12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970 |
- import os
- import sys
- import json
- sys.path.append(os.getcwd())
- import numpy as np
- import pandas as pd
- import lightgbm as lgb
- from sklearn.model_selection import train_test_split
- from sklearn.datasets import make_classification
- from sklearn.metrics import accuracy_score
- my_c = [
- "uid",
- "type",
- "channel",
- "fans",
- "view_count_user_30days",
- "share_count_user_30days",
- "return_count_user_30days",
- "rov_user",
- "str_user",
- "out_user_id",
- "mode",
- "out_play_cnt",
- "out_like_cnt",
- "out_share_cnt",
- "out_collection_cnt"
- ]
- with open("whole_data/x_data.json") as f1:
- x_list = json.loads(f1.read())
- X_train = pd.DataFrame(x_list[:10000], columns=my_c)
- X_train['uid'] = X_train['uid'].astype(str)
- X_train['type'] = X_train['type'].astype(str)
- X_train['channel'] = X_train['channel'].astype(str)
- X_test = pd.DataFrame(x_list[10000:], columns=my_c)
- X_test['uid'] = X_test['uid'].astype(str)
- X_test['type'] = X_test['type'].astype(str)
- X_test['channel'] = X_test['channel'].astype(str)
- with open("whole_data/y_data.json") as f2:
- y_list = json.loads(f2.read())
- y_train = np.array(y_list[:10000])
- y_test = np.array(y_list[10000:])
- # 创建LightGBM数据集
- train_data = lgb.Dataset(X_train, label=y_train, categorical_feature=['uid', 'type', 'channel'])
- test_data = lgb.Dataset(X_test, label=y_test, reference=train_data)
- # 设置模型的参数
- params = {
- 'objective': 'binary', # 指定二分类任务
- 'metric': 'binary_logloss', # 评估指标为二分类的log损失
- 'num_leaves': 31, # 叶子节点数
- 'learning_rate': 0.05, # 学习率
- 'bagging_fraction': 0.9, # 建树的样本采样比例
- 'feature_fraction': 0.8, # 建树的特征选择比例
- 'bagging_freq': 5, # k 意味着每 k 次迭代执行bagging
- }
- # 训练模型
- num_round = 100
- bst = lgb.train(params, train_data, num_round, valid_sets=[test_data])
- # 预测
- y_pred = bst.predict(X_test, num_iteration=bst.best_iteration)
- # 转换为二进制输出
- y_pred_binary = np.where(y_pred > 0.5, 1, 0)
- # 评估模型
- accuracy = accuracy_score(y_test, y_pred_binary)
- print(f'Accuracy: {accuracy}')
|