main_spider.py 7.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213
  1. """
  2. 针对爬虫类型数据单独训练模型
  3. """
  4. import os
  5. import sys
  6. import json
  7. import optuna
  8. from sklearn.linear_model import LogisticRegression
  9. sys.path.append(os.getcwd())
  10. import numpy as np
  11. import pandas as pd
  12. import lightgbm as lgb
  13. from sklearn.preprocessing import LabelEncoder
  14. from sklearn.metrics import accuracy_score
  15. class LightGBM(object):
  16. """
  17. LightGBM model for classification
  18. """
  19. def __init__(self, flag, dt):
  20. self.label_encoder = LabelEncoder()
  21. self.my_c = [
  22. "channel",
  23. "out_user_id",
  24. "mode",
  25. "out_play_cnt",
  26. "out_like_cnt",
  27. "out_share_cnt",
  28. "lop",
  29. "duration",
  30. "tag1",
  31. "tag2",
  32. "tag3"
  33. ]
  34. self.str_columns = ["channel", "mode", "out_user_id", "tag1", "tag2", "tag3"]
  35. self.float_columns = [
  36. "out_play_cnt",
  37. "out_like_cnt",
  38. "out_share_cnt",
  39. "lop",
  40. "duration"
  41. ]
  42. self.split_c = 0.7
  43. self.yc = 0.8
  44. self.model = "models/lightgbm_0401_spider.bin"
  45. self.flag = flag
  46. self.dt = dt
  47. def read_data(self):
  48. """
  49. Read data from local
  50. :return:
  51. """
  52. path = "data/train_data/spider_data_240401.json"
  53. df = pd.read_json(path)
  54. df = df.dropna(subset=['label'])
  55. labels = df['label']
  56. features = df.drop("label", axis=1)
  57. for key in self.float_columns:
  58. features[key] = pd.to_numeric(features[key], errors="coerce")
  59. for key in self.str_columns:
  60. features[key] = self.label_encoder.fit_transform(features[key])
  61. return features, labels
  62. def bays_params(self, trial):
  63. """
  64. Bayesian parameters for
  65. :return: best parameters
  66. """
  67. # 定义搜索空间
  68. param = {
  69. 'objective': 'binary',
  70. 'metric': 'binary_logloss',
  71. 'verbosity': -1,
  72. 'boosting_type': 'gbdt',
  73. 'num_leaves': trial.suggest_int('num_leaves', 20, 40),
  74. 'learning_rate': trial.suggest_loguniform('learning_rate', 1e-8, 1.0),
  75. 'feature_fraction': trial.suggest_uniform('feature_fraction', 0.4, 1.0),
  76. 'bagging_fraction': trial.suggest_uniform('bagging_fraction', 0.4, 1.0),
  77. 'bagging_freq': trial.suggest_int('bagging_freq', 1, 7),
  78. 'min_child_samples': trial.suggest_int('min_child_samples', 5, 100),
  79. "num_threads": 16, # 线程数量
  80. }
  81. x, y = self.read_data()
  82. train_size = int(len(x) * self.split_c)
  83. X_train, X_test = x[:train_size], x[train_size:]
  84. Y_train, Y_test = y[:train_size], y[train_size:]
  85. train_data = lgb.Dataset(
  86. X_train,
  87. label=Y_train,
  88. categorical_feature=["channel", "mode", "out_user_id", "tag1", "tag2", "tag3"],
  89. )
  90. test_data = lgb.Dataset(X_test, label=Y_test, reference=train_data)
  91. gbm = lgb.train(param, train_data, num_boost_round=100, valid_sets=[test_data])
  92. preds = gbm.predict(X_test)
  93. pred_labels = np.rint(preds)
  94. accuracy = accuracy_score(Y_test, pred_labels)
  95. return accuracy
  96. def train_model(self):
  97. """
  98. Load dataset
  99. :return:
  100. """
  101. x, y = self.read_data()
  102. train_size = int(len(x) * self.split_c)
  103. X_train, X_test = x[:train_size], x[train_size:]
  104. Y_train, Y_test = y[:train_size], y[train_size:]
  105. train_data = lgb.Dataset(
  106. X_train,
  107. label=Y_train,
  108. categorical_feature=["channel", "mode", "out_user_id", "tag1", "tag2", "tag3"],
  109. )
  110. test_data = lgb.Dataset(X_test, label=Y_test, reference=train_data)
  111. params = {
  112. 'num_leaves': 31,
  113. 'learning_rate': 0.00020616904432655601,
  114. 'feature_fraction': 0.6508847259863764,
  115. 'bagging_fraction': 0.7536774652478249,
  116. 'bagging_freq': 6,
  117. 'min_child_samples': 99,
  118. 'num_threads': 16
  119. }
  120. # 训练模型
  121. num_round = 100
  122. print("开始训练......")
