""" process the data to satisfy the lightgbm """ import datetime import sys import os import json import asyncio import argparse import time from tqdm import tqdm import jieba.analyse import pandas as pd sys.path.append(os.getcwd()) from functions import generate_label_date, generate_daily_strings, MysqlClient, MySQLClientSpider class DataProcessor(object): """ Insert some information to lightgbm_data """ def __init__(self, ): self.client = MysqlClient() self.client_spider = MySQLClientSpider() self.label_data = {} def producer(self): """ 生成数据 :return:none """ # 把 label, video_title, daily_dt_str, 存储到 mysql 数据库中去 label_path = "data/train_data/daily-label-20240326-20240331.json" with open(label_path, encoding="utf-8") as f: self.label_data = json.loads(f.read()) def read_title(client, video_id): """ read_title_from mysql """ sql = f"""SELECT title from wx_video where id = {video_id};""" # print("title", sql) try: title = client.select(sql)[0][0] return title.strip() except Exception as e: print(video_id, "\t", e) return "" def generate_label(video_id, hourly_dt_str, label_info): """ generate label daily_dt_str for mysql :param label_info: :param video_id: :param hourly_dt_str: :return: label, daily_dt_str """ label_dt = generate_label_date(hourly_dt_str) label_obj = label_info.get(label_dt, {}).get(video_id) if label_obj: label = int(label_obj["total_return"]) if label_obj["total_return"] else 0 # print(label) else: label = 0 return label, label_dt def process_info(item_): """ Insert data into MySql :param item_: """ video_id, hour_dt = item_ # print(type(video_id)) label_info = self.label_data title = read_title(client=self.client, video_id=video_id) label, dt_daily = generate_label(str(video_id), hour_dt, label_info) insert_sql = f"""UPDATE lightgbm_data set video_title = '{title}', label = '{label}', daily_dt_str = '{dt_daily}' where video_id = '{video_id}';""" # print(insert_sql) self.client_spider.update(insert_sql) select_sql = "SELECT video_id, hour_dt_str FROM lightgbm_data where label is NULL and hour_dt_str >= '2024032700';" init_data_tuple = self.client_spider.select(select_sql) init_list = list(init_data_tuple) for item in tqdm(init_list): try: process_info(item) except Exception as e: print("操作失败", e) class SpiderProcess(object): """ Spider Data Process and Process data for lightgbm training """ def __init__(self): self.client_spider = MySQLClientSpider() self.spider_features = [ "channel", "out_user_id", "mode", "out_play_cnt", "out_like_cnt", "out_share_cnt" ] def spider_lop(self, video_id): """ Spider lop = like / play :param video_id: :return: """ sql = f"""SELECT like_cnt, play_cnt, duration from crawler_video where video_id = '{video_id}';""" try: like_cnt, play_cnt, duration = self.client_spider.select(sql)[0] lop = (like_cnt + 700) / (play_cnt + 18000) return lop, duration except Exception as e: print(video_id, "\t", e) return 0, 0 def spider_data_produce(self, flag, dt_time=None): """ 把 spider_duration 存储到数据库中 :return: """ if flag == "train": select_sql = "SELECT video_id, video_title, label, channel, out_user_id, spider_mode, out_play_cnt, out_like_cnt, out_share_cnt FROM lightgbm_data WHERE type = 'spider' order by daily_dt_str;" des_path = "data/train_data/spider_train_{}".format(datetime.datetime.today().strftime("%Y%m%d")) elif flag == "predict": dt_time = datetime.datetime.strptime(dt_time, "%Y%m%d") three_date_before = dt_time + datetime.timedelta(days=4) temp_time = three_date_before.strftime("%Y%m%d") select_sql = f"""SELECT video_id, video_title, label, channel, out_user_id, spider_mode, out_play_cnt, out_like_cnt, out_share_cnt FROM lightgbm_data WHERE type = 'spider' and daily_dt_str = '{temp_time}';""" print(select_sql) des_path = "data/predict_data/predict_{}.json".format(dt_time.strftime("%Y%m%d")) else: return data_list = self.client_spider.select(select_sql) df = [] for line in tqdm(data_list): try: temp = list(line) video_id = line[0] title = line[1] lop, duration = self.spider_lop(video_id) title_tags = list(jieba.analyse.textrank(title, topK=3)) temp.append(lop) temp.append(duration) if title_tags: