main_userupload.py 8.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228
  1. """
  2. 针对爬虫类型数据单独训练模型
  3. """
  4. import os
  5. import sys
  6. import json
  7. import optuna
  8. from sklearn.linear_model import LogisticRegression
  9. sys.path.append(os.getcwd())
  10. import numpy as np
  11. import pandas as pd
  12. import lightgbm as lgb
  13. from sklearn.preprocessing import LabelEncoder
  14. from sklearn.metrics import accuracy_score
  15. class LightGBM(object):
  16. """
  17. LightGBM model for classification
  18. """
  19. def __init__(self, flag, dt):
  20. self.label_encoder = LabelEncoder()
  21. self.my_c = [
  22. "uid",
  23. "channel",
  24. "fans",
  25. "view_count_user_30days",
  26. "share_count_user_30days",
  27. "return_count_user_30days",
  28. "rov_user",
  29. "str_user",
  30. "tag1",
  31. "tag2",
  32. "tag3"
  33. ]
  34. self.str_columns = ["channel", "uid", "tag1", "tag2", "tag3"]
  35. self.float_columns = [
  36. "fans",
  37. "view_count_user_30days",
  38. "share_count_user_30days",
  39. "return_count_user_30days",
  40. "rov_user",
  41. "str_user",
  42. ]
  43. self.split_c = 0.7
  44. self.yc = 0.8
  45. self.model = "lightgbm_0326_user.bin"
  46. self.flag = flag
  47. self.dt = dt
  48. def bays_params(self, trial):
  49. """
  50. Bayesian parameters for
  51. :return: best parameters
  52. """
  53. # 定义搜索空间
  54. param = {
  55. 'objective': 'binary',
  56. 'metric': 'binary_logloss',
  57. 'verbosity': -1,
  58. 'boosting_type': 'gbdt',
  59. 'num_leaves': trial.suggest_int('num_leaves', 20, 40),
  60. 'learning_rate': trial.suggest_loguniform('learning_rate', 1e-8, 1.0),
  61. 'feature_fraction': trial.suggest_uniform('feature_fraction', 0.4, 1.0),
  62. 'bagging_fraction': trial.suggest_uniform('bagging_fraction', 0.4, 1.0),
  63. 'bagging_freq': trial.suggest_int('bagging_freq', 1, 7),
  64. 'min_child_samples': trial.suggest_int('min_child_samples', 5, 100),
  65. "num_threads": 16, # 线程数量
  66. }
  67. X_train, X_test = self.generate_x_data()
  68. Y_train, Y_test = self.generate_y_data()
  69. train_data = lgb.Dataset(
  70. X_train,
  71. label=Y_train,
  72. categorical_feature=["channel", "uid", "tag1", "tag2", "tag3"],
  73. )
  74. test_data = lgb.Dataset(X_test, label=Y_test, reference=train_data)
  75. gbm = lgb.train(param, train_data, num_boost_round=100, valid_sets=[test_data])
  76. preds = gbm.predict(X_test)
  77. pred_labels = np.rint(preds)
  78. accuracy = accuracy_score(Y_test, pred_labels)
  79. return accuracy
  80. def generate_x_data(self):
  81. """
  82. Generate data for feature engineering
  83. :return:
  84. """
  85. with open("data/produce_data/x_data_total_return_{}_{}_user.json".format(self.flag, self.dt)) as f1:
  86. x_list = json.loads(f1.read())
  87. index_t = int(len(x_list) * self.split_c)
  88. X_train = pd.DataFrame(x_list[:index_t], columns=self.my_c)
  89. for key in self.str_columns:
  90. X_train[key] = self.label_encoder.fit_transform(X_train[key])
  91. for key in self.float_columns:
  92. X_train[key] = pd.to_numeric(X_train[key], errors="coerce")
  93. X_test = pd.DataFrame(x_list[index_t:], columns=self.my_c)
  94. for key in self.str_columns:
  95. X_test[key] = self.label_encoder.fit_transform(X_test[key])
  96. for key in self.float_columns:
  97. X_test[key] = pd.to_numeric(X_test[key], errors="coerce")
  98. return X_train, X_test
  99. def generate_y_data(self):
  100. """
  101. Generate data for label
  102. :return:
  103. """
  104. with open("data/produce_data/y_data_total_return_{}_{}_user.json".format(self.flag, self.dt)) as f2:
  105. y_list = json.loads(f2.read())
  106. index_t = int(len(y_list) * self.split_c)
  107. temp = sorted(y_list)
  108. yuzhi = temp[int(len(temp) * self.yc) - 1]
  109. print("阈值是: {}".format(yuzhi))
  110. y__list = [0 if i <= yuzhi else 1 for i in y_list]
  111. y_train = np.array(y__list[:index_t])
  112. y_test = np.array(y__list[index_t:])
  113. return y_train, y_test
  114. def train_model(self):
  115. """
  116. Load dataset
  117. :return:
  118. """
  119. X_train, X_test = self.generate_x_data()
  120. Y_train, Y_test = self.generate_y_data()
  121. train_data = lgb.Dataset(
  122. X_train,
  123. label=Y_train,
  124. categorical_feature=["channel", "uid", "tag1", "tag2", "tag3"],
  125. )
  126. test_data = lgb.Dataset(X_test, label=Y_test, reference=train_data)
  127. params = {
  128. 'num_leaves': 29,
  129. 'learning_rate': 0.0005153812869522004,
  130. 'feature_fraction': 0.7460901121756344,
  131. 'bagging_fraction': 0.5744390458938479,
  132. 'bagging_freq': 1,
  133. "num_threads": 16,
  134. }
  135. # 训练模型
  136. num_round = 100
  137. print("开始训练......")
