123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540 |
- #-----------------------------------------------------------------------------
- # Copyright (c) 2010 Raymond L. Buvel
- # Copyright (c) 2010 Craig McQueen
- #
- # Permission is hereby granted, free of charge, to any person obtaining a copy
- # of this software and associated documentation files (the "Software"), to deal
- # in the Software without restriction, including without limitation the rights
- # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- # copies of the Software, and to permit persons to whom the Software is
- # furnished to do so, subject to the following conditions:
- #
- # The above copyright notice and this permission notice shall be included in
- # all copies or substantial portions of the Software.
- #
- # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- # SOFTWARE.
- #-----------------------------------------------------------------------------
- '''Unit tests for crcmod functionality'''
- import unittest
- from array import array
- import binascii
- from .crcmod import mkCrcFun, Crc
- from .crcmod import _usingExtension
- from .predefined import PredefinedCrc
- from .predefined import mkPredefinedCrcFun
- from .predefined import _crc_definitions as _predefined_crc_definitions
- #-----------------------------------------------------------------------------
- # This polynomial was chosen because it is the product of two irreducible
- # polynomials.
- # g8 = (x^7+x+1)*(x+1)
- g8 = 0x185
- #-----------------------------------------------------------------------------
- # The following reproduces all of the entries in the Numerical Recipes table.
- # This is the standard CCITT polynomial.
- g16 = 0x11021
- #-----------------------------------------------------------------------------
- g24 = 0x15D6DCB
- #-----------------------------------------------------------------------------
- # This is the standard AUTODIN-II polynomial which appears to be used in a
- # wide variety of standards and applications.
- g32 = 0x104C11DB7
- #-----------------------------------------------------------------------------
- # I was able to locate a couple of 64-bit polynomials on the web. To make it
- # easier to input the representation, define a function that builds a
- # polynomial from a list of the bits that need to be turned on.
- def polyFromBits(bits):
- p = 0
- for n in bits:
- p = p | (1 << n)
- return p
- # The following is from the paper "An Improved 64-bit Cyclic Redundancy Check
- # for Protein Sequences" by David T. Jones
- g64a = polyFromBits([64, 63, 61, 59, 58, 56, 55, 52, 49, 48, 47, 46, 44, 41,
- 37, 36, 34, 32, 31, 28, 26, 23, 22, 19, 16, 13, 12, 10, 9, 6, 4,
- 3, 0])
- # The following is from Standard ECMA-182 "Data Interchange on 12,7 mm 48-Track
- # Magnetic Tape Cartridges -DLT1 Format-", December 1992.
- g64b = polyFromBits([64, 62, 57, 55, 54, 53, 52, 47, 46, 45, 40, 39, 38, 37,
- 35, 33, 32, 31, 29, 27, 24, 23, 22, 21, 19, 17, 13, 12, 10, 9, 7,
- 4, 1, 0])
- #-----------------------------------------------------------------------------
- # This class is used to check the CRC calculations against a direct
- # implementation using polynomial division.
- class poly:
- '''Class implementing polynomials over the field of integers mod 2'''
- def __init__(self,p):
- p = int(p)
- if p < 0: raise ValueError('invalid polynomial')
- self.p = p
- def __int__(self):
- return self.p
- def __eq__(self,other):
- return self.p == other.p
- def __ne__(self,other):
- return self.p != other.p
- # To allow sorting of polynomials, use their long integer form for
- # comparison
- def __cmp__(self,other):
- return cmp(self.p, other.p)
- def __bool__(self):
- return self.p != 0
- def __neg__(self):
- return self # These polynomials are their own inverse under addition
- def __invert__(self):
- n = max(self.deg() + 1, 1)
- x = (1 << n) - 1
- return poly(self.p ^ x)
- def __add__(self,other):
- return poly(self.p ^ other.p)
- def __sub__(self,other):
- return poly(self.p ^ other.p)
- def __mul__(self,other):
- a = self.p
- b = other.p
- if a == 0 or b == 0: return poly(0)
- x = 0
- while b:
- if b&1:
- x = x ^ a
- a = a<<1
- b = b>>1
- return poly(x)
- def __divmod__(self,other):
- u = self.p
- m = self.deg()
- v = other.p
- n = other.deg()
- if v == 0: raise ZeroDivisionError('polynomial division by zero')
- if n == 0: return (self,poly(0))
- if m < n: return (poly(0),self)
- k = m-n
- a = 1 << m
- v = v << k
- q = 0
- while k > 0:
- if a & u:
- u = u ^ v
- q = q | 1
- q = q << 1
- a = a >> 1
- v = v >> 1
- k -= 1
- if a & u:
- u = u ^ v
- q = q | 1
- return (poly(q),poly(u))
- def __div__(self,other):
- return self.__divmod__(other)[0]
- def __mod__(self,other):
- return self.__divmod__(other)[1]
- def __repr__(self):
- return 'poly(0x%XL)' % self.p
- def __str__(self):
- p = self.p
- if p == 0: return '0'
- lst = { 0:[], 1:['1'], 2:['x'], 3:['1','x'] }[p&3]
- p = p>>2
- n = 2
- while p:
- if p&1: lst.append('x^%d' % n)
- p = p>>1
- n += 1
- lst.reverse()
- return '+'.join(lst)
- def deg(self):
- '''return the degree of the polynomial'''
- a = self.p
- if a == 0: return -1
- n = 0
- while a >= 0x10000:
- n += 16
- a = a >> 16
- a = int(a)
- while a > 1:
- n += 1
- a = a >> 1
- return n
- #-----------------------------------------------------------------------------
- # The following functions compute the CRC using direct polynomial division.
