main.py 1.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445
  1. import json
  2. import numpy as np
  3. import lightgbm as lgb
  4. from sklearn.model_selection import train_test_split
  5. from sklearn.datasets import make_classification
  6. from sklearn.metrics import accuracy_score
  7. with open("whole_data/x_data.json") as f1:
  8. x_list = json.loads(f1.read())
  9. X_train = np.array(x_list[:10000])
  10. X_test = np.array(x_list[10000:])
  11. with open("whole_data/y_data.json") as f2:
  12. y_list = json.loads(f2.read())
  13. y_train = np.array(y_list[:10000])
  14. y_test = np.array(y_list[10000:])
  15. # 创建LightGBM数据集
  16. train_data = lgb.Dataset(X_train, label=y_train)
  17. test_data = lgb.Dataset(X_test, label=y_test, reference=train_data)
  18. # 设置模型的参数
  19. params = {
  20. 'objective': 'binary', # 指定二分类任务
  21. 'metric': 'binary_logloss', # 评估指标为二分类的log损失
  22. 'num_leaves': 31, # 叶子节点数
  23. 'learning_rate': 0.05, # 学习率
  24. 'bagging_fraction': 0.9, # 建树的样本采样比例
  25. 'feature_fraction': 0.8, # 建树的特征选择比例
  26. 'bagging_freq': 5, # k 意味着每 k 次迭代执行bagging
  27. }
  28. # 训练模型
  29. num_round = 100
  30. bst = lgb.train(params, train_data, num_round, valid_sets=[test_data])
  31. # 预测
  32. y_pred = bst.predict(X_test, num_iteration=bst.best_iteration)
  33. # 转换为二进制输出
  34. y_pred_binary = np.where(y_pred > 0.5, 1, 0)
  35. # 评估模型
  36. accuracy = accuracy_score(y_test, y_pred_binary)
  37. print(f'Accuracy: {accuracy}')