main.py 5.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154
  1. import os
  2. import sys
  3. import json
  4. from sklearn.linear_model import LogisticRegression
  5. sys.path.append(os.getcwd())
  6. import numpy as np
  7. import pandas as pd
  8. import lightgbm as lgb
  9. from sklearn.preprocessing import LabelEncoder
  10. from sklearn.metrics import accuracy_score
  11. class LightGBM(object):
  12. """
  13. LightGBM model for classification
  14. """
  15. def __init__(self):
  16. self.label_encoder = LabelEncoder()
  17. self.my_c = [
  18. "uid",
  19. "type",
  20. "channel",
  21. "fans",
  22. "view_count_user_30days",
  23. "share_count_user_30days",
  24. "return_count_user_30days",
  25. "rov_user",
  26. "str_user",
  27. "out_user_id",
  28. "mode",
  29. "out_play_cnt",
  30. "out_like_cnt",
  31. "out_share_cnt",
  32. "out_collection_cnt"
  33. ]
  34. self.str_columns = ["uid", "type", "channel", "mode", "out_user_id"]
  35. self.float_columns = [
  36. "fans",
  37. "view_count_user_30days",
  38. "share_count_user_30days",
  39. "return_count_user_30days",
  40. "rov_user",
  41. "str_user",
  42. "out_play_cnt",
  43. "out_like_cnt",
  44. "out_share_cnt",
  45. "out_collection_cnt"
  46. ]
  47. self.split_c = 0.95
  48. self.yc = 0.8
  49. self.model = "lightgbm_train.bin"
  50. def generate_x_data(self):
  51. """
  52. Generate data for feature engineering
  53. :return:
  54. """
  55. with open("whole_data/x_data_total_return.json") as f1:
  56. x_list = json.loads(f1.read())
  57. index_t = int(len(x_list) * self.split_c)
  58. X_train = pd.DataFrame(x_list[:index_t], columns=self.my_c)
  59. for key in self.str_columns:
  60. X_train[key] = self.label_encoder.fit_transform(X_train[key])
  61. for key in self.float_columns:
  62. X_train[key] = pd.to_numeric(X_train[key], errors='coerce')
  63. X_test = pd.DataFrame(x_list[index_t:], columns=self.my_c)
  64. for key in self.str_columns:
  65. X_test[key] = self.label_encoder.fit_transform(X_test[key])
  66. for key in self.float_columns:
  67. X_test[key] = pd.to_numeric(X_test[key], errors='coerce')
  68. return X_train, X_test
  69. def generate_y_data(self):
  70. """
  71. Generate data for label
  72. :return:
  73. """
  74. with open("whole_data/y_data_total_return.json") as f2:
  75. y_list = json.loads(f2.read())
  76. index_t = int(len(y_list) * self.split_c)
  77. temp = sorted(y_list)
  78. yuzhi = temp[int(len(temp) * self.yc) - 1]
  79. print("阈值是: {}".format(yuzhi))
  80. y__list = [0 if i <= yuzhi else 1 for i in y_list]
  81. y_train = np.array(y__list[:index_t])
  82. y_test = np.array(y__list[index_t:])
  83. return y_train, y_test
  84. def train_model(self):
  85. """
  86. Load dataset
  87. :return:
  88. """
  89. X_train, X_test = self.generate_x_data()
  90. Y_train, Y_test = self.generate_y_data()
  91. train_data = lgb.Dataset(X_train, label=Y_train,
  92. categorical_feature=['uid', 'type', 'channel', 'mode', 'out_user_id'])
  93. test_data = lgb.Dataset(X_test, label=Y_test, reference=train_data)
  94. params = {
  95. 'objective': 'binary', # 指定二分类任务
  96. 'metric': 'binary_logloss', # 评估指标为二分类的log损失
  97. 'num_leaves': 31, # 叶子节点数
  98. 'learning_rate': 0.05, # 学习率
  99. 'bagging_fraction': 0.9, # 建树的样本采样比例
  100. 'feature_fraction': 0.8, # 建树的特征选择比例
  101. 'bagging_freq': 5, # k 意味着每 k 次迭代执行bagging
  102. 'num_threads': 4 # 线程数量
  103. }
  104. # 训练模型
  105. num_round = 100
  106. print("开始训练......")
  107. bst = lgb.train(params, train_data, num_round, valid_sets=[test_data])
  108. bst.save_model(self.model)
  109. print("模型训练完成✅")
  110. def evaluate_model(self):
  111. """
  112. 评估模型性能
  113. :return:
  114. """
  115. # 测试数据
  116. with open("whole_data/x_data_total_return_prid.json") as f1:
  117. x_list = json.loads(f1.read())
  118. # 测试 label
  119. with open("whole_data/y_data_total_return_prid.json") as f2:
  120. Y_test = json.loads(f2.read())
  121. X_test = pd.DataFrame(x_list, columns=self.my_c)
  122. for key in self.str_columns:
  123. X_test[key] = self.label_encoder.fit_transform(X_test[key])
  124. for key in self.float_columns:
  125. X_test[key] = pd.to_numeric(X_test[key], errors='coerce')
  126. bst = lgb.Booster(model_file=self.model)
  127. y_pred = bst.predict(X_test, num_iteration=bst.best_iteration)
  128. # 转换为二进制输出
  129. for index, item in enumerate(list(y_pred)):
  130. real_label = Y_test[index]
  131. score = item
  132. print(real_label, "\t", score)
  133. # y_pred_binary = np.where(y_pred > 0.5, 1, 0)
  134. # # 评估模型
  135. # accuracy = accuracy_score(Y_test, y_pred_binary)
  136. # print(f'Accuracy: {accuracy}')
  137. if __name__ == '__main__':
  138. L = LightGBM()
  139. L.train_model()
  140. # L.evaluate_model()