  123. bst = lgb.train(params, train_data, num_round, valid_sets=[test_data])
  124. bst.save_model(self.model)
  125. print("模型训练完成✅")
  126. def evaluate_model(self):
  127. """
  128. 评估模型性能
  129. :return:
  130. """
  131. fw = open("summary_tag_03{}_spider.txt".format(self.dt), "a+", encoding="utf-8")
  132. # 测试数据
  133. with open("data/produce_data/x_data_total_return_predict_{}_spider.json".format(self.dt)) as f1:
  134. x_list = json.loads(f1.read())
  135. # 测试 label
  136. with open("data/produce_data/y_data_total_return_predict_{}_spider.json".format(self.dt)) as f2:
  137. Y_test = json.loads(f2.read())
  138. Y_test = [0 if i <= 19 else 1 for i in Y_test]
  139. X_test = pd.DataFrame(x_list, columns=self.my_c)
  140. for key in self.str_columns:
  141. X_test[key] = self.label_encoder.fit_transform(X_test[key])
  142. for key in self.float_columns:
  143. X_test[key] = pd.to_numeric(X_test[key], errors="coerce")
  144. bst = lgb.Booster(model_file=self.model)
  145. y_pred = bst.predict(X_test, num_iteration=bst.best_iteration)
  146. temp = sorted(list(y_pred))
  147. yuzhi = temp[int(len(temp) * 0.7) - 1]
  148. y_pred_binary = [0 if i <= yuzhi else 1 for i in list(y_pred)]
  149. # 转换为二进制输出
  150. score_list = []
  151. for index, item in enumerate(list(y_pred)):
  152. real_label = Y_test[index]
  153. score = item
  154. prid_label = y_pred_binary[index]
  155. print(real_label, "\t", prid_label, "\t", score)
  156. fw.write("{}\t{}\t{}\n".format(real_label, prid_label, score))
  157. score_list.append(score)
  158. print("预测样本总量: {}".format(len(score_list)))
  159. data_series = pd.Series(score_list)
  160. print("统计 score 信息")
  161. print(data_series.describe())
  162. # 评估模型
  163. accuracy = accuracy_score(Y_test, y_pred_binary)
  164. print(f"Accuracy: {accuracy}")
  165. fw.close()
  166. def feature_importance(self):
  167. """
  168. Get the importance of each feature
  169. :return:
  170. """
  171. lgb_model = lgb.Booster(model_file=self.model)
  172. importance = lgb_model.feature_importance(importance_type='split')
  173. feature_name = lgb_model.feature_name()
  174. feature_importance = sorted(zip(feature_name, importance), key=lambda x: x[1], reverse=True)
  175. # 打印特征重要性
  176. for name, imp in feature_importance:
  177. print(name, imp)
  178. if __name__ == "__main__":
  179. i = int(input("输入 1 训练, 输入 2 预测:\n"))
  180. if i == 1:
  181. f = "train"
  182. dt = "whole"
  183. L = LightGBM(flag=f, dt=dt)
  184. L.train_model()
  185. elif i == 2:
  186. f = "predict"
  187. dt = int(input("输入日期, 16-21:\n"))
  188. L = LightGBM(flag=f, dt=dt)
  189. L.evaluate_model()
  190. L.feature_importance()
  191. # L = LightGBM("train", "whole")
  192. # study = optuna.create_study(direction='maximize')
  193. # study.optimize(L.bays_params, n_trials=100)
  194. # print('Number of finished trials:', len(study.trials))
  195. # print('Best trial:', study.best_trial.params)