main.py 8.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223
  1. import os
  2. import sys
  3. import json
  4. import optuna
  5. from sklearn.linear_model import LogisticRegression
  6. sys.path.append(os.getcwd())
  7. import numpy as np
  8. import pandas as pd
  9. import lightgbm as lgb
  10. from sklearn.preprocessing import LabelEncoder
  11. from sklearn.metrics import accuracy_score
  12. class LightGBM(object):
  13. """
  14. LightGBM model for classification
  15. """
  16. def __init__(self):
  17. self.label_encoder = LabelEncoder()
  18. self.my_c = [
  19. "uid",
  20. "type",
  21. "channel",
  22. "fans",
  23. "view_count_user_30days",
  24. "share_count_user_30days",
  25. "return_count_user_30days",
  26. "rov_user",
  27. "str_user",
  28. "out_user_id",
  29. "mode",
  30. "out_play_cnt",
  31. "out_like_cnt",
  32. "out_share_cnt",
  33. "out_collection_cnt",
  34. "tag1",
  35. "tag2",
  36. "tag3"
  37. ]
  38. self.str_columns = ["uid", "type", "channel", "mode", "out_user_id", "tag1", "tag2", "tag3"]
  39. self.float_columns = [
  40. "fans",
  41. "view_count_user_30days",
  42. "share_count_user_30days",
  43. "return_count_user_30days",
  44. "rov_user",
  45. "str_user",
  46. "out_play_cnt",
  47. "out_like_cnt",
  48. "out_share_cnt",
  49. "out_collection_cnt",
  50. ]
  51. self.split_c = 0.99
  52. self.yc = 0.8
  53. self.model = "lightgbm_tag_train_02.bin"
  54. def bays_params(self, trial):
  55. """
  56. Bayesian parameters for
  57. :return: best parameters
  58. """
  59. # 定义搜索空间
  60. param = {
  61. 'objective': 'binary',
  62. 'metric': 'binary_logloss',
  63. 'verbosity': -1,
  64. 'boosting_type': 'gbdt',
  65. 'num_leaves': trial.suggest_int('num_leaves', 20, 40),
  66. 'learning_rate': trial.suggest_loguniform('learning_rate', 1e-8, 1.0),
  67. 'feature_fraction': trial.suggest_uniform('feature_fraction', 0.4, 1.0),
  68. 'bagging_fraction': trial.suggest_uniform('bagging_fraction', 0.4, 1.0),
  69. 'bagging_freq': trial.suggest_int('bagging_freq', 1, 7),
  70. 'min_child_samples': trial.suggest_int('min_child_samples', 5, 100),
  71. }
  72. X_train, X_test = self.generate_x_data()
  73. Y_train, Y_test = self.generate_y_data()
  74. train_data = lgb.Dataset(
  75. X_train,
  76. label=Y_train,
  77. categorical_feature=["uid", "type", "channel", "mode", "out_user_id", "tag1", "tag2", "tag3"],
  78. )
  79. test_data = lgb.Dataset(X_test, label=Y_test, reference=train_data)
  80. gbm = lgb.train(param, train_data, num_boost_round=100, valid_sets=[test_data], early_stopping_rounds=10, verbose_eval=False)
  81. preds = gbm.predict(X_test)
  82. pred_labels = np.rint(preds)
  83. accuracy = accuracy_score(Y_test, pred_labels)
  84. return accuracy
  85. def generate_x_data(self):
  86. """
  87. Generate data for feature engineering
  88. :return:
  89. """
  90. with open("produce_data/x_data_total_return_train.json") as f1:
  91. x_list = json.loads(f1.read())
  92. index_t = int(len(x_list) * self.split_c)
  93. X_train = pd.DataFrame(x_list[:index_t], columns=self.my_c)
  94. for key in self.str_columns:
  95. X_train[key] = self.label_encoder.fit_transform(X_train[key])
  96. for key in self.float_columns:
  97. X_train[key] = pd.to_numeric(X_train[key], errors="coerce")
  98. X_test = pd.DataFrame(x_list[index_t:], columns=self.my_c)
  99. for key in self.str_columns:
  100. X_test[key] = self.label_encoder.fit_transform(X_test[key])
  101. for key in self.float_columns:
  102. X_test[key] = pd.to_numeric(X_test[key], errors="coerce")
  103. return X_train, X_test
  104. def generate_y_data(self):
  105. """
  106. Generate data for label
  107. :return:
  108. """
  109. with open("produce_data/y_data_total_return_train.json") as f2:
