1234567891011121314151617181920212223242526272829303132333435363738394041424344454647 |
- import os
- import sys
- import json
- sys.path.append(os.getcwd())
- import numpy as np
- import lightgbm as lgb
- from sklearn.model_selection import train_test_split
- from sklearn.datasets import make_classification
- from sklearn.metrics import accuracy_score
- with open("whole_data/x_data.json") as f1:
- x_list = json.loads(f1.read())
- X_train = x_list[:10000]
- X_test = x_list[10000:]
- with open("whole_data/y_data.json") as f2:
- y_list = json.loads(f2.read())
- y_train = np.array(y_list[:10000])
- y_test = np.array(y_list[10000:])
- # 创建LightGBM数据集
- train_data = lgb.Dataset(X_train, label=y_train)
- test_data = lgb.Dataset(X_test, label=y_test, reference=train_data)
- # 设置模型的参数
- params = {
- 'objective': 'binary', # 指定二分类任务
- 'metric': 'binary_logloss', # 评估指标为二分类的log损失
- 'num_leaves': 31, # 叶子节点数
- 'learning_rate': 0.05, # 学习率
- 'bagging_fraction': 0.9, # 建树的样本采样比例
- 'feature_fraction': 0.8, # 建树的特征选择比例
- 'bagging_freq': 5, # k 意味着每 k 次迭代执行bagging
- }
- # 训练模型
- num_round = 100
- bst = lgb.train(params, train_data, num_round, valid_sets=[test_data])
- # 预测
- y_pred = bst.predict(X_test, num_iteration=bst.best_iteration)
- # 转换为二进制输出
- y_pred_binary = np.where(y_pred > 0.5, 1, 0)
- # 评估模型
- accuracy = accuracy_score(y_test, y_pred_binary)
- print(f'Accuracy: {accuracy}')
|