main_spider.py 7.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217
  1. """
  2. 针对爬虫类型数据单独训练模型
  3. """
  4. import os
  5. import sys
  6. import json
  7. import optuna
  8. from sklearn.linear_model import LogisticRegression
  9. sys.path.append(os.getcwd())
  10. import numpy as np
  11. import pandas as pd
  12. import lightgbm as lgb
  13. from sklearn.preprocessing import LabelEncoder
  14. from sklearn.metrics import accuracy_score
  15. from sklearn.model_selection import train_test_split, StratifiedKFold
  16. from sklearn.datasets import load_breast_cancer
  17. from sklearn.metrics import roc_auc_score
  18. from bayes_opt import BayesianOptimization
  19. class LightGBM(object):
  20. """
  21. LightGBM model for classification
  22. """
  23. def __init__(self, flag, dt):
  24. self.label_encoder = LabelEncoder()
  25. self.my_c = [
  26. "channel",
  27. "out_user_id",
  28. "mode",
  29. "out_play_cnt",
  30. "out_like_cnt",
  31. "out_share_cnt",
  32. "lop",
  33. "duration",
  34. "tag1",
  35. "tag2",
  36. "tag3"
  37. ]
  38. self.str_columns = ["channel", "mode", "out_user_id", "tag1", "tag2", "tag3"]
  39. self.float_columns = [
  40. "out_play_cnt",
  41. "out_like_cnt",
  42. "out_share_cnt",
  43. "lop",
  44. "duration"
  45. ]
  46. self.split_c = 0.7
  47. self.yc = 0.8
  48. self.model = "models/lightgbm_0401_spider.bin"
  49. self.flag = flag
  50. self.dt = dt
  51. def read_data(self):
  52. """
  53. Read data from local
  54. :return:
  55. """
  56. path = "data/train_data/spider_data_240401.json"
  57. df = pd.read_json(path)
  58. df = df.dropna(subset=['label'])
  59. labels = df['label']
  60. features = df.drop("label", axis=1)
  61. for key in self.float_columns:
  62. features[key] = pd.to_numeric(features[key], errors="coerce")
  63. for key in self.str_columns:
  64. features[key] = self.label_encoder.fit_transform(features[key])
  65. return features, labels
  66. def objective(self, trial):
  67. x, y = self.read_data()
  68. train_size = int(len(x) * self.split_c)
  69. X_train, X_test = x[:train_size], x[train_size:]
  70. Y_train, Y_test = y[:train_size], y[train_size:]
  71. dtrain = lgb.Dataset(X_train, label=Y_train)
  72. dvalid = lgb.Dataset(X_test, label=Y_test, reference=dtrain)
  73. param = {
  74. 'objective': 'binary', # 根据问题修改,例如'regression'或'multiclass'
  75. 'metric': 'binary_logloss', # 根据问题修改,例如'l2'或'multi_logloss'
  76. 'verbosity': -1,
  77. 'boosting_type': 'gbdt',
  78. 'num_leaves': trial.suggest_int('num_leaves', 20, 40),
  79. 'learning_rate': trial.suggest_float('learning_rate', 1e-4, 1e-1, log=True),
  80. 'feature_fraction': trial.suggest_float('feature_fraction', 0.6, 0.9),
  81. 'bagging_fraction': trial.suggest_float('bagging_fraction', 0.6, 0.9),
  82. 'bagging_freq': trial.suggest_int('bagging_freq', 1, 10),
  83. 'min_child_samples': trial.suggest_int('min_child_samples', 5, 100),
  84. }
  85. gbm = lgb.train(param, dtrain, valid_sets=[dvalid], verbose_eval=False)
  86. preds = gbm.predict(X_test)
  87. pred_labels = np.rint(preds)
  88. accuracy = accuracy_score(Y_test, pred_labels)
  89. return accuracy # 或其他优化指标
  90. def tune(self, n_trials=100):
  91. study = optuna.create_study(direction='maximize')
  92. study.optimize(self.objective, n_trials=n_trials)
  93. print('Number of finished trials:', len(study.trials))
  94. print('Best trial:', study.best_trial.params)
  95. def train_model(self):
  96. """
  97. Load dataset
  98. :return:
  99. """
  100. x, y = self.read_data()
  101. train_size = int(len(x) * self.split_c)
  102. X_train, X_test = x[:train_size], x[train_size:]
  103. Y_train, Y_test = y[:train_size], y[train_size:]
  104. train_data = lgb.Dataset(
  105. X_train,
  106. label=Y_train,
  107. categorical_feature=["channel", "mode", "out_user_id", "tag1", "tag2", "tag3"],
  108. )
  109. test_data = lgb.Dataset(X_test, label=Y_test, reference=train_data)
  110. params = {
  111. 'num_leaves': 31,
  112. 'learning_rate': 0.00020616904432655601,
  113. 'feature_fraction': 0.6508847259863764,
  114. 'bagging_fraction': 0.7536774652478249,
  115. 'bagging_freq': 6,
  116. 'min_child_samples': 99,
  117. 'num_threads': 16
  118. }
  119. # 训练模型
  120. num_round = 100
  121. print("开始训练......")
