register_default_ciphers(self):
  337. for mode_cls in [CBC, CTR, ECB, OFB, CFB, CFB8, GCM]:
  338. self.register_cipher_adapter(
  339. AES,
  340. mode_cls,
  341. GetCipherByName("{cipher.name}-{cipher.key_size}-{mode.name}"),
  342. )
  343. for mode_cls in [CBC, CTR, ECB, OFB, CFB]:
  344. self.register_cipher_adapter(
  345. Camellia,
  346. mode_cls,
  347. GetCipherByName("{cipher.name}-{cipher.key_size}-{mode.name}"),
  348. )
  349. for mode_cls in [CBC, CFB, CFB8, OFB]:
  350. self.register_cipher_adapter(
  351. TripleDES, mode_cls, GetCipherByName("des-ede3-{mode.name}")
  352. )
  353. self.register_cipher_adapter(
  354. TripleDES, ECB, GetCipherByName("des-ede3")
  355. )
  356. for mode_cls in [CBC, CFB, OFB, ECB]:
  357. self.register_cipher_adapter(
  358. Blowfish, mode_cls, GetCipherByName("bf-{mode.name}")
  359. )
  360. for mode_cls in [CBC, CFB, OFB, ECB]:
  361. self.register_cipher_adapter(
  362. SEED, mode_cls, GetCipherByName("seed-{mode.name}")
  363. )
  364. for cipher_cls, mode_cls in itertools.product(
  365. [CAST5, IDEA],
  366. [CBC, OFB, CFB, ECB],
  367. ):
  368. self.register_cipher_adapter(
  369. cipher_cls,
  370. mode_cls,
  371. GetCipherByName("{cipher.name}-{mode.name}"),
  372. )
  373. self.register_cipher_adapter(ARC4, type(None), GetCipherByName("rc4"))
  374. # We don't actually support RC2, this is just used by some tests.
  375. self.register_cipher_adapter(_RC2, type(None), GetCipherByName("rc2"))
  376. self.register_cipher_adapter(
  377. ChaCha20, type(None), GetCipherByName("chacha20")
  378. )
  379. self.register_cipher_adapter(AES, XTS, _get_xts_cipher)
  380. def _register_x509_ext_parsers(self):
  381. ext_handlers = _EXTENSION_HANDLERS_BASE.copy()
  382. # All revoked extensions are valid single response extensions, see:
  383. # https://tools.ietf.org/html/rfc6960#section-4.4.5
  384. singleresp_handlers = _REVOKED_EXTENSION_HANDLERS.copy()
  385. if self._lib.Cryptography_HAS_SCT:
  386. ext_handlers.update(_EXTENSION_HANDLERS_SCT)
  387. singleresp_handlers.update(_OCSP_SINGLERESP_EXTENSION_HANDLERS_SCT)
  388. self._certificate_extension_parser = _X509ExtensionParser(
  389. self,
  390. ext_count=self._lib.X509_get_ext_count,
  391. get_ext=self._lib.X509_get_ext,
  392. handlers=ext_handlers,
  393. )
  394. self._csr_extension_parser = _X509ExtensionParser(
  395. self,
  396. ext_count=self._lib.sk_X509_EXTENSION_num,
  397. get_ext=self._lib.sk_X509_EXTENSION_value,
  398. handlers=ext_handlers,
  399. )
  400. self._revoked_cert_extension_parser = _X509ExtensionParser(
  401. self,
  402. ext_count=self._lib.X509_REVOKED_get_ext_count,
  403. get_ext=self._lib.X509_REVOKED_get_ext,
  404. handlers=_REVOKED_EXTENSION_HANDLERS,
  405. )
  406. self._crl_extension_parser = _X509ExtensionParser(
  407. self,
  408. ext_count=self._lib.X509_CRL_get_ext_count,
  409. get_ext=self._lib.X509_CRL_get_ext,
  410. handlers=_CRL_EXTENSION_HANDLERS,
  411. )
  412. self._ocsp_req_ext_parser = _X509ExtensionParser(
  413. self,
  414. ext_count=self._lib.OCSP_REQUEST_get_ext_count,
  415. get_ext=self._lib.OCSP_REQUEST_get_ext,
  416. handlers=_OCSP_REQ_EXTENSION_HANDLERS,
  417. )
  418. self._ocsp_basicresp_ext_parser = _X509ExtensionParser(
  419. self,
  420. ext_count=self._lib.OCSP_BASICRESP_get_ext_count,
  421. get_ext=self._lib.OCSP_BASICRESP_get_ext,
  422. handlers=_OCSP_BASICRESP_EXTENSION_HANDLERS,
  423. )
  424. self._ocsp_singleresp_ext_parser = _X509ExtensionParser(
  425. self,
  426. ext_count=self._lib.OCSP_SINGLERESP_get_ext_count,
  427. get_ext=self._lib.OCSP_SINGLERESP_get_ext,
  428. handlers=singleresp_handlers,
  429. )
  430. def _register_x509_encoders(self):
  431. self._extension_encode_handlers = _EXTENSION_ENCODE_HANDLERS.copy()
  432. self._crl_extension_encode_handlers = (
  433. _CRL_EXTENSION_ENCODE_HANDLERS.copy()
  434. )
  435. self._crl_entry_extension_encode_handlers = (
  436. _CRL_ENTRY_EXTENSION_ENCODE_HANDLERS.copy()
  437. )
  438. self._ocsp_request_extension_encode_handlers = (
  439. _OCSP_REQUEST_EXTENSION_ENCODE_HANDLERS.copy()
  440. )
  441. self._ocsp_basicresp_extension_encode_handlers = (
  442. _OCSP_BASICRESP_EXTENSION_ENCODE_HANDLERS.copy()
  443. )
  444. def create_symmetric_encryption_ctx(self, cipher, mode):
  445. return _CipherContext(self, cipher, mode, _CipherContext._ENCRYPT)
  446. def create_symmetric_decryption_ctx(self, cipher, mode):
  447. return _CipherContext(self, cipher, mode, _CipherContext._DECRYPT)
  448. def pbkdf2_hmac_supported(self, algorithm):
  449. return self.hmac_supported(algorithm)
  450. def derive_pbkdf2_hmac(
  451. self, algorithm, length, salt, iterations, key_material
  452. ):
  453. buf = self._ffi.new("unsigned char[]", length)
  454. evp_md = self._evp_md_non_null_from_algorithm(algorithm)
  455. key_material_ptr = self._ffi.from_buffer(key_material)
  456. res = self._lib.PKCS5_PBKDF2_HMAC(
  457. key_material_ptr,
  458. len(key_material),
  459. salt,
  460. len(salt),
  461. iterations,
  462. evp_md,
  463. length,
  464. buf,
  465. )
  466. self.openssl_assert(res == 1)
  467. return self._ffi.buffer(buf)[:]
  468. def _consume_errors(self):
  469. return binding._consume_errors(self._lib)
  470. def _consume_errors_with_text(self):
  471. return binding._consume_errors_with_text(self._lib)
  472. def _bn_to_int(self, bn):
  473. assert bn != self._ffi.NULL
  474. bn_num_bytes = self._lib.BN_num_bytes(bn)
  475. bin_ptr = self._ffi.new("unsigned char[]", bn_num_bytes)
  476. bin_len = self._lib.BN_bn2bin(bn, bin_ptr)
  477. # A zero length means the BN has value 0
  478. self.openssl_assert(bin_len >= 0)
  479. val = int.from_bytes(self._ffi.buffer(bin_ptr)[:bin_len], "big")
  480. if self._lib.BN_is_negative(bn):
  481. val = -val
  482. return val
  483. def _int_to_bn(self, num, bn=None):
  484. """
  485. Converts a python integer to a BIGNUM. The returned BIGNUM will not
  486. be garbage collected (to support adding them to structs that take
  487. ownership of the object). Be sure to register it for GC if it will
  488. be discarded after use.
  489. """
  490. assert bn is None or bn != self._ffi.NULL
  491. if bn is None:
  492. bn = self._ffi.NULL
  493. binary = num.to_bytes(int(num.bit_length() / 8.0 + 1), "big")
  494. bn_ptr = self._lib.BN_bin2bn(binary, len(binary), bn)
  495. self.openssl_assert(bn_ptr != self._ffi.NULL)
  496. return bn_ptr
  497. def generate_rsa_private_key(self, public_exponent, key_size):
  498. rsa._verify_rsa_parameters(public_exponent, key_size)
  499. rsa_cdata = self._lib.RSA_new()
  500. self.openssl_assert(rsa_cdata != self._ffi.NULL)
  501. rsa_cdata = self._ffi.gc(rsa_cdata, self._lib.RSA_free)
  502. bn = self._int_to_bn(public_exponent)
  503. bn = self._ffi.gc(bn, self._lib.BN_free)
  504. res = self._lib.RSA_generate_key_ex(
  505. rsa_cdata, key_size, bn, self._ffi.NULL
  506. )
  507. self.openssl_assert(res == 1)
  508. evp_pkey = self._rsa_cdata_to_evp_pkey(rsa_cdata)
  509. return _RSAPrivateKey(self, rsa_cdata, evp_pkey)
  510. def generate_rsa_parameters_supported(self, public_exponent, key_size):
  511. return (
  512. public_exponent >= 3
  513. and public_exponent & 1 != 0
  514. and key_size >= 512
  515. )
  516. def load_rsa_private_numbers(self, numbers):
  517. rsa._check_private_key_components(
  518. numbers.p,
  519. numbers.q,
  520. numbers.d,
  521. numbers.dmp1,
  522. numbers.dmq1,
  523. numbers.iqmp,
  524. numbers.public_numbers.e,
  525. numbers.public_numbers.n,
  526. )
  527. rsa_cdata = self._lib.RSA_new()
  528. self.openssl_assert(rsa_cdata != self._ffi.NULL)
  529. rsa_cdata = self._ffi.gc(rsa_cdata, self._lib.RSA_free)
  530. p = self._int_to_bn(numbers.p)
  531. q = self._int_to_bn(numbers.q)
  532. d = self._int_to_bn(numbers.d)
  533. dmp1 = self._int_to_bn(numbers.dmp1)
  534. dmq1 = self._int_to_bn(numbers.dmq1)
  535. iqmp = self._int_to_bn(numbers.iqmp)
  536. e = self._int_to_bn(numbers.public_numbers.e)
  537. n = self._int_to_bn(numbers.public_numbers.n)
  538. res = self._lib.RSA_set0_factors(rsa_cdata, p, q)
  539. self.openssl_assert(res == 1)
  540. res = self._lib.RSA_set0_key(rsa_cdata, n, e, d)
  541. self.openssl_assert(res == 1)
  542. res = self._lib.RSA_set0_crt_params(rsa_cdata, dmp1, dmq1, iqmp)
  543. self.openssl_assert(res == 1)
  544. evp_pkey = self._rsa_cdata_to_evp_pkey(rsa_cdata)
  545. return _RSAPrivateKey(self, rsa_cdata, evp_pkey)
  546. def load_rsa_public_numbers(self, numbers):
  547. rsa._check_public_key_components(numbers.e, numbers.n)
  548. rsa_cdata = self._lib.RSA_new()
  549. self.openssl_assert(rsa_cdata != self._ffi.NULL)
  550. rsa_cdata = self._ffi.gc(rsa_cdata, self._lib.RSA_free)
  551. e = self._int_to_bn(numbers.e)
  552. n = self._int_to_bn(numbers.n)
  553. res = self._lib.RSA_set0_key(rsa_cdata, n, e, self._ffi.NULL)
  554. self.openssl_assert(res == 1)
  555. evp_pkey = self._rsa_cdata_to_evp_pkey(rsa_cdata)
  556. return _RSAPublicKey(self, rsa_cdata, evp_pkey)
  557. def _create_evp_pkey_gc(self):
  558. evp_pkey = self._lib.EVP_PKEY_new()
  559. self.openssl_assert(evp_pkey != self._ffi.NULL)
  560. evp_pkey = self._ffi.gc(evp_pkey, self._lib.EVP_PKEY_free)
  561. return evp_pkey
  562. def _rsa_cdata_to_evp_pkey(self, rsa_cdata):
  563. evp_pkey = self._create_evp_pkey_gc()
  564. res = self._lib.EVP_PKEY_set1_RSA(evp_pkey, rsa_cdata)
  565. self.openssl_assert(res == 1)
  566. return evp_pkey
  567. def _bytes_to_bio(self, data):
  568. """
  569. Return a _MemoryBIO namedtuple of (BIO, char*).
  570. The char* is the storage for the BIO and it must stay alive until the
  571. BIO is finished with.
  572. """
  573. data_ptr = self._ffi.from_buffer(data)
  574. bio = self._lib.BIO_new_mem_buf(data_ptr, len(data))
  575. self.openssl_assert(bio != self._ffi.NULL)
  576. return _MemoryBIO(self._ffi.gc(bio, self._lib.BIO_free), data_ptr)
  577. def _create_mem_bio_gc(self):
  578. """
  579. Creates an empty memory BIO.
  580. """
  581. bio_method = self._lib.BIO_s_mem()
  582. self.openssl_assert(bio_method != self._ffi.NULL)
  583. bio = self._lib.BIO_new(bio_method)
  584. self.openssl_assert(bio != self._ffi.NULL)
  585. bio = self._ffi.gc(bio, self._lib.BIO_free)
  586. return bio
  587. def _read_mem_bio(self, bio):
  588. """
  589. Reads a memory BIO. This only works on memory BIOs.
  590. """
  591. buf = self._ffi.new("char **")
  592. buf_len = self._lib.BIO_get_mem_data(bio, buf)
  593. self.openssl_assert(buf_len > 0)
  594. self.openssl_assert(buf[0] != self._ffi.NULL)
  595. bio_data = self._ffi.buffer(buf[0], buf_len)[:]
  596. return bio_data
  597. def _evp_pkey_to_private_key(self, evp_pkey):
  598. """
  599. Return the appropriate type of PrivateKey given an evp_pkey cdata
  600. pointer.
