main_spider.py 7.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210
  1. """
  2. 针对爬虫类型数据单独训练模型
  3. """
  4. import os
  5. import sys
  6. import json
  7. import optuna
  8. from sklearn.linear_model import LogisticRegression
  9. sys.path.append(os.getcwd())
  10. import numpy as np
  11. import pandas as pd
  12. import lightgbm as lgb
  13. from sklearn.preprocessing import LabelEncoder
  14. from sklearn.metrics import accuracy_score
  15. class LightGBM(object):
  16. """
  17. LightGBM model for classification
  18. """
  19. def __init__(self, flag, dt):
  20. self.label_encoder = LabelEncoder()
  21. self.my_c = [
  22. "channel",
  23. "out_user_id",
  24. "mode",
  25. "out_play_cnt",
  26. "out_like_cnt",
  27. "out_share_cnt",
  28. "lop",
  29. "duration",
  30. "tag1",
  31. "tag2",
  32. "tag3"
  33. ]
  34. self.str_columns = ["channel", "mode", "out_user_id", "tag1", "tag2", "tag3"]
  35. self.float_columns = [
  36. "out_play_cnt",
  37. "out_like_cnt",
  38. "out_share_cnt",
  39. "lop",
  40. "duration"
  41. ]
  42. self.split_c = 0.7
  43. self.yc = 0.8
  44. self.model = "models/lightgbm_0401_spider.bin"
  45. self.flag = flag
  46. self.dt = dt
  47. def read_data(self):
  48. """
  49. Read data from local
  50. :return:
  51. """
  52. path = "data/train_data/spider_data_240401.json"
  53. df = pd.read_json(path)
  54. labels = df['label']
  55. features = df.drop("label", axis=1)
  56. for key in self.float_columns:
  57. features[key] = pd.to_numeric(features[key], errors="coerce")
  58. for key in self.str_columns:
  59. features[key] = self.label_encoder.fit_transform(features[key])
  60. return features, labels
  61. def bays_params(self, trial):
  62. """
  63. Bayesian parameters for
  64. :return: best parameters
  65. """
  66. # 定义搜索空间
  67. param = {
  68. 'objective': 'binary',
  69. 'metric': 'binary_logloss',
  70. 'verbosity': -1,
  71. 'boosting_type': 'gbdt',
  72. 'num_leaves': trial.suggest_int('num_leaves', 10, 40),
  73. 'learning_rate': trial.suggest_loguniform('learning_rate', 1e-8, 1.0),
  74. 'feature_fraction': trial.suggest_uniform('feature_fraction', 0.4, 1.0),
  75. 'bagging_fraction': trial.suggest_uniform('bagging_fraction', 0.4, 1.0),
  76. 'bagging_freq': trial.suggest_int('bagging_freq', 1, 7),
  77. 'min_child_samples': trial.suggest_int('min_child_samples', 5, 100),
  78. "num_threads": 16, # 线程数量
  79. }
  80. x, y = self.read_data()
  81. train_size = int(len(x) * self.split_c)
  82. X_train, X_test = x[:train_size], x[train_size:]
  83. Y_train, Y_test = y[:train_size], y[train_size:]
  84. train_data = lgb.Dataset(
  85. X_train,
  86. label=Y_train,
  87. categorical_feature=["channel", "mode", "out_user_id", "tag1", "tag2", "tag3"],
  88. )
  89. test_data = lgb.Dataset(X_test, label=Y_test, reference=train_data)
  90. gbm = lgb.train(param, train_data, num_boost_round=100, valid_sets=[test_data])
  91. preds = gbm.predict(X_test)
  92. pred_labels = np.rint(preds)
  93. accuracy = accuracy_score(Y_test, pred_labels)
  94. return accuracy
  95. def train_model(self):
  96. """
  97. Load dataset
  98. :return:
  99. """
  100. X_train, X_test = self.generate_x_data()
  101. Y_train, Y_test = self.generate_y_data()
  102. train_data = lgb.Dataset(
  103. X_train,
  104. label=Y_train,
  105. categorical_feature=["channel", "mode", "out_user_id", "tag1", "tag2", "tag3"],
  106. )
  107. test_data = lgb.Dataset(X_test, label=Y_test, reference=train_data)
  108. params = {
  109. 'num_leaves': 31,
  110. 'learning_rate': 0.00020616904432655601,
  111. 'feature_fraction': 0.6508847259863764,
  112. 'bagging_fraction': 0.7536774652478249,
  113. 'bagging_freq': 6,
  114. 'min_child_samples': 99,
  115. 'num_threads': 16
  116. }
  117. # 训练模型
  118. num_round = 100
  119. print("开始训练......")