  122. bst = lgb.train(params, train_data, num_round, valid_sets=[test_data])
  123. bst.save_model(self.model)
  124. print("模型训练完成✅")
  125. def evaluate_model(self):
  126. """
  127. 评估模型性能
  128. :return:
  129. """
  130. fw = open("summary_tag_03{}_spider.txt".format(self.dt), "a+", encoding="utf-8")
  131. # 测试数据
  132. with open("data/produce_data/x_data_total_return_predict_{}_spider.json".format(self.dt)) as f1:
  133. x_list = json.loads(f1.read())
  134. # 测试 label
  135. with open("data/produce_data/y_data_total_return_predict_{}_spider.json".format(self.dt)) as f2:
  136. Y_test = json.loads(f2.read())
  137. Y_test = [0 if i <= 19 else 1 for i in Y_test]
  138. X_test = pd.DataFrame(x_list, columns=self.my_c)
  139. for key in self.str_columns:
  140. X_test[key] = self.label_encoder.fit_transform(X_test[key])
  141. for key in self.float_columns:
  142. X_test[key] = pd.to_numeric(X_test[key], errors="coerce")
  143. bst = lgb.Booster(model_file=self.model)
  144. y_pred = bst.predict(X_test, num_iteration=bst.best_iteration)
  145. temp = sorted(list(y_pred))
  146. yuzhi = temp[int(len(temp) * 0.7) - 1]
  147. y_pred_binary = [0 if i <= yuzhi else 1 for i in list(y_pred)]
  148. # 转换为二进制输出
  149. score_list = []
  150. for index, item in enumerate(list(y_pred)):
  151. real_label = Y_test[index]
  152. score = item
  153. prid_label = y_pred_binary[index]
  154. print(real_label, "\t", prid_label, "\t", score)
  155. fw.write("{}\t{}\t{}\n".format(real_label, prid_label, score))
  156. score_list.append(score)
  157. print("预测样本总量: {}".format(len(score_list)))
  158. data_series = pd.Series(score_list)
  159. print("统计 score 信息")
  160. print(data_series.describe())
  161. # 评估模型
  162. accuracy = accuracy_score(Y_test, y_pred_binary)
  163. print(f"Accuracy: {accuracy}")
  164. fw.close()
  165. def feature_importance(self):
  166. """
  167. Get the importance of each feature
  168. :return:
  169. """
  170. lgb_model = lgb.Booster(model_file=self.model)
  171. importance = lgb_model.feature_importance(importance_type='split')
  172. feature_name = lgb_model.feature_name()
  173. feature_importance = sorted(zip(feature_name, importance), key=lambda x: x[1], reverse=True)
  174. # 打印特征重要性
  175. for name, imp in feature_importance:
  176. print(name, imp)
  177. if __name__ == "__main__":
  178. # i = int(input("输入 1 训练, 输入 2 预测:\n"))
  179. # if i == 1:
  180. # f = "train"
  181. # dt = "whole"
  182. # L = LightGBM(flag=f, dt=dt)
  183. # L.train_model()
  184. # elif i == 2:
  185. # f = "predict"
  186. # dt = int(input("输入日期, 16-21:\n"))
  187. # L = LightGBM(flag=f, dt=dt)
  188. # L.evaluate_model()
  189. # L.feature_importance()
  190. L = LightGBM("train", "whole")
  191. L.tune()
  192. # study = optuna.create_study(direction='maximize')
  193. # study.optimize(L.bays_params, n_trials=100)
  194. # print('Number of finished trials:', len(study.trials))
  195. # print('Best trial:', study.best_trial.params)