  601. """
  602. key_type = self._lib.EVP_PKEY_id(evp_pkey)
  603. if key_type == self._lib.EVP_PKEY_RSA:
  604. rsa_cdata = self._lib.EVP_PKEY_get1_RSA(evp_pkey)
  605. self.openssl_assert(rsa_cdata != self._ffi.NULL)
  606. rsa_cdata = self._ffi.gc(rsa_cdata, self._lib.RSA_free)
  607. return _RSAPrivateKey(self, rsa_cdata, evp_pkey)
  608. elif key_type == self._lib.EVP_PKEY_DSA:
  609. dsa_cdata = self._lib.EVP_PKEY_get1_DSA(evp_pkey)
  610. self.openssl_assert(dsa_cdata != self._ffi.NULL)
  611. dsa_cdata = self._ffi.gc(dsa_cdata, self._lib.DSA_free)
  612. return _DSAPrivateKey(self, dsa_cdata, evp_pkey)
  613. elif key_type == self._lib.EVP_PKEY_EC:
  614. ec_cdata = self._lib.EVP_PKEY_get1_EC_KEY(evp_pkey)
  615. self.openssl_assert(ec_cdata != self._ffi.NULL)
  616. ec_cdata = self._ffi.gc(ec_cdata, self._lib.EC_KEY_free)
  617. return _EllipticCurvePrivateKey(self, ec_cdata, evp_pkey)
  618. elif key_type in self._dh_types:
  619. dh_cdata = self._lib.EVP_PKEY_get1_DH(evp_pkey)
  620. self.openssl_assert(dh_cdata != self._ffi.NULL)
  621. dh_cdata = self._ffi.gc(dh_cdata, self._lib.DH_free)
  622. return _DHPrivateKey(self, dh_cdata, evp_pkey)
  623. elif key_type == getattr(self._lib, "EVP_PKEY_ED25519", None):
  624. # EVP_PKEY_ED25519 is not present in OpenSSL < 1.1.1
  625. return _Ed25519PrivateKey(self, evp_pkey)
  626. elif key_type == getattr(self._lib, "EVP_PKEY_X448", None):
  627. # EVP_PKEY_X448 is not present in OpenSSL < 1.1.1
  628. return _X448PrivateKey(self, evp_pkey)
  629. elif key_type == getattr(self._lib, "EVP_PKEY_X25519", None):
  630. # EVP_PKEY_X25519 is not present in OpenSSL < 1.1.0
  631. return _X25519PrivateKey(self, evp_pkey)
  632. elif key_type == getattr(self._lib, "EVP_PKEY_ED448", None):
  633. # EVP_PKEY_ED448 is not present in OpenSSL < 1.1.1
  634. return _Ed448PrivateKey(self, evp_pkey)
  635. else:
  636. raise UnsupportedAlgorithm("Unsupported key type.")
  637. def _evp_pkey_to_public_key(self, evp_pkey):
  638. """
  639. Return the appropriate type of PublicKey given an evp_pkey cdata
  640. pointer.
  641. """
  642. key_type = self._lib.EVP_PKEY_id(evp_pkey)
  643. if key_type == self._lib.EVP_PKEY_RSA:
  644. rsa_cdata = self._lib.EVP_PKEY_get1_RSA(evp_pkey)
  645. self.openssl_assert(rsa_cdata != self._ffi.NULL)
  646. rsa_cdata = self._ffi.gc(rsa_cdata, self._lib.RSA_free)
  647. return _RSAPublicKey(self, rsa_cdata, evp_pkey)
  648. elif key_type == self._lib.EVP_PKEY_DSA:
  649. dsa_cdata = self._lib.EVP_PKEY_get1_DSA(evp_pkey)
  650. self.openssl_assert(dsa_cdata != self._ffi.NULL)
  651. dsa_cdata = self._ffi.gc(dsa_cdata, self._lib.DSA_free)
  652. return _DSAPublicKey(self, dsa_cdata, evp_pkey)
  653. elif key_type == self._lib.EVP_PKEY_EC:
  654. ec_cdata = self._lib.EVP_PKEY_get1_EC_KEY(evp_pkey)
  655. self.openssl_assert(ec_cdata != self._ffi.NULL)
  656. ec_cdata = self._ffi.gc(ec_cdata, self._lib.EC_KEY_free)
  657. return _EllipticCurvePublicKey(self, ec_cdata, evp_pkey)
  658. elif key_type in self._dh_types:
  659. dh_cdata = self._lib.EVP_PKEY_get1_DH(evp_pkey)
  660. self.openssl_assert(dh_cdata != self._ffi.NULL)
  661. dh_cdata = self._ffi.gc(dh_cdata, self._lib.DH_free)
  662. return _DHPublicKey(self, dh_cdata, evp_pkey)
  663. elif key_type == getattr(self._lib, "EVP_PKEY_ED25519", None):
  664. # EVP_PKEY_ED25519 is not present in OpenSSL < 1.1.1
  665. return _Ed25519PublicKey(self, evp_pkey)
  666. elif key_type == getattr(self._lib, "EVP_PKEY_X448", None):
  667. # EVP_PKEY_X448 is not present in OpenSSL < 1.1.1
  668. return _X448PublicKey(self, evp_pkey)
  669. elif key_type == getattr(self._lib, "EVP_PKEY_X25519", None):
  670. # EVP_PKEY_X25519 is not present in OpenSSL < 1.1.0
  671. return _X25519PublicKey(self, evp_pkey)
  672. elif key_type == getattr(self._lib, "EVP_PKEY_ED448", None):
  673. # EVP_PKEY_X25519 is not present in OpenSSL < 1.1.1
  674. return _Ed448PublicKey(self, evp_pkey)
  675. else:
  676. raise UnsupportedAlgorithm("Unsupported key type.")
  677. def _oaep_hash_supported(self, algorithm):
  678. if self._lib.Cryptography_HAS_RSA_OAEP_MD:
  679. return isinstance(
  680. algorithm,
  681. (
  682. hashes.SHA1,
  683. hashes.SHA224,
  684. hashes.SHA256,
  685. hashes.SHA384,
  686. hashes.SHA512,
  687. ),
  688. )
  689. else:
  690. return isinstance(algorithm, hashes.SHA1)
  691. def rsa_padding_supported(self, padding):
  692. if isinstance(padding, PKCS1v15):
  693. return True
  694. elif isinstance(padding, PSS) and isinstance(padding._mgf, MGF1):
  695. return self.hash_supported(padding._mgf._algorithm)
  696. elif isinstance(padding, OAEP) and isinstance(padding._mgf, MGF1):
  697. return (
  698. self._oaep_hash_supported(padding._mgf._algorithm)
  699. and self._oaep_hash_supported(padding._algorithm)
  700. and (
  701. (padding._label is None or len(padding._label) == 0)
  702. or self._lib.Cryptography_HAS_RSA_OAEP_LABEL == 1
  703. )
  704. )
  705. else:
  706. return False
  707. def generate_dsa_parameters(self, key_size):
  708. if key_size not in (1024, 2048, 3072, 4096):
  709. raise ValueError(
  710. "Key size must be 1024, 2048, 3072, or 4096 bits."
  711. )
  712. ctx = self._lib.DSA_new()
  713. self.openssl_assert(ctx != self._ffi.NULL)
  714. ctx = self._ffi.gc(ctx, self._lib.DSA_free)
  715. res = self._lib.DSA_generate_parameters_ex(
  716. ctx,
  717. key_size,
  718. self._ffi.NULL,
  719. 0,
  720. self._ffi.NULL,
  721. self._ffi.NULL,
  722. self._ffi.NULL,
  723. )
  724. self.openssl_assert(res == 1)
  725. return _DSAParameters(self, ctx)
  726. def generate_dsa_private_key(self, parameters):
  727. ctx = self._lib.DSAparams_dup(parameters._dsa_cdata)
  728. self.openssl_assert(ctx != self._ffi.NULL)
  729. ctx = self._ffi.gc(ctx, self._lib.DSA_free)
  730. self._lib.DSA_generate_key(ctx)
  731. evp_pkey = self._dsa_cdata_to_evp_pkey(ctx)
  732. return _DSAPrivateKey(self, ctx, evp_pkey)
  733. def generate_dsa_private_key_and_parameters(self, key_size):
  734. parameters = self.generate_dsa_parameters(key_size)
  735. return self.generate_dsa_private_key(parameters)
  736. def _dsa_cdata_set_values(self, dsa_cdata, p, q, g, pub_key, priv_key):
  737. res = self._lib.DSA_set0_pqg(dsa_cdata, p, q, g)
  738. self.openssl_assert(res == 1)
  739. res = self._lib.DSA_set0_key(dsa_cdata, pub_key, priv_key)
  740. self.openssl_assert(res == 1)
  741. def load_dsa_private_numbers(self, numbers):
  742. dsa._check_dsa_private_numbers(numbers)
  743. parameter_numbers = numbers.public_numbers.parameter_numbers
  744. dsa_cdata = self._lib.DSA_new()
  745. self.openssl_assert(dsa_cdata != self._ffi.NULL)
  746. dsa_cdata = self._ffi.gc(dsa_cdata, self._lib.DSA_free)
  747. p = self._int_to_bn(parameter_numbers.p)
  748. q = self._int_to_bn(parameter_numbers.q)
  749. g = self._int_to_bn(parameter_numbers.g)
  750. pub_key = self._int_to_bn(numbers.public_numbers.y)
  751. priv_key = self._int_to_bn(numbers.x)
  752. self._dsa_cdata_set_values(dsa_cdata, p, q, g, pub_key, priv_key)
  753. evp_pkey = self._dsa_cdata_to_evp_pkey(dsa_cdata)
  754. return _DSAPrivateKey(self, dsa_cdata, evp_pkey)
  755. def load_dsa_public_numbers(self, numbers):
  756. dsa._check_dsa_parameters(numbers.parameter_numbers)
  757. dsa_cdata = self._lib.DSA_new()
  758. self.openssl_assert(dsa_cdata != self._ffi.NULL)
  759. dsa_cdata = self._ffi.gc(dsa_cdata, self._lib.DSA_free)
  760. p = self._int_to_bn(numbers.parameter_numbers.p)
  761. q = self._int_to_bn(numbers.parameter_numbers.q)
  762. g = self._int_to_bn(numbers.parameter_numbers.g)
  763. pub_key = self._int_to_bn(numbers.y)
  764. priv_key = self._ffi.NULL
  765. self._dsa_cdata_set_values(dsa_cdata, p, q, g, pub_key, priv_key)
  766. evp_pkey = self._dsa_cdata_to_evp_pkey(dsa_cdata)
  767. return _DSAPublicKey(self, dsa_cdata, evp_pkey)
  768. def load_dsa_parameter_numbers(self, numbers):
  769. dsa._check_dsa_parameters(numbers)
  770. dsa_cdata = self._lib.DSA_new()
  771. self.openssl_assert(dsa_cdata != self._ffi.NULL)
  772. dsa_cdata = self._ffi.gc(dsa_cdata, self._lib.DSA_free)
  773. p = self._int_to_bn(numbers.p)
  774. q = self._int_to_bn(numbers.q)
  775. g = self._int_to_bn(numbers.g)
  776. res = self._lib.DSA_set0_pqg(dsa_cdata, p, q, g)
  777. self.openssl_assert(res == 1)
  778. return _DSAParameters(self, dsa_cdata)
  779. def _dsa_cdata_to_evp_pkey(self, dsa_cdata):
  780. evp_pkey = self._create_evp_pkey_gc()
  781. res = self._lib.EVP_PKEY_set1_DSA(evp_pkey, dsa_cdata)
  782. self.openssl_assert(res == 1)
  783. return evp_pkey
  784. def dsa_hash_supported(self, algorithm):
  785. return self.hash_supported(algorithm)
  786. def dsa_parameters_supported(self, p, q, g):
  787. return True
  788. def cmac_algorithm_supported(self, algorithm):
  789. return self.cipher_supported(
  790. algorithm, CBC(b"\x00" * algorithm.block_size)
  791. )
  792. def create_cmac_ctx(self, algorithm):
  793. return _CMACContext(self, algorithm)
  794. def _x509_check_signature_params(self, private_key, algorithm):
  795. if isinstance(
  796. private_key, (ed25519.Ed25519PrivateKey, ed448.Ed448PrivateKey)
  797. ):
  798. if algorithm is not None:
  799. raise ValueError(
  800. "algorithm must be None when signing via ed25519 or ed448"
  801. )
  802. elif not isinstance(
  803. private_key,
  804. (rsa.RSAPrivateKey, dsa.DSAPrivateKey, ec.EllipticCurvePrivateKey),
  805. ):
  806. raise TypeError(
  807. "Key must be an rsa, dsa, ec, ed25519, or ed448 private key."
  808. )
  809. elif not isinstance(algorithm, hashes.HashAlgorithm):
  810. raise TypeError("Algorithm must be a registered hash algorithm.")
  811. elif isinstance(algorithm, hashes.MD5) and not isinstance(
  812. private_key, rsa.RSAPrivateKey
  813. ):
  814. raise ValueError(
  815. "MD5 hash algorithm is only supported with RSA keys"
  816. )
  817. def create_x509_csr(self, builder, private_key, algorithm):
  818. if not isinstance(builder, x509.CertificateSigningRequestBuilder):
  819. raise TypeError("Builder type mismatch.")
  820. self._x509_check_signature_params(private_key, algorithm)
  821. # Resolve the signature algorithm.
  822. evp_md = self._evp_md_x509_null_if_eddsa(private_key, algorithm)
  823. # Create an empty request.