  110. y_list = json.loads(f2.read())
  111. index_t = int(len(y_list) * self.split_c)
  112. temp = sorted(y_list)
  113. yuzhi = temp[int(len(temp) * self.yc) - 1]
  114. print("阈值是: {}".format(yuzhi))
  115. y__list = [0 if i <= yuzhi else 1 for i in y_list]
  116. y_train = np.array(y__list[:index_t])
  117. y_test = np.array(y__list[index_t:])
  118. return y_train, y_test
  119. def train_model(self):
  120. """
  121. Load dataset
  122. :return:
  123. """
  124. X_train, X_test = self.generate_x_data()
  125. Y_train, Y_test = self.generate_y_data()
  126. train_data = lgb.Dataset(
  127. X_train,
  128. label=Y_train,
  129. categorical_feature=["uid", "type", "channel", "mode", "out_user_id", "tag1", "tag2", "tag3"],
  130. )
  131. test_data = lgb.Dataset(X_test, label=Y_test, reference=train_data)
  132. params = {
  133. "objective": "binary", # 指定二分类任务
  134. "metric": "binary_logloss", # 评估指标为二分类的log损失
  135. "num_leaves": 31, # 叶子节点数
  136. "learning_rate": 0.005, # 学习率
  137. "bagging_fraction": 0.9, # 建树的样本采样比例
  138. "feature_fraction": 0.8, # 建树的特征选择比例
  139. "bagging_freq": 5, # k 意味着每 k 次迭代执行bagging
  140. "num_threads": 4, # 线程数量
  141. }
  142. # 训练模型
  143. num_round = 2000
  144. print("开始训练......")
  145. bst = lgb.train(params, train_data, num_round, valid_sets=[test_data])
  146. bst.save_model(self.model)
  147. print("模型训练完成✅")
  148. def evaluate_model(self):
  149. """
  150. 评估模型性能
  151. :return:
  152. """
  153. fw = open("summary_tag_03.txt", "a+", encoding="utf-8")
  154. # 测试数据
  155. with open("produce_data/x_data_total_return_predict.json") as f1:
  156. x_list = json.loads(f1.read())
  157. # 测试 label
  158. with open("produce_data/y_data_total_return_predict.json") as f2:
  159. Y_test = json.loads(f2.read())
  160. Y_test = [0 if i <= 26 else 1 for i in Y_test]
  161. X_test = pd.DataFrame(x_list, columns=self.my_c)
  162. for key in self.str_columns:
  163. X_test[key] = self.label_encoder.fit_transform(X_test[key])
  164. for key in self.float_columns:
  165. X_test[key] = pd.to_numeric(X_test[key], errors="coerce")
  166. bst = lgb.Booster(model_file=self.model)
  167. y_pred = bst.predict(X_test, num_iteration=bst.best_iteration)
  168. y_pred_binary = [0 if i <= 0.164189 else 1 for i in list(y_pred)]
  169. # 转换为二进制输出
  170. score_list = []
  171. for index, item in enumerate(list(y_pred)):
  172. real_label = Y_test[index]
  173. score = item
  174. prid_label = y_pred_binary[index]
  175. print(real_label, "\t", prid_label, "\t", score)
  176. fw.write("{}\t{}\t{}\n".format(real_label, prid_label, score))
  177. score_list.append(score)
  178. print("预测样本总量: {}".format(len(score_list)))
  179. data_series = pd.Series(score_list)
  180. print("统计 score 信息")
  181. print(data_series.describe())
  182. # 评估模型
  183. accuracy = accuracy_score(Y_test, y_pred_binary)
  184. print(f"Accuracy: {accuracy}")
  185. fw.close()
  186. def feature_importance(self):
  187. """
  188. Get the importance of each feature
  189. :return:
  190. """
  191. lgb_model = lgb.Booster(model_file=self.model)
  192. importance = lgb_model.feature_importance(importance_type='split')
  193. feature_name = lgb_model.feature_name()
  194. feature_importance = sorted(zip(feature_name, importance), key=lambda x: x[1], reverse=True)
  195. # 打印特征重要性
  196. for name, imp in feature_importance:
  197. print(name, imp)
  198. if __name__ == "__main__":
  199. L = LightGBM()
  200. study = optuna.create_study(direction='maximize')
  201. study.optimize(L.bays_params, n_trials=100)
  202. print('Number of finished trials:', len(study.trials))
  203. print('Best trial:', study.best_trial.params)
  204. # L.train_model()
  205. # L.evaluate_model()
  206. # L.feature_importance()