- # These functions are checked against the result of the table driven
- # algorithms.
- g8p = poly(g8)
- x8p = poly(1<<8)
- def crc8p(d):
- p = 0
- for i in d:
- p = p*256 + i
- p = poly(p)
- return int(p*x8p%g8p)
- g16p = poly(g16)
- x16p = poly(1<<16)
- def crc16p(d):
- p = 0
- for i in d:
- p = p*256 + i
- p = poly(p)
- return int(p*x16p%g16p)
- g24p = poly(g24)
- x24p = poly(1<<24)
- def crc24p(d):
- p = 0
- for i in d:
- p = p*256 + i
- p = poly(p)
- return int(p*x24p%g24p)
- g32p = poly(g32)
- x32p = poly(1<<32)
- def crc32p(d):
- p = 0
- for i in d:
- p = p*256 + i
- p = poly(p)
- return int(p*x32p%g32p)
- g64ap = poly(g64a)
- x64p = poly(1<<64)
- def crc64ap(d):
- p = 0
- for i in d:
- p = p*256 + i
- p = poly(p)
- return int(p*x64p%g64ap)
- g64bp = poly(g64b)
- def crc64bp(d):
- p = 0
- for i in d:
- p = p*256 + i
- p = poly(p)
- return int(p*x64p%g64bp)
- class KnownAnswerTests(unittest.TestCase):
- test_messages = [
- b'T',
- b'CatMouse987654321',
- ]
- known_answers = [
- [ (g8,0,0), (0xFE, 0x9D) ],
- [ (g8,-1,1), (0x4F, 0x9B) ],
- [ (g8,0,1), (0xFE, 0x62) ],
- [ (g16,0,0), (0x1A71, 0xE556) ],
- [ (g16,-1,1), (0x1B26, 0xF56E) ],
- [ (g16,0,1), (0x14A1, 0xC28D) ],
- [ (g24,0,0), (0xBCC49D, 0xC4B507) ],
- [ (g24,-1,1), (0x59BD0E, 0x0AAA37) ],
- [ (g24,0,1), (0xD52B0F, 0x1523AB) ],
- [ (g32,0,0), (0x6B93DDDB, 0x12DCA0F4) ],
- [ (g32,0xFFFFFFFF,1), (0x41FB859F, 0xF7B400A7) ],
- [ (g32,0,1), (0x6C0695ED, 0xC1A40EE5) ],
- [ (g32,0,1,0xFFFFFFFF), (0xBE047A60, 0x084BFF58) ],
- ]
- def test_known_answers(self):
- for crcfun_params, v in self.known_answers:
- crcfun = mkCrcFun(*crcfun_params)
- self.assertEqual(crcfun(b'',0), 0, "Wrong answer for CRC parameters %s, input ''" % (crcfun_params,))
- for i, msg in enumerate(self.test_messages):
- self.assertEqual(crcfun(msg), v[i], "Wrong answer for CRC parameters %s, input '%s'" % (crcfun_params,msg))
- self.assertEqual(crcfun(msg[4:], crcfun(msg[:4])), v[i], "Wrong answer for CRC parameters %s, input '%s'" % (crcfun_params,msg))
- self.assertEqual(crcfun(msg[-1:], crcfun(msg[:-1])), v[i], "Wrong answer for CRC parameters %s, input '%s'" % (crcfun_params,msg))
- class CompareReferenceCrcTest(unittest.TestCase):
- test_messages = [
- b'',
- b'T',
- b'123456789',
- b'CatMouse987654321',
- ]
- test_poly_crcs = [
- [ (g8,0,0), crc8p ],
- [ (g16,0,0), crc16p ],
- [ (g24,0,0), crc24p ],
- [ (g32,0,0), crc32p ],
- [ (g64a,0,0), crc64ap ],
- [ (g64b,0,0), crc64bp ],
- ]
- @staticmethod
- def reference_crc32(d, crc=0):
- """This function modifies the return value of binascii.crc32
- to be an unsigned 32-bit value. I.e. in the range 0 to 2**32-1."""