for i in range(3): try: temp.append(title_tags[i]) except: temp.append(None) else: temp.append(None) temp.append(None) temp.append(None) df.append(temp[2:]) except: continue df = pd.DataFrame(df, columns=['label', 'channel', 'out_user_id', 'mode', 'out_play_cnt', 'out_like_cnt', 'out_share_cnt', 'lop', 'duration', 'tag1', 'tag2', 'tag3']) df.to_json(des_path, orient='records') class UserProcess(object): """ User Data Process """ def __init__(self): self.client_spider = MySQLClientSpider() self.user_features = [ "label", "uid", "channel", "user_fans", "user_view_30", "user_share_30", "user_return_30", "user_rov", "user_str", "user_return_videos_30", "user_return_videos_3", "user_return_3", "user_view_3", "user_share_3", "address", "tag1", "tag2", "tag3" ] def userinfo_to_mysql(self, start_date, end_date): """ 把 user_return_3, user_view_3, user_share_3 user_return_videos_3, user_return_videos_30 address 存储到 mysql 数据库中 :return: """ user_path = 'data/train_data/daily-user-info-{}-{}.json'.format(start_date, end_date) with open(user_path) as f: data = json.loads(f.read()) sql = "select video_id, hour_dt_str from lightgbm_data where type = 'userupload' and address is NULL;" dt_list = self.client_spider.select(sql) for item in tqdm(dt_list): video_id, dt = item dt = dt[:8] user_info_obj = data.get(dt, {}).get(str(video_id)) if user_info_obj: try: video_id = user_info_obj['video_id'] address = user_info_obj['address'] return_3 = user_info_obj['return_3days'] view_3 = user_info_obj['view_3days'] share_3 = user_info_obj['share_3days'] return_videos_3 = user_info_obj['3day_return_500_videos'] return_videos_30 = user_info_obj['30day_return_2000_videos'] update_sql = f"""UPDATE lightgbm_data set address='{address}', user_return_3={return_3}, user_view_3={view_3}, user_share_3={share_3}, user_return_videos_3={return_videos_3}, user_return_videos_30={return_videos_30} where video_id = '{video_id}';""" self.client_spider.update(update_sql) except Exception as e: print(e) pass else: print("No user info") def generate_user_data(self, flag, dt_time=None): """ 生成user训练数据 :return: """ sql = "select title, label, uid, channel, user_fans, user_view_30, user_share_30, user_return_30, user_rov, user_str, user_return_videos_30, user_return_videos_3, user_return_3, user_view_3, user_share_3, address from lighgbm_data where type = 'userupload';" dt_list = self.client_spider.select(sql) df = [] for line in dt_list: title = line[0] temp = line title_tags = list(jieba.analyse.textrank(title, topK=3)) if title_tags: for i in range(3): try: temp.append(title_tags[i]) except: temp.append(None) else: temp.append(None) temp.append(None) temp.append(None) df.append(temp[1:]) df = pd.DataFrame(df, columns=self.user_features) df.to_json("data/train_data/user_data.json", orient='records') if __name__ == "__main__": parser = argparse.ArgumentParser() # 新建参数解释器对象 parser.add_argument("--mode") parser.add_argument("--de") parser.add_argument("--dt") args = parser.parse_args() mode = args.mode D = args.de dt = args.dt match D: case "spider": S = SpiderProcess() S.spider_data_produce(flag=mode, dt_time=dt) case "user": U = UserProcess() if mode == "generate": sd = str(input("输入开始日期,格式为 YYYYmmdd")) ed = str(input("输入结束日期,格式为 YYYYmmdd")) U.userinfo_to_mysql(start_date=sd, end_date=ed) elif mode == "train": U.generate_user_data("train") else: print("Error") case "Data": D = DataProcessor() D.producer() # if mode == "train": # print("Loading data and process for training.....") # D = DataProcessor(flag="train", ll=category) # D.producer("whole") # elif mode == "predict": # print("Loading data and process for prediction for each day......") # D = DataProcessor(flag="predict", ll=category) # if dtype == "single": # date_str = str(input("Please enter the date of the prediction")) # D.producer(date_str) # elif dtype == "days": # start_date_str = str(input("Please enter the start date of the prediction")) # end_date_str = str(input("Please enter the end date of the prediction")) # dt_list = generate_daily_strings(start_date=start_date_str, end_date=end_date_str) # for d in dt_list: # D.producer()