  824. x509_req = self._lib.X509_REQ_new()
  825. self.openssl_assert(x509_req != self._ffi.NULL)
  826. x509_req = self._ffi.gc(x509_req, self._lib.X509_REQ_free)
  827. # Set x509 version.
  828. res = self._lib.X509_REQ_set_version(x509_req, x509.Version.v1.value)
  829. self.openssl_assert(res == 1)
  830. # Set subject name.
  831. res = self._lib.X509_REQ_set_subject_name(
  832. x509_req, _encode_name_gc(self, builder._subject_name)
  833. )
  834. self.openssl_assert(res == 1)
  835. # Set subject public key.
  836. public_key = private_key.public_key()
  837. res = self._lib.X509_REQ_set_pubkey(x509_req, public_key._evp_pkey)
  838. self.openssl_assert(res == 1)
  839. # Add extensions.
  840. sk_extension = self._lib.sk_X509_EXTENSION_new_null()
  841. self.openssl_assert(sk_extension != self._ffi.NULL)
  842. sk_extension = self._ffi.gc(
  843. sk_extension,
  844. lambda x: self._lib.sk_X509_EXTENSION_pop_free(
  845. x,
  846. self._ffi.addressof(
  847. self._lib._original_lib, "X509_EXTENSION_free"
  848. ),
  849. ),
  850. )
  851. # Don't GC individual extensions because the memory is owned by
  852. # sk_extensions and will be freed along with it.
  853. self._create_x509_extensions(
  854. extensions=builder._extensions,
  855. handlers=self._extension_encode_handlers,
  856. x509_obj=sk_extension,
  857. add_func=self._lib.sk_X509_EXTENSION_insert,
  858. gc=False,
  859. )
  860. res = self._lib.X509_REQ_add_extensions(x509_req, sk_extension)
  861. self.openssl_assert(res == 1)
  862. # Add attributes (all bytes encoded as ASN1 UTF8_STRING)
  863. for attr_oid, attr_val in builder._attributes:
  864. obj = _txt2obj_gc(self, attr_oid.dotted_string)
  865. res = self._lib.X509_REQ_add1_attr_by_OBJ(
  866. x509_req,
  867. obj,
  868. x509.name._ASN1Type.UTF8String.value,
  869. attr_val,
  870. len(attr_val),
  871. )
  872. self.openssl_assert(res == 1)
  873. # Sign the request using the requester's private key.
  874. res = self._lib.X509_REQ_sign(x509_req, private_key._evp_pkey, evp_md)
  875. if res == 0:
  876. errors = self._consume_errors_with_text()
  877. raise ValueError("Signing failed", errors)
  878. return _CertificateSigningRequest(self, x509_req)
  879. def create_x509_certificate(self, builder, private_key, algorithm):
  880. if not isinstance(builder, x509.CertificateBuilder):
  881. raise TypeError("Builder type mismatch.")
  882. self._x509_check_signature_params(private_key, algorithm)
  883. # Resolve the signature algorithm.
  884. evp_md = self._evp_md_x509_null_if_eddsa(private_key, algorithm)
  885. # Create an empty certificate.
  886. x509_cert = self._lib.X509_new()
  887. x509_cert = self._ffi.gc(x509_cert, self._lib.X509_free)
  888. # Set the x509 version.
  889. res = self._lib.X509_set_version(x509_cert, builder._version.value)
  890. self.openssl_assert(res == 1)
  891. # Set the subject's name.
  892. res = self._lib.X509_set_subject_name(
  893. x509_cert, _encode_name_gc(self, builder._subject_name)
  894. )
  895. self.openssl_assert(res == 1)
  896. # Set the subject's public key.
  897. res = self._lib.X509_set_pubkey(
  898. x509_cert, builder._public_key._evp_pkey
  899. )
  900. self.openssl_assert(res == 1)
  901. # Set the certificate serial number.
  902. serial_number = _encode_asn1_int_gc(self, builder._serial_number)
  903. res = self._lib.X509_set_serialNumber(x509_cert, serial_number)
  904. self.openssl_assert(res == 1)
  905. # Set the "not before" time.
  906. self._set_asn1_time(
  907. self._lib.X509_getm_notBefore(x509_cert), builder._not_valid_before
  908. )
  909. # Set the "not after" time.
  910. self._set_asn1_time(
  911. self._lib.X509_getm_notAfter(x509_cert), builder._not_valid_after
  912. )
  913. # Add extensions.
  914. self._create_x509_extensions(
  915. extensions=builder._extensions,
  916. handlers=self._extension_encode_handlers,
  917. x509_obj=x509_cert,
  918. add_func=self._lib.X509_add_ext,
  919. gc=True,
  920. )
  921. # Set the issuer name.
  922. res = self._lib.X509_set_issuer_name(
  923. x509_cert, _encode_name_gc(self, builder._issuer_name)
  924. )
  925. self.openssl_assert(res == 1)
  926. # Sign the certificate with the issuer's private key.
  927. res = self._lib.X509_sign(x509_cert, private_key._evp_pkey, evp_md)
  928. if res == 0:
  929. errors = self._consume_errors_with_text()
  930. raise ValueError("Signing failed", errors)
  931. return _Certificate(self, x509_cert)
  932. def _evp_md_x509_null_if_eddsa(self, private_key, algorithm):
  933. if isinstance(
  934. private_key, (ed25519.Ed25519PrivateKey, ed448.Ed448PrivateKey)
  935. ):
  936. # OpenSSL requires us to pass NULL for EVP_MD for ed25519/ed448
  937. return self._ffi.NULL
  938. else:
  939. return self._evp_md_non_null_from_algorithm(algorithm)
  940. def _set_asn1_time(self, asn1_time, time):
  941. if time.year >= 2050:
  942. asn1_str = time.strftime("%Y%m%d%H%M%SZ").encode("ascii")
  943. else:
  944. asn1_str = time.strftime("%y%m%d%H%M%SZ").encode("ascii")
  945. res = self._lib.ASN1_TIME_set_string(asn1_time, asn1_str)
  946. self.openssl_assert(res == 1)
  947. def _create_asn1_time(self, time):
  948. asn1_time = self._lib.ASN1_TIME_new()
  949. self.openssl_assert(asn1_time != self._ffi.NULL)
  950. asn1_time = self._ffi.gc(asn1_time, self._lib.ASN1_TIME_free)
  951. self._set_asn1_time(asn1_time, time)
  952. return asn1_time
  953. def create_x509_crl(self, builder, private_key, algorithm):
  954. if not isinstance(builder, x509.CertificateRevocationListBuilder):
  955. raise TypeError("Builder type mismatch.")
  956. self._x509_check_signature_params(private_key, algorithm)
  957. evp_md = self._evp_md_x509_null_if_eddsa(private_key, algorithm)
  958. # Create an empty CRL.
  959. x509_crl = self._lib.X509_CRL_new()
  960. x509_crl = self._ffi.gc(x509_crl, self._lib.X509_CRL_free)
  961. # Set the x509 CRL version. We only support v2 (integer value 1).
  962. res = self._lib.X509_CRL_set_version(x509_crl, 1)
  963. self.openssl_assert(res == 1)
  964. # Set the issuer name.
  965. res = self._lib.X509_CRL_set_issuer_name(
  966. x509_crl, _encode_name_gc(self, builder._issuer_name)
  967. )
  968. self.openssl_assert(res == 1)
  969. # Set the last update time.
  970. last_update = self._create_asn1_time(builder._last_update)
  971. res = self._lib.X509_CRL_set1_lastUpdate(x509_crl, last_update)
  972. self.openssl_assert(res == 1)
  973. # Set the next update time.
  974. next_update = self._create_asn1_time(builder._next_update)
  975. res = self._lib.X509_CRL_set1_nextUpdate(x509_crl, next_update)
  976. self.openssl_assert(res == 1)
  977. # Add extensions.
  978. self._create_x509_extensions(
  979. extensions=builder._extensions,
  980. handlers=self._crl_extension_encode_handlers,
  981. x509_obj=x509_crl,
  982. add_func=self._lib.X509_CRL_add_ext,
  983. gc=True,
  984. )
  985. # add revoked certificates
  986. for revoked_cert in builder._revoked_certificates:
  987. # Duplicating because the X509_CRL takes ownership and will free
  988. # this memory when X509_CRL_free is called.
  989. revoked = self._lib.X509_REVOKED_dup(revoked_cert._x509_revoked)
  990. self.openssl_assert(revoked != self._ffi.NULL)
  991. res = self._lib.X509_CRL_add0_revoked(x509_crl, revoked)
  992. self.openssl_assert(res == 1)
  993. res = self._lib.X509_CRL_sign(x509_crl, private_key._evp_pkey, evp_md)
  994. if res == 0:
  995. errors = self._consume_errors_with_text()
  996. raise ValueError("Signing failed", errors)
  997. return _CertificateRevocationList(self, x509_crl)
  998. def _create_x509_extensions(
  999. self, extensions, handlers, x509_obj, add_func, gc
  1000. ):
  1001. for i, extension in enumerate(extensions):
  1002. x509_extension = self._create_x509_extension(handlers, extension)
  1003. self.openssl_assert(x509_extension != self._ffi.NULL)
  1004. if gc:
  1005. x509_extension = self._ffi.gc(
  1006. x509_extension, self._lib.X509_EXTENSION_free
  1007. )
  1008. res = add_func(x509_obj, x509_extension, i)
  1009. self.openssl_assert(res >= 1)
  1010. def _create_raw_x509_extension(self, extension, value):
  1011. obj = _txt2obj_gc(self, extension.oid.dotted_string)
  1012. return self._lib.X509_EXTENSION_create_by_OBJ(
  1013. self._ffi.NULL, obj, 1 if extension.critical else 0, value
  1014. )
  1015. def _create_x509_extension(self, handlers, extension):
  1016. if isinstance(extension.value, x509.UnrecognizedExtension):
  1017. value = _encode_asn1_str_gc(self, extension.value.value)
  1018. return self._create_raw_x509_extension(extension, value)
  1019. elif isinstance(extension.value, x509.TLSFeature):
  1020. asn1 = encode_der(
  1021. SEQUENCE,
  1022. *[
  1023. encode_der(INTEGER, encode_der_integer(x.value))
  1024. for x in extension.value
  1025. ],
  1026. )
  1027. value = _encode_asn1_str_gc(self, asn1)
  1028. return self._create_raw_x509_extension(extension, value)
  1029. elif isinstance(extension.value, x509.PrecertPoison):
  1030. value = _encode_asn1_str_gc(self, encode_der(NULL))
  1031. return self._create_raw_x509_extension(extension, value)
  1032. else:
  1033. try:
  1034. encode = handlers[extension.oid]
  1035. except KeyError:
  1036. raise NotImplementedError(
  1037. "Extension not supported: {}".format(extension.oid)
  1038. )
  1039. ext_struct = encode(self, extension.value)
  1040. nid = self._lib.OBJ_txt2nid(
  1041. extension.oid.dotted_string.encode("ascii")
  1042. )
  1043. self.openssl_assert(nid != self._lib.NID_undef)
  1044. return self._lib.X509V3_EXT_i2d(
  1045. nid, 1 if extension.critical else 0, ext_struct
  1046. )
  1047. def create_x509_revoked_certificate(self, builder):
  1048. if not isinstance(builder, x509.RevokedCertificateBuilder):
  1049. raise TypeError("Builder type mismatch.")
  1050. x509_revoked = self._lib.X509_REVOKED_new()
  1051. self.openssl_assert(x509_revoked != self._ffi.NULL)
  1052. x509_revoked = self._ffi.gc(x509_revoked, self._lib.X509_REVOKED_free)
  1053. serial_number = _encode_asn1_int_gc(self, builder._serial_number)
  1054. res = self._lib.X509_REVOKED_set_serialNumber(
  1055. x509_revoked, serial_number
  1056. )
  1057. self.openssl_assert(res == 1)
  1058. rev_date = self._create_asn1_time(builder._revocation_date)
  1059. res = self._lib.X509_REVOKED_set_revocationDate(x509_revoked, rev_date)
  1060. self.openssl_assert(res == 1)
  1061. # add CRL entry extensions
  1062. self._create_x509_extensions(
  1063. extensions=builder._extensions,
  1064. handlers=self._crl_entry_extension_encode_handlers,
  1065. x509_obj=x509_revoked,
  1066. add_func=self._lib.X509_REVOKED_add_ext,
  1067. gc=True,
  1068. )
  1069. return _RevokedCertificate(self, None, x509_revoked)
  1070. def load_pem_private_key(self, data, password):
  1071. return self._load_key(
  1072. self._lib.PEM_read_bio_PrivateKey,
  1073. self._evp_pkey_to_private_key,
  1074. data,
  1075. password,
  1076. )
  1077. def load_pem_public_key(self, data):
  1078. mem_bio = self._bytes_to_bio(data)
  1079. evp_pkey = self._lib.PEM_read_bio_PUBKEY(
  1080. mem_bio.bio, self._ffi.NULL, self._ffi.NULL, self._ffi.NULL
  1081. )
  1082. if evp_pkey != self._ffi.NULL:
  1083. evp_pkey = self._ffi.gc(evp_pkey, self._lib.EVP_PKEY_free)
  1084. return self._evp_pkey_to_public_key(evp_pkey)
  1085. else:
  1086. # It's not a (RSA/DSA/ECDSA) subjectPublicKeyInfo, but we still
  1087. # need to check to see if it is a pure PKCS1 RSA public key (not
  1088. # embedded in a subjectPublicKeyInfo)
  1089. self._consume_errors()
  1090. res = self._lib.BIO_reset(mem_bio.bio)
  1091. self.openssl_assert(res == 1)
  1092. rsa_cdata = self._lib.PEM_read_bio_RSAPublicKey(
  1093. mem_bio.bio, self._ffi.NULL, self._ffi.NULL, self._ffi.NULL
  1094. )
  1095. if rsa_cdata != self._ffi.NULL:
  1096. rsa_cdata = self._ffi.gc(rsa_cdata, self._lib.RSA_free)
  1097. evp_pkey = self._rsa_cdata_to_evp_pkey(rsa_cdata)
  1098. return _RSAPublicKey(self, rsa_cdata, evp_pkey)
  1099. else:
  1100. self._handle_key_loading_error()
  1101. def load_pem_parameters(self, data):
  1102. mem_bio = self._bytes_to_bio(data)
  1103. # only DH is supported currently
  1104. dh_cdata = self._lib.PEM_read_bio_DHparams(
  1105. mem_bio.bio, self._ffi.NULL, self._ffi.NULL, self._ffi.NULL
  1106. )
  1107. if dh_cdata != self._ffi.NULL:
  1108. dh_cdata = self._ffi.gc(dh_cdata, self._lib.DH_free)
  1109. return _DHParameters(self, dh_cdata)
  1110. else:
  1111. self._handle_key_loading_error()
  1112. def load_der_private_key(self, data, password):
  1113. # OpenSSL has a function called d2i_AutoPrivateKey that in theory
  1114. # handles this automatically, however it doesn't handle encrypted
  1115. # private keys. Instead we try to load the key two different ways.