- # Work around the future warning on constants.
- if crc > 0x7FFFFFFF:
- x = int(crc & 0x7FFFFFFF)
- crc = x | -2147483648
- x = binascii.crc32(d,crc)
- return int(x) & 0xFFFFFFFF
- def test_compare_crc32(self):
- """The binascii module has a 32-bit CRC function that is used in a wide range
- of applications including the checksum used in the ZIP file format.
- This test compares the CRC-32 implementation of this crcmod module to
- that of binascii.crc32."""
- # The following function should produce the same result as
- # self.reference_crc32 which is derived from binascii.crc32.
- crc32 = mkCrcFun(g32,0,1,0xFFFFFFFF)
- for msg in self.test_messages:
- self.assertEqual(crc32(msg), self.reference_crc32(msg))
- def test_compare_poly(self):
- """Compare various CRCs of this crcmod module to a pure
- polynomial-based implementation."""
- for crcfun_params, crc_poly_fun in self.test_poly_crcs:
- # The following function should produce the same result as
- # the associated polynomial CRC function.
- crcfun = mkCrcFun(*crcfun_params)
- for msg in self.test_messages:
- self.assertEqual(crcfun(msg), crc_poly_fun(msg))
- class CrcClassTest(unittest.TestCase):
- """Verify the Crc class"""
- msg = b'CatMouse987654321'
- def test_simple_crc32_class(self):
- """Verify the CRC class when not using xorOut"""
- crc = Crc(g32)
- str_rep = \
- '''poly = 0x104C11DB7
- reverse = True
- initCrc = 0xFFFFFFFF
- xorOut = 0x00000000
- crcValue = 0xFFFFFFFF'''
- self.assertEqual(str(crc), str_rep)
- self.assertEqual(crc.digest(), b'\xff\xff\xff\xff')
- self.assertEqual(crc.hexdigest(), 'FFFFFFFF')
- crc.update(self.msg)
- self.assertEqual(crc.crcValue, 0xF7B400A7)
- self.assertEqual(crc.digest(), b'\xf7\xb4\x00\xa7')
- self.assertEqual(crc.hexdigest(), 'F7B400A7')
- # Verify the .copy() method
- x = crc.copy()
- self.assertTrue(x is not crc)
- str_rep = \
- '''poly = 0x104C11DB7
- reverse = True
- initCrc = 0xFFFFFFFF
- xorOut = 0x00000000
- crcValue = 0xF7B400A7'''
- self.assertEqual(str(crc), str_rep)
- self.assertEqual(str(x), str_rep)
- def test_full_crc32_class(self):
- """Verify the CRC class when using xorOut"""
- crc = Crc(g32, initCrc=0, xorOut= ~0)
- str_rep = \
- '''poly = 0x104C11DB7
- reverse = True
- initCrc = 0x00000000
- xorOut = 0xFFFFFFFF
- crcValue = 0x00000000'''
- self.assertEqual(str(crc), str_rep)
- self.assertEqual(crc.digest(), b'\x00\x00\x00\x00')
- self.assertEqual(crc.hexdigest(), '00000000')
- crc.update(self.msg)
- self.assertEqual(crc.crcValue, 0x84BFF58)
- self.assertEqual(crc.digest(), b'\x08\x4b\xff\x58')
- self.assertEqual(crc.hexdigest(), '084BFF58')
- # Verify the .copy() method
- x = crc.copy()
- self.assertTrue(x is not crc)
- str_rep = \
- '''poly = 0x104C11DB7
- reverse = True
- initCrc = 0x00000000
- xorOut = 0xFFFFFFFF
- crcValue = 0x084BFF58'''
- self.assertEqual(str(crc), str_rep)
- self.assertEqual(str(x), str_rep)
- # Verify the .new() method
- y = crc.new()
- self.assertTrue(y is not crc)
- self.assertTrue(y is not x)
- str_rep = \
- '''poly = 0x104C11DB7
- reverse = True
- initCrc = 0x00000000
- xorOut = 0xFFFFFFFF
- crcValue = 0x00000000'''
- self.assertEqual(str(y), str_rep)
- class PredefinedCrcTest(unittest.TestCase):
- """Verify the predefined CRCs"""
- test_messages_for_known_answers = [
- b'', # Test cases below depend on this first entry being the empty string.
