main_spider.py 7.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224
  1. """
  2. 针对爬虫类型数据单独训练模型
  3. """
  4. import os
  5. import sys
  6. import json
  7. import optuna
  8. from sklearn.linear_model import LogisticRegression
  9. sys.path.append(os.getcwd())
  10. import numpy as np
  11. import pandas as pd
  12. import lightgbm as lgb
  13. from sklearn.preprocessing import LabelEncoder
  14. from sklearn.metrics import accuracy_score
  15. class LightGBM(object):
  16. """
  17. LightGBM model for classification
  18. """
  19. def __init__(self, flag, dt):
  20. self.label_encoder = LabelEncoder()
  21. self.my_c = [
  22. "channel",
  23. "out_user_id",
  24. "mode",
  25. "out_play_cnt",
  26. "out_like_cnt",
  27. "out_share_cnt",
  28. "tag1",
  29. "tag2",
  30. "tag3"
  31. ]
  32. self.str_columns = ["channel", "mode", "out_user_id", "tag1", "tag2", "tag3"]
  33. self.float_columns = [
  34. "out_play_cnt",
  35. "out_like_cnt",
  36. "out_share_cnt"
  37. ]
  38. self.split_c = 0.7
  39. self.yc = 0.8
  40. self.model = "lightgbm_0326_spider.bin"
  41. self.flag = flag
  42. self.dt = dt
  43. def bays_params(self, trial):
  44. """
  45. Bayesian parameters for
  46. :return: best parameters
  47. """
  48. # 定义搜索空间
  49. param = {
  50. 'objective': 'binary',
  51. 'metric': 'binary_logloss',
  52. 'verbosity': -1,
  53. 'boosting_type': 'gbdt',
  54. 'num_leaves': trial.suggest_int('num_leaves', 20, 40),
  55. 'learning_rate': trial.suggest_loguniform('learning_rate', 1e-8, 1.0),
  56. 'feature_fraction': trial.suggest_uniform('feature_fraction', 0.4, 1.0),
  57. 'bagging_fraction': trial.suggest_uniform('bagging_fraction', 0.4, 1.0),
  58. 'bagging_freq': trial.suggest_int('bagging_freq', 1, 7),
  59. 'min_child_samples': trial.suggest_int('min_child_samples', 5, 100),
  60. "num_threads": 16, # 线程数量
  61. }
  62. X_train, X_test = self.generate_x_data()
  63. Y_train, Y_test = self.generate_y_data()
  64. train_data = lgb.Dataset(
  65. X_train,
  66. label=Y_train,
  67. categorical_feature=["channel", "mode", "out_user_id", "tag1", "tag2", "tag3"],
  68. )
  69. test_data = lgb.Dataset(X_test, label=Y_test, reference=train_data)
  70. gbm = lgb.train(param, train_data, num_boost_round=100, valid_sets=[test_data])
  71. preds = gbm.predict(X_test)
  72. pred_labels = np.rint(preds)
  73. accuracy = accuracy_score(Y_test, pred_labels)
  74. return accuracy
  75. def generate_x_data(self):
  76. """
  77. Generate data for feature engineering
  78. :return:
  79. """
  80. with open("data/produce_data/x_data_total_return_{}_{}_spider.json".format(self.flag, self.dt)) as f1:
  81. x_list = json.loads(f1.read())
  82. index_t = int(len(x_list) * self.split_c)
  83. X_train = pd.DataFrame(x_list[:index_t], columns=self.my_c)
  84. for key in self.str_columns:
  85. X_train[key] = self.label_encoder.fit_transform(X_train[key])
  86. for key in self.float_columns:
  87. X_train[key] = pd.to_numeric(X_train[key], errors="coerce")
  88. X_test = pd.DataFrame(x_list[index_t:], columns=self.my_c)
  89. for key in self.str_columns:
  90. X_test[key] = self.label_encoder.fit_transform(X_test[key])
  91. for key in self.float_columns:
  92. X_test[key] = pd.to_numeric(X_test[key], errors="coerce")
  93. return X_train, X_test
  94. def generate_y_data(self):
  95. """
  96. Generate data for label
  97. :return:
  98. """
  99. with open("data/produce_data/y_data_total_return_{}_{}_spider.json".format(self.flag, self.dt)) as f2:
  100. y_list = json.loads(f2.read())
  101. index_t = int(len(y_list) * self.split_c)
  102. temp = sorted(y_list)
  103. yuzhi = temp[int(len(temp) * self.yc) - 1]
  104. print("阈值是: {}".format(yuzhi))
  105. y__list = [0 if i <= yuzhi else 1 for i in y_list]
  106. y_train = np.array(y__list[:index_t])
  107. y_test = np.array(y__list[index_t:])
  108. return y_train, y_test
  109. def train_model(self):
  110. """
  111. Load dataset
  112. :return:
  113. """
  114. X_train, X_test = self.generate_x_data()
  115. Y_train, Y_test = self.generate_y_data()
  116. train_data = lgb.Dataset(
  117. X_train,
  118. label=Y_train,
  119. categorical_feature=["channel", "mode", "out_user_id", "tag1", "tag2", "tag3"],
  120. )
  121. test_data = lgb.Dataset(X_test, label=Y_test, reference=train_data)
  122. params = {
  123. 'num_leaves': 20,
  124. 'learning_rate': 0.03372815687364156,
  125. 'feature_fraction': 0.48848665517495693,
  126. 'bagging_fraction': 0.679118348482125,
  127. 'bagging_freq': 1,
  128. "num_threads": 16,
  129. 'min_child_samples': 38
  130. }
  131. # 训练模型
  132. num_round = 100
  133. print("开始训练......")