  1116. # First we'll try to load it as a traditional key.
  1117. bio_data = self._bytes_to_bio(data)
  1118. key = self._evp_pkey_from_der_traditional_key(bio_data, password)
  1119. if key:
  1120. return self._evp_pkey_to_private_key(key)
  1121. else:
  1122. # Finally we try to load it with the method that handles encrypted
  1123. # PKCS8 properly.
  1124. return self._load_key(
  1125. self._lib.d2i_PKCS8PrivateKey_bio,
  1126. self._evp_pkey_to_private_key,
  1127. data,
  1128. password,
  1129. )
  1130. def _evp_pkey_from_der_traditional_key(self, bio_data, password):
  1131. key = self._lib.d2i_PrivateKey_bio(bio_data.bio, self._ffi.NULL)
  1132. if key != self._ffi.NULL:
  1133. key = self._ffi.gc(key, self._lib.EVP_PKEY_free)
  1134. if password is not None:
  1135. raise TypeError(
  1136. "Password was given but private key is not encrypted."
  1137. )
  1138. return key
  1139. else:
  1140. self._consume_errors()
  1141. return None
  1142. def load_der_public_key(self, data):
  1143. mem_bio = self._bytes_to_bio(data)
  1144. evp_pkey = self._lib.d2i_PUBKEY_bio(mem_bio.bio, self._ffi.NULL)
  1145. if evp_pkey != self._ffi.NULL:
  1146. evp_pkey = self._ffi.gc(evp_pkey, self._lib.EVP_PKEY_free)
  1147. return self._evp_pkey_to_public_key(evp_pkey)
  1148. else:
  1149. # It's not a (RSA/DSA/ECDSA) subjectPublicKeyInfo, but we still
  1150. # need to check to see if it is a pure PKCS1 RSA public key (not
  1151. # embedded in a subjectPublicKeyInfo)
  1152. self._consume_errors()
  1153. res = self._lib.BIO_reset(mem_bio.bio)
  1154. self.openssl_assert(res == 1)
  1155. rsa_cdata = self._lib.d2i_RSAPublicKey_bio(
  1156. mem_bio.bio, self._ffi.NULL
  1157. )
  1158. if rsa_cdata != self._ffi.NULL:
  1159. rsa_cdata = self._ffi.gc(rsa_cdata, self._lib.RSA_free)
  1160. evp_pkey = self._rsa_cdata_to_evp_pkey(rsa_cdata)
  1161. return _RSAPublicKey(self, rsa_cdata, evp_pkey)
  1162. else:
  1163. self._handle_key_loading_error()
  1164. def load_der_parameters(self, data):
  1165. mem_bio = self._bytes_to_bio(data)
  1166. dh_cdata = self._lib.d2i_DHparams_bio(mem_bio.bio, self._ffi.NULL)
  1167. if dh_cdata != self._ffi.NULL:
  1168. dh_cdata = self._ffi.gc(dh_cdata, self._lib.DH_free)
  1169. return _DHParameters(self, dh_cdata)
  1170. elif self._lib.Cryptography_HAS_EVP_PKEY_DHX:
  1171. # We check to see if the is dhx.
  1172. self._consume_errors()
  1173. res = self._lib.BIO_reset(mem_bio.bio)
  1174. self.openssl_assert(res == 1)
  1175. dh_cdata = self._lib.Cryptography_d2i_DHxparams_bio(
  1176. mem_bio.bio, self._ffi.NULL
  1177. )
  1178. if dh_cdata != self._ffi.NULL:
  1179. dh_cdata = self._ffi.gc(dh_cdata, self._lib.DH_free)
  1180. return _DHParameters(self, dh_cdata)
  1181. self._handle_key_loading_error()
  1182. def load_pem_x509_certificate(self, data):
  1183. mem_bio = self._bytes_to_bio(data)
  1184. x509 = self._lib.PEM_read_bio_X509(
  1185. mem_bio.bio, self._ffi.NULL, self._ffi.NULL, self._ffi.NULL
  1186. )
  1187. if x509 == self._ffi.NULL:
  1188. self._consume_errors()
  1189. raise ValueError(
  1190. "Unable to load certificate. See https://cryptography.io/en/"
  1191. "latest/faq.html#why-can-t-i-import-my-pem-file for more"
  1192. " details."
  1193. )
  1194. x509 = self._ffi.gc(x509, self._lib.X509_free)
  1195. return _Certificate(self, x509)
  1196. def load_der_x509_certificate(self, data):
  1197. mem_bio = self._bytes_to_bio(data)
  1198. x509 = self._lib.d2i_X509_bio(mem_bio.bio, self._ffi.NULL)
  1199. if x509 == self._ffi.NULL:
  1200. self._consume_errors()
  1201. raise ValueError("Unable to load certificate")
  1202. x509 = self._ffi.gc(x509, self._lib.X509_free)
  1203. return _Certificate(self, x509)
  1204. def load_pem_x509_crl(self, data):
  1205. mem_bio = self._bytes_to_bio(data)
  1206. x509_crl = self._lib.PEM_read_bio_X509_CRL(
  1207. mem_bio.bio, self._ffi.NULL, self._ffi.NULL, self._ffi.NULL
  1208. )
  1209. if x509_crl == self._ffi.NULL:
  1210. self._consume_errors()
  1211. raise ValueError(
  1212. "Unable to load CRL. See https://cryptography.io/en/la"
  1213. "test/faq.html#why-can-t-i-import-my-pem-file for more"
  1214. " details."
  1215. )
  1216. x509_crl = self._ffi.gc(x509_crl, self._lib.X509_CRL_free)
  1217. return _CertificateRevocationList(self, x509_crl)
  1218. def load_der_x509_crl(self, data):
  1219. mem_bio = self._bytes_to_bio(data)
  1220. x509_crl = self._lib.d2i_X509_CRL_bio(mem_bio.bio, self._ffi.NULL)
  1221. if x509_crl == self._ffi.NULL:
  1222. self._consume_errors()
  1223. raise ValueError("Unable to load CRL")
  1224. x509_crl = self._ffi.gc(x509_crl, self._lib.X509_CRL_free)
  1225. return _CertificateRevocationList(self, x509_crl)
  1226. def load_pem_x509_csr(self, data):
  1227. mem_bio = self._bytes_to_bio(data)
  1228. x509_req = self._lib.PEM_read_bio_X509_REQ(
  1229. mem_bio.bio, self._ffi.NULL, self._ffi.NULL, self._ffi.NULL
  1230. )
  1231. if x509_req == self._ffi.NULL:
  1232. self._consume_errors()
  1233. raise ValueError(
  1234. "Unable to load request. See https://cryptography.io/en/"
  1235. "latest/faq.html#why-can-t-i-import-my-pem-file for more"
  1236. " details."
  1237. )
  1238. x509_req = self._ffi.gc(x509_req, self._lib.X509_REQ_free)
  1239. return _CertificateSigningRequest(self, x509_req)
  1240. def load_der_x509_csr(self, data):
  1241. mem_bio = self._bytes_to_bio(data)
  1242. x509_req = self._lib.d2i_X509_REQ_bio(mem_bio.bio, self._ffi.NULL)
  1243. if x509_req == self._ffi.NULL:
  1244. self._consume_errors()
  1245. raise ValueError("Unable to load request")
  1246. x509_req = self._ffi.gc(x509_req, self._lib.X509_REQ_free)
  1247. return _CertificateSigningRequest(self, x509_req)
  1248. def _load_key(self, openssl_read_func, convert_func, data, password):
  1249. mem_bio = self._bytes_to_bio(data)
  1250. userdata = self._ffi.new("CRYPTOGRAPHY_PASSWORD_DATA *")
  1251. if password is not None:
  1252. utils._check_byteslike("password", password)
  1253. password_ptr = self._ffi.from_buffer(password)
  1254. userdata.password = password_ptr
  1255. userdata.length = len(password)
  1256. evp_pkey = openssl_read_func(
  1257. mem_bio.bio,
  1258. self._ffi.NULL,
  1259. self._ffi.addressof(
  1260. self._lib._original_lib, "Cryptography_pem_password_cb"
  1261. ),
  1262. userdata,
  1263. )
  1264. if evp_pkey == self._ffi.NULL:
  1265. if userdata.error != 0:
  1266. self._consume_errors()
  1267. if userdata.error == -1:
  1268. raise TypeError(
  1269. "Password was not given but private key is encrypted"
  1270. )
  1271. else:
  1272. assert userdata.error == -2
  1273. raise ValueError(
  1274. "Passwords longer than {} bytes are not supported "
  1275. "by this backend.".format(userdata.maxsize - 1)
  1276. )
  1277. else:
  1278. self._handle_key_loading_error()
  1279. evp_pkey = self._ffi.gc(evp_pkey, self._lib.EVP_PKEY_free)
  1280. if password is not None and userdata.called == 0:
  1281. raise TypeError(
  1282. "Password was given but private key is not encrypted."
  1283. )
  1284. assert (
  1285. password is not None and userdata.called == 1
  1286. ) or password is None
  1287. return convert_func(evp_pkey)
  1288. def _handle_key_loading_error(self):
  1289. errors = self._consume_errors()
  1290. if not errors:
  1291. raise ValueError(
  1292. "Could not deserialize key data. The data may be in an "
  1293. "incorrect format or it may be encrypted with an unsupported "
  1294. "algorithm."
  1295. )
  1296. elif errors[0]._lib_reason_match(
  1297. self._lib.ERR_LIB_EVP, self._lib.EVP_R_BAD_DECRYPT
  1298. ) or errors[0]._lib_reason_match(
  1299. self._lib.ERR_LIB_PKCS12,
  1300. self._lib.PKCS12_R_PKCS12_CIPHERFINAL_ERROR,
  1301. ):
  1302. raise ValueError("Bad decrypt. Incorrect password?")
  1303. elif any(
  1304. error._lib_reason_match(
  1305. self._lib.ERR_LIB_EVP,
  1306. self._lib.EVP_R_UNSUPPORTED_PRIVATE_KEY_ALGORITHM,
  1307. )
  1308. for error in errors
  1309. ):
  1310. raise ValueError("Unsupported public key algorithm.")
  1311. else:
  1312. raise ValueError(
  1313. "Could not deserialize key data. The data may be in an "
  1314. "incorrect format or it may be encrypted with an unsupported "
  1315. "algorithm."
  1316. )
  1317. def elliptic_curve_supported(self, curve):
  1318. try:
  1319. curve_nid = self._elliptic_curve_to_nid(curve)
  1320. except UnsupportedAlgorithm:
  1321. curve_nid = self._lib.NID_undef
  1322. group = self._lib.EC_GROUP_new_by_curve_name(curve_nid)
  1323. if group == self._ffi.NULL:
  1324. self._consume_errors()
  1325. return False
  1326. else:
  1327. self.openssl_assert(curve_nid != self._lib.NID_undef)
  1328. self._lib.EC_GROUP_free(group)
  1329. return True
  1330. def elliptic_curve_signature_algorithm_supported(
  1331. self, signature_algorithm, curve
  1332. ):
  1333. # We only support ECDSA right now.
