123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168 |
- import os
- import sys
- import json
- from sklearn.linear_model import LogisticRegression
- sys.path.append(os.getcwd())
- import numpy as np
- import pandas as pd
- import lightgbm as lgb
- from sklearn.preprocessing import LabelEncoder
- from sklearn.metrics import accuracy_score
- class LightGBM(object):
- """
- LightGBM model for classification
- """
- def __init__(self):
- self.label_encoder = LabelEncoder()
- self.my_c = [
- "uid",
- "type",
- "channel",
- "fans",
- "view_count_user_30days",
- "share_count_user_30days",
- "return_count_user_30days",
- "rov_user",
- "str_user",
- "out_user_id",
- "mode",
- "out_play_cnt",
- "out_like_cnt",
- "out_share_cnt",
- "out_collection_cnt",
- ]
- self.str_columns = ["uid", "type", "channel", "mode", "out_user_id"]
- self.float_columns = [
- "fans",
- "view_count_user_30days",
- "share_count_user_30days",
- "return_count_user_30days",
- "rov_user",
- "str_user",
- "out_play_cnt",
- "out_like_cnt",
- "out_share_cnt",
- "out_collection_cnt",
- ]
- self.split_c = 0.95
- self.yc = 0.8
- self.model = "lightgbm_train.bin"
- def generate_x_data(self):
- """
- Generate data for feature engineering
- :return:
- """
- with open("whole_data/x_data_total_return.json") as f1:
- x_list = json.loads(f1.read())
- index_t = int(len(x_list) * self.split_c)
- X_train = pd.DataFrame(x_list[:index_t], columns=self.my_c)
- for key in self.str_columns:
- X_train[key] = self.label_encoder.fit_transform(X_train[key])
- for key in self.float_columns:
- X_train[key] = pd.to_numeric(X_train[key], errors="coerce")
- X_test = pd.DataFrame(x_list[index_t:], columns=self.my_c)
- for key in self.str_columns:
- X_test[key] = self.label_encoder.fit_transform(X_test[key])
- for key in self.float_columns:
- X_test[key] = pd.to_numeric(X_test[key], errors="coerce")
- return X_train, X_test
- def generate_y_data(self):
- """
- Generate data for label
- :return:
- """
- with open("whole_data/y_data_total_return.json") as f2:
- y_list = json.loads(f2.read())
- index_t = int(len(y_list) * self.split_c)
- temp = sorted(y_list)
- yuzhi = temp[int(len(temp) * self.yc) - 1]
- print("阈值是: {}".format(yuzhi))
- y__list = [0 if i <= yuzhi else 1 for i in y_list]
- y_train = np.array(y__list[:index_t])
- y_test = np.array(y__list[index_t:])
- return y_train, y_test
- def train_model(self):
- """
- Load dataset
- :return:
- """
- X_train, X_test = self.generate_x_data()
- Y_train, Y_test = self.generate_y_data()
- train_data = lgb.Dataset(
- X_train,
- label=Y_train,
- categorical_feature=["uid", "type", "channel", "mode", "out_user_id"],
- )
- test_data = lgb.Dataset(X_test, label=Y_test, reference=train_data)
- params = {
- "objective": "binary", # 指定二分类任务
- "metric": "binary_logloss", # 评估指标为二分类的log损失
- "num_leaves": 31, # 叶子节点数
- "learning_rate": 0.05, # 学习率
- "bagging_fraction": 0.9, # 建树的样本采样比例
- "feature_fraction": 0.8, # 建树的特征选择比例
- "bagging_freq": 5, # k 意味着每 k 次迭代执行bagging
- "num_threads": 4, # 线程数量
- }
- # 训练模型
- num_round = 100
- print("开始训练......")
- bst = lgb.train(params, train_data, num_round, valid_sets=[test_data])
- bst.save_model(self.model)
- print("模型训练完成✅")
- def evaluate_model(self):
- """
- 评估模型性能
- :return:
- """
- fw = open("summary.txt", "a+", encoding="utf-8")
- # 测试数据
- with open("whole_data/x_data_total_return_prid.json") as f1:
- x_list = json.loads(f1.read())
- # 测试 label
- with open("whole_data/y_data_total_return_prid.json") as f2:
- Y_test = json.loads(f2.read())
- Y_test = [0 if i <= 26 else 1 for i in Y_test]
- X_test = pd.DataFrame(x_list, columns=self.my_c)
- for key in self.str_columns:
- X_test[key] = self.label_encoder.fit_transform(X_test[key])
- for key in self.float_columns:
- X_test[key] = pd.to_numeric(X_test[key], errors="coerce")
- bst = lgb.Booster(model_file=self.model)
- y_pred = bst.predict(X_test, num_iteration=bst.best_iteration)
- y_pred_binary = [0 if i <= 0.1613 else 1 for i in list(y_pred)]
- # 转换为二进制输出
- score_list = []
- for index, item in enumerate(list(y_pred)):
- real_label = Y_test[index]
- score = item
- prid_label = y_pred_binary[index]
- print(real_label, "\t", prid_label, "\t", score)
- fw.write("{}\t{}\t{}\n".format(real_label, prid_label, score))
- score_list.append(score)
- print("预测样本总量: {}".format(len(score_list)))
- data_series = pd.Series(score_list)
- print("统计 score 信息")
- print(data_series.describe())
- # 评估模型
- accuracy = accuracy_score(Y_test, y_pred_binary)
- print(f"Accuracy: {accuracy}")
- fw.close()
- if __name__ == "__main__":
- L = LightGBM()
- # L.train_model()
- L.evaluate_model()
|