123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293 |
- import os
- import sys
- import json
- sys.path.append(os.getcwd())
- import numpy as np
- import pandas as pd
- import lightgbm as lgb
- from sklearn.model_selection import train_test_split
- from sklearn.datasets import make_classification
- from sklearn.preprocessing import LabelEncoder
- from sklearn.metrics import accuracy_score
- label_encoder = LabelEncoder()
- my_c = [
- "uid",
- "type",
- "channel",
- "fans",
- "view_count_user_30days",
- "share_count_user_30days",
- "return_count_user_30days",
- "rov_user",
- "str_user",
- "out_user_id",
- "mode",
- "out_play_cnt",
- "out_like_cnt",
- "out_share_cnt",
- "out_collection_cnt"
- ]
- str_cols = ["uid", "type", "channel", "mode"]
- float_cols = [
- "fans",
- "view_count_user_30days",
- "share_count_user_30days",
- "return_count_user_30days",
- "rov_user",
- "str_user",
- "out_user_id",
- "out_play_cnt",
- "out_like_cnt",
- "out_share_cnt",
- "out_collection_cnt"
- ]
- with open("whole_data/x_data.json") as f1:
- x_list = json.loads(f1.read())
- print(len(x_list))
- # X_train = pd.DataFrame(x_list[:15000], columns=my_c)
- # for key in str_cols:
- # X_train[key] = label_encoder.fit_transform(X_train[key])
- # for key in float_cols:
- # X_train[key] = pd.to_numeric(X_train[key], errors='coerce')
- # X_test = pd.DataFrame(x_list[15000:], columns=my_c)
- # for key in str_cols:
- # X_test[key] = label_encoder.fit_transform(X_test[key])
- # for key in float_cols:
- # X_test[key] = pd.to_numeric(X_test[key], errors='coerce')
- #
- #
- # with open("whole_data/y_data.json") as f2:
- # y_list = json.loads(f2.read())
- # y__list = [0 if i <= 25 else 1 for i in y_list]
- # y_train = np.array(y__list[:15000])
- # y_test = np.array(y__list[15000:])
- #
- # # 创建LightGBM数据集
- # train_data = lgb.Dataset(X_train, label=y_train, categorical_feature=['uid', 'type', 'channel', 'mode'])
- # test_data = lgb.Dataset(X_test, label=y_test, reference=train_data)
- #
- # # 设置模型的参数
- # params = {
- # 'objective': 'binary', # 指定二分类任务
- # 'metric': 'binary_logloss', # 评估指标为二分类的log损失
- # 'num_leaves': 31, # 叶子节点数
- # 'learning_rate': 0.05, # 学习率
- # 'bagging_fraction': 0.9, # 建树的样本采样比例
- # 'feature_fraction': 0.8, # 建树的特征选择比例
- # 'bagging_freq': 5, # k 意味着每 k 次迭代执行bagging
- # }
- # 训练模型
- # num_round = 100
- # bst = lgb.train(params, train_data, num_round, valid_sets=[test_data])
- #
- # # 预测
- # y_pred = bst.predict(X_test, num_iteration=bst.best_iteration)
- # # 转换为二进制输出
- # y_pred_binary = np.where(y_pred > 0.5, 1, 0)
- #
- # # 评估模型
- # accuracy = accuracy_score(y_test, y_pred_binary)
- # print(f'Accuracy: {accuracy}')
|