  1334. if not isinstance(signature_algorithm, ec.ECDSA):
  1335. return False
  1336. return self.elliptic_curve_supported(curve)
  1337. def generate_elliptic_curve_private_key(self, curve):
  1338. """
  1339. Generate a new private key on the named curve.
  1340. """
  1341. if self.elliptic_curve_supported(curve):
  1342. ec_cdata = self._ec_key_new_by_curve(curve)
  1343. res = self._lib.EC_KEY_generate_key(ec_cdata)
  1344. self.openssl_assert(res == 1)
  1345. evp_pkey = self._ec_cdata_to_evp_pkey(ec_cdata)
  1346. return _EllipticCurvePrivateKey(self, ec_cdata, evp_pkey)
  1347. else:
  1348. raise UnsupportedAlgorithm(
  1349. "Backend object does not support {}.".format(curve.name),
  1350. _Reasons.UNSUPPORTED_ELLIPTIC_CURVE,
  1351. )
  1352. def load_elliptic_curve_private_numbers(self, numbers):
  1353. public = numbers.public_numbers
  1354. ec_cdata = self._ec_key_new_by_curve(public.curve)
  1355. private_value = self._ffi.gc(
  1356. self._int_to_bn(numbers.private_value), self._lib.BN_clear_free
  1357. )
  1358. res = self._lib.EC_KEY_set_private_key(ec_cdata, private_value)
  1359. self.openssl_assert(res == 1)
  1360. ec_cdata = self._ec_key_set_public_key_affine_coordinates(
  1361. ec_cdata, public.x, public.y
  1362. )
  1363. evp_pkey = self._ec_cdata_to_evp_pkey(ec_cdata)
  1364. return _EllipticCurvePrivateKey(self, ec_cdata, evp_pkey)
  1365. def load_elliptic_curve_public_numbers(self, numbers):
  1366. ec_cdata = self._ec_key_new_by_curve(numbers.curve)
  1367. ec_cdata = self._ec_key_set_public_key_affine_coordinates(
  1368. ec_cdata, numbers.x, numbers.y
  1369. )
  1370. evp_pkey = self._ec_cdata_to_evp_pkey(ec_cdata)
  1371. return _EllipticCurvePublicKey(self, ec_cdata, evp_pkey)
  1372. def load_elliptic_curve_public_bytes(self, curve, point_bytes):
  1373. ec_cdata = self._ec_key_new_by_curve(curve)
  1374. group = self._lib.EC_KEY_get0_group(ec_cdata)
  1375. self.openssl_assert(group != self._ffi.NULL)
  1376. point = self._lib.EC_POINT_new(group)
  1377. self.openssl_assert(point != self._ffi.NULL)
  1378. point = self._ffi.gc(point, self._lib.EC_POINT_free)
  1379. with self._tmp_bn_ctx() as bn_ctx:
  1380. res = self._lib.EC_POINT_oct2point(
  1381. group, point, point_bytes, len(point_bytes), bn_ctx
  1382. )
  1383. if res != 1:
  1384. self._consume_errors()
  1385. raise ValueError("Invalid public bytes for the given curve")
  1386. res = self._lib.EC_KEY_set_public_key(ec_cdata, point)
  1387. self.openssl_assert(res == 1)
  1388. evp_pkey = self._ec_cdata_to_evp_pkey(ec_cdata)
  1389. return _EllipticCurvePublicKey(self, ec_cdata, evp_pkey)
  1390. def derive_elliptic_curve_private_key(self, private_value, curve):
  1391. ec_cdata = self._ec_key_new_by_curve(curve)
  1392. get_func, group = self._ec_key_determine_group_get_func(ec_cdata)
  1393. point = self._lib.EC_POINT_new(group)
  1394. self.openssl_assert(point != self._ffi.NULL)
  1395. point = self._ffi.gc(point, self._lib.EC_POINT_free)
  1396. value = self._int_to_bn(private_value)
  1397. value = self._ffi.gc(value, self._lib.BN_clear_free)
  1398. with self._tmp_bn_ctx() as bn_ctx:
  1399. res = self._lib.EC_POINT_mul(
  1400. group, point, value, self._ffi.NULL, self._ffi.NULL, bn_ctx
  1401. )
  1402. self.openssl_assert(res == 1)
  1403. bn_x = self._lib.BN_CTX_get(bn_ctx)
  1404. bn_y = self._lib.BN_CTX_get(bn_ctx)
  1405. res = get_func(group, point, bn_x, bn_y, bn_ctx)
  1406. self.openssl_assert(res == 1)
  1407. res = self._lib.EC_KEY_set_public_key(ec_cdata, point)
  1408. self.openssl_assert(res == 1)
  1409. private = self._int_to_bn(private_value)
  1410. private = self._ffi.gc(private, self._lib.BN_clear_free)
  1411. res = self._lib.EC_KEY_set_private_key(ec_cdata, private)
  1412. self.openssl_assert(res == 1)
  1413. evp_pkey = self._ec_cdata_to_evp_pkey(ec_cdata)
  1414. return _EllipticCurvePrivateKey(self, ec_cdata, evp_pkey)
  1415. def _ec_key_new_by_curve(self, curve):
  1416. curve_nid = self._elliptic_curve_to_nid(curve)
  1417. return self._ec_key_new_by_curve_nid(curve_nid)
  1418. def _ec_key_new_by_curve_nid(self, curve_nid):
  1419. ec_cdata = self._lib.EC_KEY_new_by_curve_name(curve_nid)
  1420. self.openssl_assert(ec_cdata != self._ffi.NULL)
  1421. return self._ffi.gc(ec_cdata, self._lib.EC_KEY_free)
  1422. def load_der_ocsp_request(self, data):
  1423. mem_bio = self._bytes_to_bio(data)
  1424. request = self._lib.d2i_OCSP_REQUEST_bio(mem_bio.bio, self._ffi.NULL)
  1425. if request == self._ffi.NULL:
  1426. self._consume_errors()
  1427. raise ValueError("Unable to load OCSP request")
  1428. request = self._ffi.gc(request, self._lib.OCSP_REQUEST_free)
  1429. return _OCSPRequest(self, request)
  1430. def load_der_ocsp_response(self, data):
  1431. mem_bio = self._bytes_to_bio(data)
  1432. response = self._lib.d2i_OCSP_RESPONSE_bio(mem_bio.bio, self._ffi.NULL)
  1433. if response == self._ffi.NULL:
  1434. self._consume_errors()
  1435. raise ValueError("Unable to load OCSP response")
  1436. response = self._ffi.gc(response, self._lib.OCSP_RESPONSE_free)
  1437. return _OCSPResponse(self, response)
  1438. def create_ocsp_request(self, builder):
  1439. ocsp_req = self._lib.OCSP_REQUEST_new()
  1440. self.openssl_assert(ocsp_req != self._ffi.NULL)
  1441. ocsp_req = self._ffi.gc(ocsp_req, self._lib.OCSP_REQUEST_free)
  1442. cert, issuer, algorithm = builder._request
  1443. evp_md = self._evp_md_non_null_from_algorithm(algorithm)
  1444. certid = self._lib.OCSP_cert_to_id(evp_md, cert._x509, issuer._x509)
  1445. self.openssl_assert(certid != self._ffi.NULL)
  1446. onereq = self._lib.OCSP_request_add0_id(ocsp_req, certid)
  1447. self.openssl_assert(onereq != self._ffi.NULL)
  1448. self._create_x509_extensions(
  1449. extensions=builder._extensions,
  1450. handlers=self._ocsp_request_extension_encode_handlers,
  1451. x509_obj=ocsp_req,
  1452. add_func=self._lib.OCSP_REQUEST_add_ext,
  1453. gc=True,
  1454. )
  1455. return _OCSPRequest(self, ocsp_req)
  1456. def _create_ocsp_basic_response(self, builder, private_key, algorithm):
  1457. self._x509_check_signature_params(private_key, algorithm)
  1458. basic = self._lib.OCSP_BASICRESP_new()
  1459. self.openssl_assert(basic != self._ffi.NULL)
  1460. basic = self._ffi.gc(basic, self._lib.OCSP_BASICRESP_free)
  1461. evp_md = self._evp_md_non_null_from_algorithm(
  1462. builder._response._algorithm
  1463. )
  1464. certid = self._lib.OCSP_cert_to_id(
  1465. evp_md,
  1466. builder._response._cert._x509,
  1467. builder._response._issuer._x509,
  1468. )
  1469. self.openssl_assert(certid != self._ffi.NULL)
  1470. certid = self._ffi.gc(certid, self._lib.OCSP_CERTID_free)
  1471. if builder._response._revocation_reason is None:
  1472. reason = -1
  1473. else:
  1474. reason = _CRL_ENTRY_REASON_ENUM_TO_CODE[
  1475. builder._response._revocation_reason
  1476. ]
  1477. if builder._response._revocation_time is None:
  1478. rev_time = self._ffi.NULL
  1479. else:
  1480. rev_time = self._create_asn1_time(
  1481. builder._response._revocation_time
  1482. )
  1483. next_update = self._ffi.NULL
  1484. if builder._response._next_update is not None:
  1485. next_update = self._create_asn1_time(
  1486. builder._response._next_update
  1487. )
  1488. this_update = self._create_asn1_time(builder._response._this_update)
  1489. res = self._lib.OCSP_basic_add1_status(
  1490. basic,
  1491. certid,
  1492. builder._response._cert_status.value,
  1493. reason,
  1494. rev_time,
  1495. this_update,
  1496. next_update,
  1497. )
  1498. self.openssl_assert(res != self._ffi.NULL)
  1499. # okay, now sign the basic structure
  1500. evp_md = self._evp_md_x509_null_if_eddsa(private_key, algorithm)
  1501. responder_cert, responder_encoding = builder._responder_id
  1502. flags = self._lib.OCSP_NOCERTS
  1503. if responder_encoding is ocsp.OCSPResponderEncoding.HASH:
  1504. flags |= self._lib.OCSP_RESPID_KEY
  1505. if builder._certs is not None:
  1506. for cert in builder._certs:
  1507. res = self._lib.OCSP_basic_add1_cert(basic, cert._x509)
  1508. self.openssl_assert(res == 1)
  1509. self._create_x509_extensions(
  1510. extensions=builder._extensions,
  1511. handlers=self._ocsp_basicresp_extension_encode_handlers,
  1512. x509_obj=basic,
  1513. add_func=self._lib.OCSP_BASICRESP_add_ext,
  1514. gc=True,
  1515. )
  1516. res = self._lib.OCSP_basic_sign(
  1517. basic,
  1518. responder_cert._x509,
  1519. private_key._evp_pkey,
  1520. evp_md,
  1521. self._ffi.NULL,
  1522. flags,
  1523. )
  1524. if res != 1:
  1525. errors = self._consume_errors_with_text()
  1526. raise ValueError(
  1527. "Error while signing. responder_cert must be signed "
  1528. "by private_key",
  1529. errors,
  1530. )
  1531. return basic
  1532. def create_ocsp_response(
  1533. self, response_status, builder, private_key, algorithm
  1534. ):
  1535. if response_status is ocsp.OCSPResponseStatus.SUCCESSFUL:
  1536. basic = self._create_ocsp_basic_response(
  1537. builder, private_key, algorithm
  1538. )
  1539. else:
  1540. basic = self._ffi.NULL
  1541. ocsp_resp = self._lib.OCSP_response_create(
  1542. response_status.value, basic
  1543. )
  1544. self.openssl_assert(ocsp_resp != self._ffi.NULL)
  1545. ocsp_resp = self._ffi.gc(ocsp_resp, self._lib.OCSP_RESPONSE_free)
  1546. return _OCSPResponse(self, ocsp_resp)
  1547. def elliptic_curve_exchange_algorithm_supported(self, algorithm, curve):
  1548. return self.elliptic_curve_supported(curve) and isinstance(
  1549. algorithm, ec.ECDH
  1550. )
  1551. def _ec_cdata_to_evp_pkey(self, ec_cdata):
  1552. evp_pkey = self._create_evp_pkey_gc()
  1553. res = self._lib.EVP_PKEY_set1_EC_KEY(evp_pkey, ec_cdata)
  1554. self.openssl_assert(res == 1)
  1555. return evp_pkey
  1556. def _elliptic_curve_to_nid(self, curve):
  1557. """
  1558. Get the NID for a curve name.
  1559. """
  1560. curve_aliases = {"secp192r1": "prime192v1", "secp256r1": "prime256v1"}
  1561. curve_name = curve_aliases.get(curve.name, curve.name)
  1562. curve_nid = self._lib.OBJ_sn2nid(curve_name.encode())
  1563. if curve_nid == self._lib.NID_undef:
  1564. raise UnsupportedAlgorithm(
  1565. "{} is not a supported elliptic curve".format(curve.name),
  1566. _Reasons.UNSUPPORTED_ELLIPTIC_CURVE,
  1567. )
  1568. return curve_nid
  1569. @contextmanager
  1570. def _tmp_bn_ctx(self):
  1571. bn_ctx = self._lib.BN_CTX_new()
  1572. self.openssl_assert(bn_ctx != self._ffi.NULL)
  1573. bn_ctx = self._ffi.gc(bn_ctx, self._lib.BN_CTX_free)
  1574. self._lib.BN_CTX_start(bn_ctx)
  1575. try:
  1576. yield bn_ctx
  1577. finally:
  1578. self._lib.BN_CTX_end(bn_ctx)
  1579. def _ec_key_determine_group_get_func(self, ctx):
  1580. """
  1581. Given an EC_KEY determine the group and what function is required to
  1582. get point coordinates.
  1583. """
  1584. self.openssl_assert(ctx != self._ffi.NULL)
  1585. nid_two_field = self._lib.OBJ_sn2nid(b"characteristic-two-field")
  1586. self.openssl_assert(nid_two_field != self._lib.NID_undef)
  1587. group = self._lib.EC_KEY_get0_group(ctx)
  1588. self.openssl_assert(group != self._ffi.NULL)
  1589. method = self._lib.EC_GROUP_method_of(group)
  1590. self.openssl_assert(method != self._ffi.NULL)
  1591. nid = self._lib.EC_METHOD_get_field_type(method)
  1592. self.openssl_assert(nid != self._lib.NID_undef)
  1593. if nid == nid_two_field and self._lib.Cryptography_HAS_EC2M:
  1594. get_func = self._lib.EC_POINT_get_affine_coordinates_GF2m
  1595. else:
  1596. get_func = self._lib.EC_POINT_get_affine_coordinates_GFp
  1597. assert get_func
  1598. return get_func, group
  1599. def _ec_key_set_public_key_affine_coordinates(self, ctx, x, y):
  1600. """
  1601. Sets the public key point in the EC_KEY context to the affine x and y
  1602. values.
  1603. """
  1604. if x < 0 or y < 0:
  1605. raise ValueError(
  1606. "Invalid EC key. Both x and y must be non-negative."
  1607. )
  1608. x = self._ffi.gc(self._int_to_bn(x), self._lib.BN_free)
  1609. y = self._ffi.gc(self._int_to_bn(y), self._lib.BN_free)
  1610. res = self._lib.EC_KEY_set_public_key_affine_coordinates(ctx, x, y)
  1611. if res != 1:
  1612. self._consume_errors()
  1613. raise ValueError("Invalid EC key.")