  120. bst = lgb.train(params, train_data, num_round, valid_sets=[test_data])
  121. bst.save_model(self.model)
  122. print("模型训练完成✅")
  123. def evaluate_model(self):
  124. """
  125. 评估模型性能
  126. :return:
  127. """
  128. fw = open("summary_tag_03{}_spider.txt".format(self.dt), "a+", encoding="utf-8")
  129. # 测试数据
  130. with open("data/produce_data/x_data_total_return_predict_{}_spider.json".format(self.dt)) as f1:
  131. x_list = json.loads(f1.read())
  132. # 测试 label
  133. with open("data/produce_data/y_data_total_return_predict_{}_spider.json".format(self.dt)) as f2:
  134. Y_test = json.loads(f2.read())
  135. Y_test = [0 if i <= 19 else 1 for i in Y_test]
  136. X_test = pd.DataFrame(x_list, columns=self.my_c)
  137. for key in self.str_columns:
  138. X_test[key] = self.label_encoder.fit_transform(X_test[key])
  139. for key in self.float_columns:
  140. X_test[key] = pd.to_numeric(X_test[key], errors="coerce")
  141. bst = lgb.Booster(model_file=self.model)
  142. y_pred = bst.predict(X_test, num_iteration=bst.best_iteration)
  143. temp = sorted(list(y_pred))
  144. yuzhi = temp[int(len(temp) * 0.7) - 1]
  145. y_pred_binary = [0 if i <= yuzhi else 1 for i in list(y_pred)]
  146. # 转换为二进制输出
  147. score_list = []
  148. for index, item in enumerate(list(y_pred)):
  149. real_label = Y_test[index]
  150. score = item
  151. prid_label = y_pred_binary[index]
  152. print(real_label, "\t", prid_label, "\t", score)
  153. fw.write("{}\t{}\t{}\n".format(real_label, prid_label, score))
  154. score_list.append(score)
  155. print("预测样本总量: {}".format(len(score_list)))
  156. data_series = pd.Series(score_list)
  157. print("统计 score 信息")
  158. print(data_series.describe())
  159. # 评估模型
  160. accuracy = accuracy_score(Y_test, y_pred_binary)
  161. print(f"Accuracy: {accuracy}")
  162. fw.close()
  163. def feature_importance(self):
  164. """
  165. Get the importance of each feature
  166. :return:
  167. """
  168. lgb_model = lgb.Booster(model_file=self.model)
  169. importance = lgb_model.feature_importance(importance_type='split')
  170. feature_name = lgb_model.feature_name()
  171. feature_importance = sorted(zip(feature_name, importance), key=lambda x: x[1], reverse=True)
  172. # 打印特征重要性
  173. for name, imp in feature_importance:
  174. print(name, imp)
  175. if __name__ == "__main__":
  176. # i = int(input("输入 1 训练, 输入 2 预测:\n"))
  177. # if i == 1:
  178. # f = "train"
  179. # dt = "whole"
  180. # L = LightGBM(flag=f, dt=dt)
  181. # L.train_model()
  182. # elif i == 2:
  183. # f = "predict"
  184. # dt = int(input("输入日期, 16-21:\n"))
  185. # L = LightGBM(flag=f, dt=dt)
  186. # L.evaluate_model()
  187. # L.feature_importance()
  188. L = LightGBM("train", "whole")
  189. study = optuna.create_study(direction='maximize')
  190. study.optimize(L.bays_params, n_trials=100)
  191. print('Number of finished trials:', len(study.trials))
  192. print('Best trial:', study.best_trial.params)