import numpy as np import lightgbm as lgb from sklearn.model_selection import train_test_split from sklearn.datasets import make_classification from sklearn.metrics import accuracy_score # 生成模拟数据 X, y = make_classification(n_samples=1000, n_features=20, n_classes=2, random_state=42) # 分割数据集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 创建LightGBM数据集 train_data = lgb.Dataset(X_train, label=y_train) test_data = lgb.Dataset(X_test, label=y_test, reference=train_data) print(X_train.shape) for line in X_train: print(line) # print(X_train) print(y_test) # 设置模型的参数 params = { 'objective': 'binary', # 指定二分类任务 'metric': 'binary_logloss', # 评估指标为二分类的log损失 'num_leaves': 31, # 叶子节点数 'learning_rate': 0.05, # 学习率 'bagging_fraction': 0.9, # 建树的样本采样比例 'feature_fraction': 0.8, # 建树的特征选择比例 'bagging_freq': 5, # k 意味着每 k 次迭代执行bagging } # 训练模型 num_round = 100 bst = lgb.train(params, train_data, num_round, valid_sets=[test_data]) # 预测 y_pred = bst.predict(X_test, num_iteration=bst.best_iteration) # 转换为二进制输出 y_pred_binary = np.where(y_pred > 0.5, 1, 0) # 评估模型 accuracy = accuracy_score(y_test, y_pred_binary) print(f'Accuracy: {accuracy}')