  1614. return ctx
  1615. def _private_key_bytes(
  1616. self, encoding, format, encryption_algorithm, key, evp_pkey, cdata
  1617. ):
  1618. # validate argument types
  1619. if not isinstance(encoding, serialization.Encoding):
  1620. raise TypeError("encoding must be an item from the Encoding enum")
  1621. if not isinstance(format, serialization.PrivateFormat):
  1622. raise TypeError(
  1623. "format must be an item from the PrivateFormat enum"
  1624. )
  1625. if not isinstance(
  1626. encryption_algorithm, serialization.KeySerializationEncryption
  1627. ):
  1628. raise TypeError(
  1629. "Encryption algorithm must be a KeySerializationEncryption "
  1630. "instance"
  1631. )
  1632. # validate password
  1633. if isinstance(encryption_algorithm, serialization.NoEncryption):
  1634. password = b""
  1635. elif isinstance(
  1636. encryption_algorithm, serialization.BestAvailableEncryption
  1637. ):
  1638. password = encryption_algorithm.password
  1639. if len(password) > 1023:
  1640. raise ValueError(
  1641. "Passwords longer than 1023 bytes are not supported by "
  1642. "this backend"
  1643. )
  1644. else:
  1645. raise ValueError("Unsupported encryption type")
  1646. # PKCS8 + PEM/DER
  1647. if format is serialization.PrivateFormat.PKCS8:
  1648. if encoding is serialization.Encoding.PEM:
  1649. write_bio = self._lib.PEM_write_bio_PKCS8PrivateKey
  1650. elif encoding is serialization.Encoding.DER:
  1651. write_bio = self._lib.i2d_PKCS8PrivateKey_bio
  1652. else:
  1653. raise ValueError("Unsupported encoding for PKCS8")
  1654. return self._private_key_bytes_via_bio(
  1655. write_bio, evp_pkey, password
  1656. )
  1657. # TraditionalOpenSSL + PEM/DER
  1658. if format is serialization.PrivateFormat.TraditionalOpenSSL:
  1659. if self._fips_enabled and not isinstance(
  1660. encryption_algorithm, serialization.NoEncryption
  1661. ):
  1662. raise ValueError(
  1663. "Encrypted traditional OpenSSL format is not "
  1664. "supported in FIPS mode."
  1665. )
  1666. key_type = self._lib.EVP_PKEY_id(evp_pkey)
  1667. if encoding is serialization.Encoding.PEM:
  1668. if key_type == self._lib.EVP_PKEY_RSA:
  1669. write_bio = self._lib.PEM_write_bio_RSAPrivateKey
  1670. elif key_type == self._lib.EVP_PKEY_DSA:
  1671. write_bio = self._lib.PEM_write_bio_DSAPrivateKey
  1672. elif key_type == self._lib.EVP_PKEY_EC:
  1673. write_bio = self._lib.PEM_write_bio_ECPrivateKey
  1674. else:
  1675. raise ValueError(
  1676. "Unsupported key type for TraditionalOpenSSL"
  1677. )
  1678. return self._private_key_bytes_via_bio(
  1679. write_bio, cdata, password
  1680. )
  1681. if encoding is serialization.Encoding.DER:
  1682. if password:
  1683. raise ValueError(
  1684. "Encryption is not supported for DER encoded "
  1685. "traditional OpenSSL keys"
  1686. )
  1687. if key_type == self._lib.EVP_PKEY_RSA:
  1688. write_bio = self._lib.i2d_RSAPrivateKey_bio
  1689. elif key_type == self._lib.EVP_PKEY_EC:
  1690. write_bio = self._lib.i2d_ECPrivateKey_bio
  1691. elif key_type == self._lib.EVP_PKEY_DSA:
  1692. write_bio = self._lib.i2d_DSAPrivateKey_bio
  1693. else:
  1694. raise ValueError(
  1695. "Unsupported key type for TraditionalOpenSSL"
  1696. )
  1697. return self._bio_func_output(write_bio, cdata)
  1698. raise ValueError("Unsupported encoding for TraditionalOpenSSL")
  1699. # OpenSSH + PEM
  1700. if format is serialization.PrivateFormat.OpenSSH:
  1701. if encoding is serialization.Encoding.PEM:
  1702. return ssh.serialize_ssh_private_key(key, password)
  1703. raise ValueError(
  1704. "OpenSSH private key format can only be used"
  1705. " with PEM encoding"
  1706. )
  1707. # Anything that key-specific code was supposed to handle earlier,
  1708. # like Raw.
  1709. raise ValueError("format is invalid with this key")
  1710. def _private_key_bytes_via_bio(self, write_bio, evp_pkey, password):
  1711. if not password:
  1712. evp_cipher = self._ffi.NULL
  1713. else:
  1714. # This is a curated value that we will update over time.
  1715. evp_cipher = self._lib.EVP_get_cipherbyname(b"aes-256-cbc")
  1716. return self._bio_func_output(
  1717. write_bio,
  1718. evp_pkey,
  1719. evp_cipher,
  1720. password,
  1721. len(password),
  1722. self._ffi.NULL,
  1723. self._ffi.NULL,
  1724. )
  1725. def _bio_func_output(self, write_bio, *args):
  1726. bio = self._create_mem_bio_gc()
  1727. res = write_bio(bio, *args)
  1728. self.openssl_assert(res == 1)
  1729. return self._read_mem_bio(bio)
  1730. def _public_key_bytes(self, encoding, format, key, evp_pkey, cdata):
  1731. if not isinstance(encoding, serialization.Encoding):
  1732. raise TypeError("encoding must be an item from the Encoding enum")
  1733. if not isinstance(format, serialization.PublicFormat):
  1734. raise TypeError(
  1735. "format must be an item from the PublicFormat enum"
  1736. )
  1737. # SubjectPublicKeyInfo + PEM/DER
  1738. if format is serialization.PublicFormat.SubjectPublicKeyInfo:
  1739. if encoding is serialization.Encoding.PEM:
  1740. write_bio = self._lib.PEM_write_bio_PUBKEY
  1741. elif encoding is serialization.Encoding.DER:
  1742. write_bio = self._lib.i2d_PUBKEY_bio
  1743. else:
  1744. raise ValueError(
  1745. "SubjectPublicKeyInfo works only with PEM or DER encoding"
  1746. )
  1747. return self._bio_func_output(write_bio, evp_pkey)
  1748. # PKCS1 + PEM/DER
  1749. if format is serialization.PublicFormat.PKCS1:
  1750. # Only RSA is supported here.
  1751. key_type = self._lib.EVP_PKEY_id(evp_pkey)
  1752. if key_type != self._lib.EVP_PKEY_RSA:
  1753. raise ValueError("PKCS1 format is supported only for RSA keys")
  1754. if encoding is serialization.Encoding.PEM:
  1755. write_bio = self._lib.PEM_write_bio_RSAPublicKey
  1756. elif encoding is serialization.Encoding.DER:
  1757. write_bio = self._lib.i2d_RSAPublicKey_bio
  1758. else:
  1759. raise ValueError("PKCS1 works only with PEM or DER encoding")
  1760. return self._bio_func_output(write_bio, cdata)
  1761. # OpenSSH + OpenSSH
  1762. if format is serialization.PublicFormat.OpenSSH:
  1763. if encoding is serialization.Encoding.OpenSSH:
  1764. return ssh.serialize_ssh_public_key(key)
  1765. raise ValueError(
  1766. "OpenSSH format must be used with OpenSSH encoding"
  1767. )
  1768. # Anything that key-specific code was supposed to handle earlier,
  1769. # like Raw, CompressedPoint, UncompressedPoint
  1770. raise ValueError("format is invalid with this key")
  1771. def _parameter_bytes(self, encoding, format, cdata):
  1772. if encoding is serialization.Encoding.OpenSSH:
  1773. raise TypeError("OpenSSH encoding is not supported")
  1774. # Only DH is supported here currently.
  1775. q = self._ffi.new("BIGNUM **")
  1776. self._lib.DH_get0_pqg(cdata, self._ffi.NULL, q, self._ffi.NULL)
  1777. if encoding is serialization.Encoding.PEM:
  1778. if q[0] != self._ffi.NULL:
  1779. write_bio = self._lib.PEM_write_bio_DHxparams
  1780. else:
  1781. write_bio = self._lib.PEM_write_bio_DHparams
  1782. elif encoding is serialization.Encoding.DER:
  1783. if q[0] != self._ffi.NULL:
  1784. write_bio = self._lib.Cryptography_i2d_DHxparams_bio
  1785. else:
  1786. write_bio = self._lib.i2d_DHparams_bio
  1787. else:
  1788. raise TypeError("encoding must be an item from the Encoding enum")
  1789. bio = self._create_mem_bio_gc()
  1790. res = write_bio(bio, cdata)
  1791. self.openssl_assert(res == 1)
  1792. return self._read_mem_bio(bio)
  1793. def generate_dh_parameters(self, generator, key_size):
  1794. if key_size < dh._MIN_MODULUS_SIZE:
  1795. raise ValueError(
  1796. "DH key_size must be at least {} bits".format(
  1797. dh._MIN_MODULUS_SIZE
  1798. )
  1799. )
  1800. if generator not in (2, 5):
  1801. raise ValueError("DH generator must be 2 or 5")
  1802. dh_param_cdata = self._lib.DH_new()
  1803. self.openssl_assert(dh_param_cdata != self._ffi.NULL)
  1804. dh_param_cdata = self._ffi.gc(dh_param_cdata, self._lib.DH_free)
  1805. res = self._lib.DH_generate_parameters_ex(
  1806. dh_param_cdata, key_size, generator, self._ffi.NULL
  1807. )
  1808. self.openssl_assert(res == 1)
  1809. return _DHParameters(self, dh_param_cdata)
  1810. def _dh_cdata_to_evp_pkey(self, dh_cdata):
  1811. evp_pkey = self._create_evp_pkey_gc()
  1812. res = self._lib.EVP_PKEY_set1_DH(evp_pkey, dh_cdata)
  1813. self.openssl_assert(res == 1)
  1814. return evp_pkey
  1815. def generate_dh_private_key(self, parameters):
  1816. dh_key_cdata = _dh_params_dup(parameters._dh_cdata, self)
  1817. res = self._lib.DH_generate_key(dh_key_cdata)
  1818. self.openssl_assert(res == 1)
  1819. evp_pkey = self._dh_cdata_to_evp_pkey(dh_key_cdata)
  1820. return _DHPrivateKey(self, dh_key_cdata, evp_pkey)
  1821. def generate_dh_private_key_and_parameters(self, generator, key_size):
  1822. return self.generate_dh_private_key(
  1823. self.generate_dh_parameters(generator, key_size)
  1824. )
  1825. def load_dh_private_numbers(self, numbers):
  1826. parameter_numbers = numbers.public_numbers.parameter_numbers
  1827. dh_cdata = self._lib.DH_new()
  1828. self.openssl_assert(dh_cdata != self._ffi.NULL)
  1829. dh_cdata = self._ffi.gc(dh_cdata, self._lib.DH_free)
  1830. p = self._int_to_bn(parameter_numbers.p)
  1831. g = self._int_to_bn(parameter_numbers.g)
  1832. if parameter_numbers.q is not None:
  1833. q = self._int_to_bn(parameter_numbers.q)
  1834. else:
  1835. q = self._ffi.NULL
  1836. pub_key = self._int_to_bn(numbers.public_numbers.y)
  1837. priv_key = self._int_to_bn(numbers.x)
  1838. res = self._lib.DH_set0_pqg(dh_cdata, p, q, g)
  1839. self.openssl_assert(res == 1)
  1840. res = self._lib.DH_set0_key(dh_cdata, pub_key, priv_key)
  1841. self.openssl_assert(res == 1)
  1842. codes = self._ffi.new("int[]", 1)
  1843. res = self._lib.Cryptography_DH_check(dh_cdata, codes)
  1844. self.openssl_assert(res == 1)
  1845. # DH_check will return DH_NOT_SUITABLE_GENERATOR if p % 24 does not
  1846. # equal 11 when the generator is 2 (a quadratic nonresidue).
  1847. # We want to ignore that error because p % 24 == 23 is also fine.
  1848. # Specifically, g is then a quadratic residue. Within the context of
  1849. # Diffie-Hellman this means it can only generate half the possible
  1850. # values. That sounds bad, but quadratic nonresidues leak a bit of
  1851. # the key to the attacker in exchange for having the full key space
  1852. # available. See: https://crypto.stackexchange.com/questions/12961
  1853. if codes[0] != 0 and not (
  1854. parameter_numbers.g == 2
  1855. and codes[0] ^ self._lib.DH_NOT_SUITABLE_GENERATOR == 0
  1856. ):
  1857. raise ValueError("DH private numbers did not pass safety checks.")