  134. bst = lgb.train(params, train_data, num_round, valid_sets=[test_data])
  135. bst.save_model(self.model)
  136. print("模型训练完成✅")
  137. def evaluate_model(self):
  138. """
  139. 评估模型性能
  140. :return:
  141. """
  142. fw = open("summary_tag_03{}_spider.txt".format(self.dt), "a+", encoding="utf-8")
  143. # 测试数据
  144. with open("data/produce_data/x_data_total_return_predict_{}_spider.json".format(self.dt)) as f1:
  145. x_list = json.loads(f1.read())
  146. # 测试 label
  147. with open("data/produce_data/y_data_total_return_predict_{}_spider.json".format(self.dt)) as f2:
  148. Y_test = json.loads(f2.read())
  149. Y_test = [0 if i <= 19 else 1 for i in Y_test]
  150. X_test = pd.DataFrame(x_list, columns=self.my_c)
  151. for key in self.str_columns:
  152. X_test[key] = self.label_encoder.fit_transform(X_test[key])
  153. for key in self.float_columns:
  154. X_test[key] = pd.to_numeric(X_test[key], errors="coerce")
  155. bst = lgb.Booster(model_file=self.model)
  156. y_pred = bst.predict(X_test, num_iteration=bst.best_iteration)
  157. temp = sorted(list(y_pred))
  158. yuzhi = temp[int(len(temp) * 0.7) - 1]
  159. y_pred_binary = [0 if i <= yuzhi else 1 for i in list(y_pred)]
  160. # 转换为二进制输出
  161. score_list = []
  162. for index, item in enumerate(list(y_pred)):
  163. real_label = Y_test[index]
  164. score = item
  165. prid_label = y_pred_binary[index]
  166. print(real_label, "\t", prid_label, "\t", score)
  167. fw.write("{}\t{}\t{}\n".format(real_label, prid_label, score))
  168. score_list.append(score)
  169. print("预测样本总量: {}".format(len(score_list)))
  170. data_series = pd.Series(score_list)
  171. print("统计 score 信息")
  172. print(data_series.describe())
  173. # 评估模型
  174. accuracy = accuracy_score(Y_test, y_pred_binary)
  175. print(f"Accuracy: {accuracy}")
  176. fw.close()
  177. def feature_importance(self):
  178. """
  179. Get the importance of each feature
  180. :return:
  181. """
  182. lgb_model = lgb.Booster(model_file=self.model)
  183. importance = lgb_model.feature_importance(importance_type='split')
  184. feature_name = lgb_model.feature_name()
  185. feature_importance = sorted(zip(feature_name, importance), key=lambda x: x[1], reverse=True)
  186. # 打印特征重要性
  187. for name, imp in feature_importance:
  188. print(name, imp)
  189. if __name__ == "__main__":
  190. i = int(input("输入 1 训练, 输入 2 预测:\n"))
  191. if i == 1:
  192. f = "train"
  193. dt = "whole"
  194. L = LightGBM(flag=f, dt=dt)
  195. L.train_model()
  196. elif i == 2:
  197. f = "predict"
  198. dt = int(input("输入日期, 16-21:\n"))
  199. L = LightGBM(flag=f, dt=dt)
  200. L.evaluate_model()
  201. L.feature_importance()
  202. # L = LightGBM("train", "whole")
  203. # study = optuna.create_study(direction='maximize')
  204. # study.optimize(L.bays_params, n_trials=100)
  205. # print('Number of finished trials:', len(study.trials))
  206. # print('Best trial:', study.best_trial.params)