  138. bst = lgb.train(params, train_data, num_round, valid_sets=[test_data])
  139. bst.save_model(self.model)
  140. print("模型训练完成✅")
  141. def evaluate_model(self):
  142. """
  143. 评估模型性能
  144. :return:
  145. """
  146. fw = open("summary_tag_03{}_user.txt".format(self.dt), "a+", encoding="utf-8")
  147. # 测试数据
  148. with open("data/produce_data/x_data_total_return_predict_{}_user.json".format(self.dt)) as f1:
  149. x_list = json.loads(f1.read())
  150. # 测试 label
  151. with open("data/produce_data/y_data_total_return_predict_{}_user.json".format(self.dt)) as f2:
  152. Y_test = json.loads(f2.read())
  153. Y_test = [0 if i <= 31 else 1 for i in Y_test]
  154. X_test = pd.DataFrame(x_list, columns=self.my_c)
  155. for key in self.str_columns:
  156. X_test[key] = self.label_encoder.fit_transform(X_test[key])
  157. for key in self.float_columns:
  158. X_test[key] = pd.to_numeric(X_test[key], errors="coerce")
  159. bst = lgb.Booster(model_file=self.model)
  160. y_pred = bst.predict(X_test, num_iteration=bst.best_iteration)
  161. temp = sorted(list(y_pred))
  162. yuzhi = temp[int(len(temp) * 0.7) - 1]
  163. y_pred_binary = [0 if i <= yuzhi else 1 for i in list(y_pred)]
  164. # 转换为二进制输出
  165. score_list = []
  166. for index, item in enumerate(list(y_pred)):
  167. real_label = Y_test[index]
  168. score = item
  169. prid_label = y_pred_binary[index]
  170. print(real_label, "\t", prid_label, "\t", score)
  171. fw.write("{}\t{}\t{}\n".format(real_label, prid_label, score))
  172. score_list.append(score)
  173. print("预测样本总量: {}".format(len(score_list)))
  174. data_series = pd.Series(score_list)
  175. print("统计 score 信息")
  176. print(data_series.describe())
  177. # 评估模型
  178. accuracy = accuracy_score(Y_test, y_pred_binary)
  179. print(f"Accuracy: {accuracy}")
  180. fw.close()
  181. def feature_importance(self):
  182. """
  183. Get the importance of each feature
  184. :return:
  185. """
  186. lgb_model = lgb.Booster(model_file=self.model)
  187. importance = lgb_model.feature_importance(importance_type='split')
  188. feature_name = lgb_model.feature_name()
  189. feature_importance = sorted(zip(feature_name, importance), key=lambda x: x[1], reverse=True)
  190. # 打印特征重要性
  191. for name, imp in feature_importance:
  192. print(name, imp)
  193. if __name__ == "__main__":
  194. i = int(input("输入 1 训练, 输入 2 预测:\n"))
  195. if i == 1:
  196. f = "train"
  197. dt = "whole"
  198. L = LightGBM(flag=f, dt=dt)
  199. L.train_model()
  200. elif i == 2:
  201. f = "predict"
  202. dt = int(input("输入日期, 16-21:\n"))
  203. L = LightGBM(flag=f, dt=dt)
  204. # L.evaluate_model()
  205. L.feature_importance()
  206. # L = LightGBM("train", "whole")
  207. # study = optuna.create_study(direction='maximize')
  208. # study.optimize(L.bays_params, n_trials=100)
  209. # print('Number of finished trials:', len(study.trials))
  210. # print('Best trial:', study.best_trial.params)