  1858. evp_pkey = self._dh_cdata_to_evp_pkey(dh_cdata)
  1859. return _DHPrivateKey(self, dh_cdata, evp_pkey)
  1860. def load_dh_public_numbers(self, numbers):
  1861. dh_cdata = self._lib.DH_new()
  1862. self.openssl_assert(dh_cdata != self._ffi.NULL)
  1863. dh_cdata = self._ffi.gc(dh_cdata, self._lib.DH_free)
  1864. parameter_numbers = numbers.parameter_numbers
  1865. p = self._int_to_bn(parameter_numbers.p)
  1866. g = self._int_to_bn(parameter_numbers.g)
  1867. if parameter_numbers.q is not None:
  1868. q = self._int_to_bn(parameter_numbers.q)
  1869. else:
  1870. q = self._ffi.NULL
  1871. pub_key = self._int_to_bn(numbers.y)
  1872. res = self._lib.DH_set0_pqg(dh_cdata, p, q, g)
  1873. self.openssl_assert(res == 1)
  1874. res = self._lib.DH_set0_key(dh_cdata, pub_key, self._ffi.NULL)
  1875. self.openssl_assert(res == 1)
  1876. evp_pkey = self._dh_cdata_to_evp_pkey(dh_cdata)
  1877. return _DHPublicKey(self, dh_cdata, evp_pkey)
  1878. def load_dh_parameter_numbers(self, numbers):
  1879. dh_cdata = self._lib.DH_new()
  1880. self.openssl_assert(dh_cdata != self._ffi.NULL)
  1881. dh_cdata = self._ffi.gc(dh_cdata, self._lib.DH_free)
  1882. p = self._int_to_bn(numbers.p)
  1883. g = self._int_to_bn(numbers.g)
  1884. if numbers.q is not None:
  1885. q = self._int_to_bn(numbers.q)
  1886. else:
  1887. q = self._ffi.NULL
  1888. res = self._lib.DH_set0_pqg(dh_cdata, p, q, g)
  1889. self.openssl_assert(res == 1)
  1890. return _DHParameters(self, dh_cdata)
  1891. def dh_parameters_supported(self, p, g, q=None):
  1892. dh_cdata = self._lib.DH_new()
  1893. self.openssl_assert(dh_cdata != self._ffi.NULL)
  1894. dh_cdata = self._ffi.gc(dh_cdata, self._lib.DH_free)
  1895. p = self._int_to_bn(p)
  1896. g = self._int_to_bn(g)
  1897. if q is not None:
  1898. q = self._int_to_bn(q)
  1899. else:
  1900. q = self._ffi.NULL
  1901. res = self._lib.DH_set0_pqg(dh_cdata, p, q, g)
  1902. self.openssl_assert(res == 1)
  1903. codes = self._ffi.new("int[]", 1)
  1904. res = self._lib.Cryptography_DH_check(dh_cdata, codes)
  1905. self.openssl_assert(res == 1)
  1906. return codes[0] == 0
  1907. def dh_x942_serialization_supported(self):
  1908. return self._lib.Cryptography_HAS_EVP_PKEY_DHX == 1
  1909. def x509_name_bytes(self, name):
  1910. x509_name = _encode_name_gc(self, name)
  1911. pp = self._ffi.new("unsigned char **")
  1912. res = self._lib.i2d_X509_NAME(x509_name, pp)
  1913. self.openssl_assert(pp[0] != self._ffi.NULL)
  1914. pp = self._ffi.gc(
  1915. pp, lambda pointer: self._lib.OPENSSL_free(pointer[0])
  1916. )
  1917. self.openssl_assert(res > 0)
  1918. return self._ffi.buffer(pp[0], res)[:]
  1919. def x25519_load_public_bytes(self, data):
  1920. # When we drop support for CRYPTOGRAPHY_OPENSSL_LESS_THAN_111 we can
  1921. # switch this to EVP_PKEY_new_raw_public_key
  1922. if len(data) != 32:
  1923. raise ValueError("An X25519 public key is 32 bytes long")
  1924. evp_pkey = self._create_evp_pkey_gc()
  1925. res = self._lib.EVP_PKEY_set_type(evp_pkey, self._lib.NID_X25519)
  1926. self.openssl_assert(res == 1)
  1927. res = self._lib.EVP_PKEY_set1_tls_encodedpoint(
  1928. evp_pkey, data, len(data)
  1929. )
  1930. self.openssl_assert(res == 1)
  1931. return _X25519PublicKey(self, evp_pkey)
  1932. def x25519_load_private_bytes(self, data):
  1933. # When we drop support for CRYPTOGRAPHY_OPENSSL_LESS_THAN_111 we can
  1934. # switch this to EVP_PKEY_new_raw_private_key and drop the
  1935. # zeroed_bytearray garbage.
  1936. # OpenSSL only has facilities for loading PKCS8 formatted private
  1937. # keys using the algorithm identifiers specified in
  1938. # https://tools.ietf.org/html/draft-ietf-curdle-pkix-09.
  1939. # This is the standard PKCS8 prefix for a 32 byte X25519 key.
  1940. # The form is:
  1941. # 0:d=0 hl=2 l= 46 cons: SEQUENCE
  1942. # 2:d=1 hl=2 l= 1 prim: INTEGER :00
  1943. # 5:d=1 hl=2 l= 5 cons: SEQUENCE
  1944. # 7:d=2 hl=2 l= 3 prim: OBJECT :1.3.101.110
  1945. # 12:d=1 hl=2 l= 34 prim: OCTET STRING (the key)
  1946. # Of course there's a bit more complexity. In reality OCTET STRING
  1947. # contains an OCTET STRING of length 32! So the last two bytes here
  1948. # are \x04\x20, which is an OCTET STRING of length 32.
  1949. if len(data) != 32:
  1950. raise ValueError("An X25519 private key is 32 bytes long")
  1951. pkcs8_prefix = b'0.\x02\x01\x000\x05\x06\x03+en\x04"\x04 '
  1952. with self._zeroed_bytearray(48) as ba:
  1953. ba[0:16] = pkcs8_prefix
  1954. ba[16:] = data
  1955. bio = self._bytes_to_bio(ba)
  1956. evp_pkey = self._lib.d2i_PrivateKey_bio(bio.bio, self._ffi.NULL)
  1957. self.openssl_assert(evp_pkey != self._ffi.NULL)
  1958. evp_pkey = self._ffi.gc(evp_pkey, self._lib.EVP_PKEY_free)
  1959. self.openssl_assert(
  1960. self._lib.EVP_PKEY_id(evp_pkey) == self._lib.EVP_PKEY_X25519
  1961. )
  1962. return _X25519PrivateKey(self, evp_pkey)
  1963. def _evp_pkey_keygen_gc(self, nid):
  1964. evp_pkey_ctx = self._lib.EVP_PKEY_CTX_new_id(nid, self._ffi.NULL)
  1965. self.openssl_assert(evp_pkey_ctx != self._ffi.NULL)
  1966. evp_pkey_ctx = self._ffi.gc(evp_pkey_ctx, self._lib.EVP_PKEY_CTX_free)
  1967. res = self._lib.EVP_PKEY_keygen_init(evp_pkey_ctx)
  1968. self.openssl_assert(res == 1)
  1969. evp_ppkey = self._ffi.new("EVP_PKEY **")
  1970. res = self._lib.EVP_PKEY_keygen(evp_pkey_ctx, evp_ppkey)
  1971. self.openssl_assert(res == 1)
  1972. self.openssl_assert(evp_ppkey[0] != self._ffi.NULL)
  1973. evp_pkey = self._ffi.gc(evp_ppkey[0], self._lib.EVP_PKEY_free)
  1974. return evp_pkey
  1975. def x25519_generate_key(self):
  1976. evp_pkey = self._evp_pkey_keygen_gc(self._lib.NID_X25519)
  1977. return _X25519PrivateKey(self, evp_pkey)
  1978. def x25519_supported(self):
  1979. if self._fips_enabled:
  1980. return False
  1981. return not self._lib.CRYPTOGRAPHY_IS_LIBRESSL
  1982. def x448_load_public_bytes(self, data):
  1983. if len(data) != 56:
  1984. raise ValueError("An X448 public key is 56 bytes long")
  1985. evp_pkey = self._lib.EVP_PKEY_new_raw_public_key(
  1986. self._lib.NID_X448, self._ffi.NULL, data, len(data)
  1987. )
  1988. self.openssl_assert(evp_pkey != self._ffi.NULL)
  1989. evp_pkey = self._ffi.gc(evp_pkey, self._lib.EVP_PKEY_free)
  1990. return _X448PublicKey(self, evp_pkey)
  1991. def x448_load_private_bytes(self, data):
  1992. if len(data) != 56:
  1993. raise ValueError("An X448 private key is 56 bytes long")
  1994. data_ptr = self._ffi.from_buffer(data)
  1995. evp_pkey = self._lib.EVP_PKEY_new_raw_private_key(
  1996. self._lib.NID_X448, self._ffi.NULL, data_ptr, len(data)
  1997. )
  1998. self.openssl_assert(evp_pkey != self._ffi.NULL)
  1999. evp_pkey = self._ffi.gc(evp_pkey, self._lib.EVP_PKEY_free)
  2000. return _X448PrivateKey(self, evp_pkey)
  2001. def x448_generate_key(self):
  2002. evp_pkey = self._evp_pkey_keygen_gc(self._lib.NID_X448)
  2003. return _X448PrivateKey(self, evp_pkey)
  2004. def x448_supported(self):
  2005. if self._fips_enabled:
  2006. return False
  2007. return not self._lib.CRYPTOGRAPHY_OPENSSL_LESS_THAN_111
  2008. def ed25519_supported(self):
  2009. if self._fips_enabled:
  2010. return False
  2011. return not self._lib.CRYPTOGRAPHY_OPENSSL_LESS_THAN_111B
  2012. def ed25519_load_public_bytes(self, data):
  2013. utils._check_bytes("data", data)
  2014. if len(data) != ed25519._ED25519_KEY_SIZE:
  2015. raise ValueError("An Ed25519 public key is 32 bytes long")
  2016. evp_pkey = self._lib.EVP_PKEY_new_raw_public_key(
  2017. self._lib.NID_ED25519, self._ffi.NULL, data, len(data)
  2018. )
  2019. self.openssl_assert(evp_pkey != self._ffi.NULL)
  2020. evp_pkey = self._ffi.gc(evp_pkey, self._lib.EVP_PKEY_free)
  2021. return _Ed25519PublicKey(self, evp_pkey)
  2022. def ed25519_load_private_bytes(self, data):
  2023. if len(data) != ed25519._ED25519_KEY_SIZE:
  2024. raise ValueError("An Ed25519 private key is 32 bytes long")
  2025. utils._check_byteslike("data", data)
  2026. data_ptr = self._ffi.from_buffer(data)
  2027. evp_pkey = self._lib.EVP_PKEY_new_raw_private_key(
  2028. self._lib.NID_ED25519, self._ffi.NULL, data_ptr, len(data)
  2029. )
  2030. self.openssl_assert(evp_pkey != self._ffi.NULL)
  2031. evp_pkey = self._ffi.gc(evp_pkey, self._lib.EVP_PKEY_free)
  2032. return _Ed25519PrivateKey(self, evp_pkey)
  2033. def ed25519_generate_key(self):
  2034. evp_pkey = self._evp_pkey_keygen_gc(self._lib.NID_ED25519)
  2035. return _Ed25519PrivateKey(self, evp_pkey)
  2036. def ed448_supported(self):
  2037. if self._fips_enabled:
  2038. return False
  2039. return not self._lib.CRYPTOGRAPHY_OPENSSL_LESS_THAN_111B
  2040. def ed448_load_public_bytes(self, data):
  2041. utils._check_bytes("data", data)
  2042. if len(data) != _ED448_KEY_SIZE:
  2043. raise ValueError("An Ed448 public key is 57 bytes long")
  2044. evp_pkey = self._lib.EVP_PKEY_new_raw_public_key(
  2045. self._lib.NID_ED448, self._ffi.NULL, data, len(data)
  2046. )
  2047. self.openssl_assert(evp_pkey != self._ffi.NULL)
  2048. evp_pkey = self._ffi.gc(evp_pkey, self._lib.EVP_PKEY_free)
  2049. return _Ed448PublicKey(self, evp_pkey)
  2050. def ed448_load_private_bytes(self, data):
  2051. utils._check_byteslike("data", data)
  2052. if len(data) != _ED448_KEY_SIZE:
  2053. raise ValueError("An Ed448 private key is 57 bytes long")
  2054. data_ptr = self._ffi.from_buffer(data)
  2055. evp_pkey = self._lib.EVP_PKEY_new_raw_private_key(
  2056. self._lib.NID_ED448, self._ffi.NULL, data_ptr, len(data)
  2057. )
  2058. self.openssl_assert(evp_pkey != self._ffi.NULL)
  2059. evp_pkey = self._ffi.gc(evp_pkey, self._lib.EVP_PKEY_free)
  2060. return _Ed448PrivateKey(self, evp_pkey)
  2061. def ed448_generate_key(self):
  2062. evp_pkey = self._evp_pkey_keygen_gc(self._lib.NID_ED448)
  2063. return _Ed448PrivateKey(self, evp_pkey)
  2064. def derive_scrypt(self, key_material, salt, length, n, r, p):
  2065. buf = self._ffi.new("unsigned char[]", length)
  2066. key_material_ptr = self._ffi.from_buffer(key_material)
  2067. res = self._lib.EVP_PBE_scrypt(
  2068. key_material_ptr,
  2069. len(key_material),
  2070. salt,
  2071. len(salt),
  2072. n,
  2073. r,
  2074. p,
  2075. scrypt._MEM_LIMIT,
  2076. buf,
  2077. length,
  2078. )
  2079. if res != 1:
  2080. errors = self._consume_errors_with_text()
  2081. # memory required formula explained here:
  2082. # https://blog.filippo.io/the-scrypt-parameters/
  2083. min_memory = 128 * n * r // (1024 ** 2)
  2084. raise MemoryError(
  2085. "Not enough memory to derive key. These parameters require"
  2086. " {} MB of memory.".format(min_memory),
  2087. errors,
  2088. )
  2089. return self._ffi.buffer(buf)[:]
  2090. def aead_cipher_supported(self, cipher):
  2091. cipher_name = aead._aead_cipher_name(cipher)
  2092. if self._fips_enabled and cipher_name not in self._fips_aead:
  2093. return False
  2094. return self._lib.EVP_get_cipherbyname(cipher_name) != self._ffi.NULL
  2095. @contextlib.contextmanager
  2096. def _zeroed_bytearray(self, length):
  2097. """
  2098. This method creates a bytearray, which we copy data into (hopefully
  2099. also from a mutable buffer that can be dynamically erased!), and then
  2100. zero when we're done.
