1234567891011121314151617181920212223242526272829303132333435363738394041424344 |
- import numpy as np
- import lightgbm as lgb
- from sklearn.model_selection import train_test_split
- from sklearn.datasets import make_classification
- from sklearn.metrics import accuracy_score
- # 生成模拟数据
- X, y = make_classification(n_samples=1000, n_features=20, n_classes=2, random_state=42)
- # 分割数据集
- X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
- # 创建LightGBM数据集
- train_data = lgb.Dataset(X_train, label=y_train)
- test_data = lgb.Dataset(X_test, label=y_test, reference=train_data)
- print(X_train.shape)
- for line in X_train:
- print(line)
- # print(X_train)
- print(y_test)
- # 设置模型的参数
- params = {
- 'objective': 'binary', # 指定二分类任务
- 'metric': 'binary_logloss', # 评估指标为二分类的log损失
- 'num_leaves': 31, # 叶子节点数
- 'learning_rate': 0.05, # 学习率
- 'bagging_fraction': 0.9, # 建树的样本采样比例
- 'feature_fraction': 0.8, # 建树的特征选择比例
- 'bagging_freq': 5, # k 意味着每 k 次迭代执行bagging
- }
- # 训练模型
- num_round = 100
- bst = lgb.train(params, train_data, num_round, valid_sets=[test_data])
- # 预测
- y_pred = bst.predict(X_test, num_iteration=bst.best_iteration)
- # 转换为二进制输出
- y_pred_binary = np.where(y_pred > 0.5, 1, 0)
- # 评估模型
- accuracy = accuracy_score(y_test, y_pred_binary)
- print(f'Accuracy: {accuracy}')
|