- b'T',
- b'CatMouse987654321',
- ]
- known_answers = [
- [ 'crc-aug-ccitt', (0x1D0F, 0xD6ED, 0x5637) ],
- [ 'x-25', (0x0000, 0xE4D9, 0x0A91) ],
- [ 'crc-32', (0x00000000, 0xBE047A60, 0x084BFF58) ],
- ]
- def test_known_answers(self):
- for crcfun_name, v in self.known_answers:
- crcfun = mkPredefinedCrcFun(crcfun_name)
- self.assertEqual(crcfun(b'',0), 0, "Wrong answer for CRC '%s', input ''" % crcfun_name)
- for i, msg in enumerate(self.test_messages_for_known_answers):
- self.assertEqual(crcfun(msg), v[i], "Wrong answer for CRC %s, input '%s'" % (crcfun_name,msg))
- self.assertEqual(crcfun(msg[4:], crcfun(msg[:4])), v[i], "Wrong answer for CRC %s, input '%s'" % (crcfun_name,msg))
- self.assertEqual(crcfun(msg[-1:], crcfun(msg[:-1])), v[i], "Wrong answer for CRC %s, input '%s'" % (crcfun_name,msg))
- def test_class_with_known_answers(self):
- for crcfun_name, v in self.known_answers:
- for i, msg in enumerate(self.test_messages_for_known_answers):
- crc1 = PredefinedCrc(crcfun_name)
- crc1.update(msg)
- self.assertEqual(crc1.crcValue, v[i], "Wrong answer for crc1 %s, input '%s'" % (crcfun_name,msg))
- crc2 = crc1.new()
- # Check that crc1 maintains its same value, after .new() call.
- self.assertEqual(crc1.crcValue, v[i], "Wrong state for crc1 %s, input '%s'" % (crcfun_name,msg))
- # Check that the new class instance created by .new() contains the initialisation value.
- # This depends on the first string in self.test_messages_for_known_answers being
- # the empty string.
- self.assertEqual(crc2.crcValue, v[0], "Wrong state for crc2 %s, input '%s'" % (crcfun_name,msg))
- crc2.update(msg)
- # Check that crc1 maintains its same value, after crc2 has called .update()
- self.assertEqual(crc1.crcValue, v[i], "Wrong state for crc1 %s, input '%s'" % (crcfun_name,msg))
- # Check that crc2 contains the right value after calling .update()
- self.assertEqual(crc2.crcValue, v[i], "Wrong state for crc2 %s, input '%s'" % (crcfun_name,msg))
- def test_function_predefined_table(self):
- for table_entry in _predefined_crc_definitions:
- # Check predefined function
- crc_func = mkPredefinedCrcFun(table_entry['name'])
- calc_value = crc_func(b"123456789")
- self.assertEqual(calc_value, table_entry['check'], "Wrong answer for CRC '%s'" % table_entry['name'])
- def test_class_predefined_table(self):
- for table_entry in _predefined_crc_definitions:
- # Check predefined class
- crc1 = PredefinedCrc(table_entry['name'])
- crc1.update(b"123456789")
- self.assertEqual(crc1.crcValue, table_entry['check'], "Wrong answer for CRC '%s'" % table_entry['name'])
- class InputTypesTest(unittest.TestCase):
- """Check the various input types that CRC functions can accept."""
- msg = b'CatMouse987654321'
- check_crc_names = [
- 'crc-aug-ccitt',
- 'x-25',
- 'crc-32',
- ]
-
- array_check_types = [
- 'B',
- 'H',
- 'I',
- 'L',
- ]
- def test_bytearray_input(self):
- """Test that bytearray inputs are accepted, as an example
- of a type that implements the buffer protocol."""
- for crc_name in self.check_crc_names:
- crcfun = mkPredefinedCrcFun(crc_name)
- for i in range(len(self.msg) + 1):
- test_msg = self.msg[:i]
- bytes_answer = crcfun(test_msg)
- bytearray_answer = crcfun(bytearray(test_msg))
- self.assertEqual(bytes_answer, bytearray_answer)
- def test_array_input(self):
- """Test that array inputs are accepted, as an example
- of a type that implements the buffer protocol."""
- for crc_name in self.check_crc_names:
- crcfun = mkPredefinedCrcFun(crc_name)
- for i in range(len(self.msg) + 1):
- test_msg = self.msg[:i]
- bytes_answer = crcfun(test_msg)
- for array_type in self.array_check_types:
- if i % array(array_type).itemsize == 0:
- test_array = array(array_type, test_msg)
- array_answer = crcfun(test_array)
- self.assertEqual(bytes_answer, array_answer)
- def test_unicode_input(self):
- """Test that Unicode input raises TypeError"""
- for crc_name in self.check_crc_names:
- crcfun = mkPredefinedCrcFun(crc_name)
- with self.assertRaises(TypeError):
- crcfun("123456789")
- def runtests():
- print("Using extension:", _usingExtension)
- print()
- unittest.main()
- if __name__ == '__main__':
- runtests()
|