  2101. """
  2102. ba = bytearray(length)
  2103. try:
  2104. yield ba
  2105. finally:
  2106. self._zero_data(ba, length)
  2107. def _zero_data(self, data, length):
  2108. # We clear things this way because at the moment we're not
  2109. # sure of a better way that can guarantee it overwrites the
  2110. # memory of a bytearray and doesn't just replace the underlying char *.
  2111. for i in range(length):
  2112. data[i] = 0
  2113. @contextlib.contextmanager
  2114. def _zeroed_null_terminated_buf(self, data):
  2115. """
  2116. This method takes bytes, which can be a bytestring or a mutable
  2117. buffer like a bytearray, and yields a null-terminated version of that
  2118. data. This is required because PKCS12_parse doesn't take a length with
  2119. its password char * and ffi.from_buffer doesn't provide null
  2120. termination. So, to support zeroing the data via bytearray we
  2121. need to build this ridiculous construct that copies the memory, but
  2122. zeroes it after use.
  2123. """
  2124. if data is None:
  2125. yield self._ffi.NULL
  2126. else:
  2127. data_len = len(data)
  2128. buf = self._ffi.new("char[]", data_len + 1)
  2129. self._ffi.memmove(buf, data, data_len)
  2130. try:
  2131. yield buf
  2132. finally:
  2133. # Cast to a uint8_t * so we can assign by integer
  2134. self._zero_data(self._ffi.cast("uint8_t *", buf), data_len)
  2135. def load_key_and_certificates_from_pkcs12(self, data, password):
  2136. if password is not None:
  2137. utils._check_byteslike("password", password)
  2138. bio = self._bytes_to_bio(data)
  2139. p12 = self._lib.d2i_PKCS12_bio(bio.bio, self._ffi.NULL)
  2140. if p12 == self._ffi.NULL:
  2141. self._consume_errors()
  2142. raise ValueError("Could not deserialize PKCS12 data")
  2143. p12 = self._ffi.gc(p12, self._lib.PKCS12_free)
  2144. evp_pkey_ptr = self._ffi.new("EVP_PKEY **")
  2145. x509_ptr = self._ffi.new("X509 **")
  2146. sk_x509_ptr = self._ffi.new("Cryptography_STACK_OF_X509 **")
  2147. with self._zeroed_null_terminated_buf(password) as password_buf:
  2148. res = self._lib.PKCS12_parse(
  2149. p12, password_buf, evp_pkey_ptr, x509_ptr, sk_x509_ptr
  2150. )
  2151. if res == 0:
  2152. self._consume_errors()
  2153. raise ValueError("Invalid password or PKCS12 data")
  2154. cert = None
  2155. key = None
  2156. additional_certificates = []
  2157. if evp_pkey_ptr[0] != self._ffi.NULL:
  2158. evp_pkey = self._ffi.gc(evp_pkey_ptr[0], self._lib.EVP_PKEY_free)
  2159. key = self._evp_pkey_to_private_key(evp_pkey)
  2160. if x509_ptr[0] != self._ffi.NULL:
  2161. x509 = self._ffi.gc(x509_ptr[0], self._lib.X509_free)
  2162. cert = _Certificate(self, x509)
  2163. if sk_x509_ptr[0] != self._ffi.NULL:
  2164. sk_x509 = self._ffi.gc(sk_x509_ptr[0], self._lib.sk_X509_free)
  2165. num = self._lib.sk_X509_num(sk_x509_ptr[0])
  2166. for i in range(num):
  2167. x509 = self._lib.sk_X509_value(sk_x509, i)
  2168. self.openssl_assert(x509 != self._ffi.NULL)
  2169. x509 = self._ffi.gc(x509, self._lib.X509_free)
  2170. additional_certificates.append(_Certificate(self, x509))
  2171. return (key, cert, additional_certificates)
  2172. def serialize_key_and_certificates_to_pkcs12(
  2173. self, name, key, cert, cas, encryption_algorithm
  2174. ):
  2175. password = None
  2176. if name is not None:
  2177. utils._check_bytes("name", name)
  2178. if isinstance(encryption_algorithm, serialization.NoEncryption):
  2179. nid_cert = -1
  2180. nid_key = -1
  2181. pkcs12_iter = 0
  2182. mac_iter = 0
  2183. elif isinstance(
  2184. encryption_algorithm, serialization.BestAvailableEncryption
  2185. ):
  2186. # PKCS12 encryption is hopeless trash and can never be fixed.
  2187. # This is the least terrible option.
  2188. nid_cert = self._lib.NID_pbe_WithSHA1And3_Key_TripleDES_CBC
  2189. nid_key = self._lib.NID_pbe_WithSHA1And3_Key_TripleDES_CBC
  2190. # At least we can set this higher than OpenSSL's default
  2191. pkcs12_iter = 20000
  2192. # mac_iter chosen for compatibility reasons, see:
  2193. # https://www.openssl.org/docs/man1.1.1/man3/PKCS12_create.html
  2194. # Did we mention how lousy PKCS12 encryption is?
  2195. mac_iter = 1
  2196. password = encryption_algorithm.password
  2197. else:
  2198. raise ValueError("Unsupported key encryption type")
  2199. if cas is None or len(cas) == 0:
  2200. sk_x509 = self._ffi.NULL
  2201. else:
  2202. sk_x509 = self._lib.sk_X509_new_null()
  2203. sk_x509 = self._ffi.gc(sk_x509, self._lib.sk_X509_free)
  2204. # reverse the list when building the stack so that they're encoded
  2205. # in the order they were originally provided. it is a mystery
  2206. for ca in reversed(cas):
  2207. res = self._lib.sk_X509_push(sk_x509, ca._x509)
  2208. backend.openssl_assert(res >= 1)
  2209. with self._zeroed_null_terminated_buf(password) as password_buf:
  2210. with self._zeroed_null_terminated_buf(name) as name_buf:
  2211. p12 = self._lib.PKCS12_create(
  2212. password_buf,
  2213. name_buf,
  2214. key._evp_pkey if key else self._ffi.NULL,
  2215. cert._x509 if cert else self._ffi.NULL,
  2216. sk_x509,
  2217. nid_key,
  2218. nid_cert,
  2219. pkcs12_iter,
  2220. mac_iter,
  2221. 0,
  2222. )
  2223. self.openssl_assert(p12 != self._ffi.NULL)
  2224. p12 = self._ffi.gc(p12, self._lib.PKCS12_free)
  2225. bio = self._create_mem_bio_gc()
  2226. res = self._lib.i2d_PKCS12_bio(bio, p12)
  2227. self.openssl_assert(res > 0)
  2228. return self._read_mem_bio(bio)
  2229. def poly1305_supported(self):
  2230. if self._fips_enabled:
  2231. return False
  2232. return self._lib.Cryptography_HAS_POLY1305 == 1
  2233. def create_poly1305_ctx(self, key):
  2234. utils._check_byteslike("key", key)
  2235. if len(key) != _POLY1305_KEY_SIZE:
  2236. raise ValueError("A poly1305 key is 32 bytes long")
  2237. return _Poly1305Context(self, key)
  2238. def load_pem_pkcs7_certificates(self, data):
  2239. utils._check_bytes("data", data)
  2240. bio = self._bytes_to_bio(data)
  2241. p7 = self._lib.PEM_read_bio_PKCS7(
  2242. bio.bio, self._ffi.NULL, self._ffi.NULL, self._ffi.NULL
  2243. )
  2244. if p7 == self._ffi.NULL:
  2245. self._consume_errors()
  2246. raise ValueError("Unable to parse PKCS7 data")
  2247. p7 = self._ffi.gc(p7, self._lib.PKCS7_free)
  2248. return self._load_pkcs7_certificates(p7)
  2249. def load_der_pkcs7_certificates(self, data):
  2250. utils._check_bytes("data", data)
  2251. bio = self._bytes_to_bio(data)
  2252. p7 = self._lib.d2i_PKCS7_bio(bio.bio, self._ffi.NULL)
  2253. if p7 == self._ffi.NULL:
  2254. self._consume_errors()
  2255. raise ValueError("Unable to parse PKCS7 data")
  2256. p7 = self._ffi.gc(p7, self._lib.PKCS7_free)
  2257. return self._load_pkcs7_certificates(p7)
  2258. def _load_pkcs7_certificates(self, p7):
  2259. nid = self._lib.OBJ_obj2nid(p7.type)
  2260. self.openssl_assert(nid != self._lib.NID_undef)
  2261. if nid != self._lib.NID_pkcs7_signed:
  2262. raise UnsupportedAlgorithm(
  2263. "Only basic signed structures are currently supported. NID"
  2264. " for this data was {}".format(nid),
  2265. _Reasons.UNSUPPORTED_SERIALIZATION,
  2266. )
  2267. sk_x509 = p7.d.sign.cert
  2268. num = self._lib.sk_X509_num(sk_x509)
  2269. certs = []
  2270. for i in range(num):
  2271. x509 = self._lib.sk_X509_value(sk_x509, i)
  2272. self.openssl_assert(x509 != self._ffi.NULL)
  2273. res = self._lib.X509_up_ref(x509)
  2274. # When OpenSSL is less than 1.1.0 up_ref returns the current
  2275. # refcount. On 1.1.0+ it returns 1 for success.
  2276. self.openssl_assert(res >= 1)
  2277. x509 = self._ffi.gc(x509, self._lib.X509_free)
  2278. certs.append(_Certificate(self, x509))
  2279. return certs
  2280. def pkcs7_sign(self, builder, encoding, options):
  2281. bio = self._bytes_to_bio(builder._data)
  2282. init_flags = self._lib.PKCS7_PARTIAL
  2283. final_flags = 0
  2284. if len(builder._additional_certs) == 0:
  2285. certs = self._ffi.NULL
  2286. else:
  2287. certs = self._lib.sk_X509_new_null()
  2288. certs = self._ffi.gc(certs, self._lib.sk_X509_free)
  2289. for cert in builder._additional_certs:
  2290. res = self._lib.sk_X509_push(certs, cert._x509)
  2291. self.openssl_assert(res >= 1)
  2292. if pkcs7.PKCS7Options.DetachedSignature in options:
  2293. # Don't embed the data in the PKCS7 structure
  2294. init_flags |= self._lib.PKCS7_DETACHED
  2295. final_flags |= self._lib.PKCS7_DETACHED
  2296. # This just inits a structure for us. However, there
  2297. # are flags we need to set, joy.
  2298. p7 = self._lib.PKCS7_sign(
  2299. self._ffi.NULL,
  2300. self._ffi.NULL,
  2301. certs,
  2302. self._ffi.NULL,
  2303. init_flags,
  2304. )
  2305. self.openssl_assert(p7 != self._ffi.NULL)
  2306. p7 = self._ffi.gc(p7, self._lib.PKCS7_free)
  2307. signer_flags = 0
  2308. # These flags are configurable on a per-signature basis
  2309. # but we've deliberately chosen to make the API only allow
  2310. # setting it across all signatures for now.
  2311. if pkcs7.PKCS7Options.NoCapabilities in options:
  2312. signer_flags |= self._lib.PKCS7_NOSMIMECAP
  2313. elif pkcs7.PKCS7Options.NoAttributes in options:
  2314. signer_flags |= self._lib.PKCS7_NOATTR
  2315. if pkcs7.PKCS7Options.NoCerts in options:
  2316. signer_flags |= self._lib.PKCS7_NOCERTS
  2317. for certificate, private_key, hash_algorithm in builder._signers:
  2318. md = self._evp_md_non_null_from_algorithm(hash_algorithm)
  2319. p7signerinfo = self._lib.PKCS7_sign_add_signer(
  2320. p7, certificate._x509, private_key._evp_pkey, md, signer_flags
  2321. )
  2322. self.openssl_assert(p7signerinfo != self._ffi.NULL)
  2323. for option in options:
  2324. # DetachedSignature, NoCapabilities, and NoAttributes are already
  2325. # handled so we just need to check these last two options.
  2326. if option is pkcs7.PKCS7Options.Text:
  2327. final_flags |= self._lib.PKCS7_TEXT
  2328. elif option is pkcs7.PKCS7Options.Binary:
  2329. final_flags |= self._lib.PKCS7_BINARY
  2330. bio_out = self._create_mem_bio_gc()
  2331. if encoding is serialization.Encoding.SMIME:
  2332. # This finalizes the structure
  2333. res = self._lib.SMIME_write_PKCS7(
  2334. bio_out, p7, bio.bio, final_flags
  2335. )
  2336. elif encoding is serialization.Encoding.PEM:
  2337. res = self._lib.PKCS7_final(p7, bio.bio, final_flags)
  2338. self.openssl_assert(res == 1)
  2339. res = self._lib.PEM_write_bio_PKCS7_stream(
  2340. bio_out, p7, bio.bio, final_flags
  2341. )
  2342. else:
  2343. assert encoding is serialization.Encoding.DER
  2344. # We need to call finalize here becauase i2d_PKCS7_bio does not
  2345. # finalize.
  2346. res = self._lib.PKCS7_final(p7, bio.bio, final_flags)
  2347. self.openssl_assert(res == 1)
  2348. res = self._lib.i2d_PKCS7_bio(bio_out, p7)
  2349. self.openssl_assert(res == 1)
  2350. return self._read_mem_bio(bio_out)
  2351. class GetCipherByName(object):
  2352. def __init__(self, fmt):
  2353. self._fmt = fmt
  2354. def __call__(self, backend, cipher, mode):
  2355. cipher_name = self._fmt.format(cipher=cipher, mode=mode).lower()
  2356. return backend._lib.EVP_get_cipherbyname(cipher_name.encode("ascii"))
  2357. def _get_xts_cipher(backend, cipher, mode):
  2358. cipher_name = "aes-{}-xts".format(cipher.key_size // 2)
  2359. return backend._lib.EVP_get_cipherbyname(cipher_name.encode("ascii"))
  2360. backend = Backend()