|
@@ -44,9 +44,9 @@ class LightGBM(object):
|
|
|
"""
|
|
|
df = pd.read_json(path)
|
|
|
df = df.dropna(subset=['label']) # 把 label 为空的删掉
|
|
|
- df = df.dropna(subset=['tag1', 'tag2', 'tag3', 'tag4'], how="all") # 把 tag 为空的数据也删掉
|
|
|
+ df = df.dropna(subset=['tag1', 'tag2'], how="all") # 把 tag 为空的数据也删掉
|
|
|
labels = df['label']
|
|
|
- features = df.drop('label', axis=1)
|
|
|
+ features = df.drop(['label', 'tag3', 'tag4'], axis=1)
|
|
|
for key in self.str_columns:
|
|
|
features[key] = self.label_encoder.fit_transform(features[key])
|
|
|
return features, labels, df
|
|
@@ -108,7 +108,7 @@ class LightGBM(object):
|
|
|
train_data = lgb.Dataset(
|
|
|
X_train,
|
|
|
label=Y_train,
|
|
|
- categorical_feature=["tag1", "tag2", "tag3", "tag4"],
|
|
|
+ categorical_feature=["tag1", "tag2"],
|
|
|
)
|
|
|
test_data = lgb.Dataset(X_test, label=Y_test, reference=train_data)
|
|
|
params = {
|
|
@@ -149,8 +149,6 @@ class LightGBM(object):
|
|
|
real_label = y[index]
|
|
|
score = item
|
|
|
prid_label = y_pred_binary[index]
|
|
|
- if score < 0.169541:
|
|
|
- print(real_label, "\t", prid_label, "\t", score)
|
|
|
fw.write("{}\t{}\t{}\n".format(real_label, prid_label, score))
|
|
|
score_list.append(score)
|
|
|
print("预测样本总量: {}".format(len(score_list)))
|
|
@@ -181,7 +179,10 @@ class LightGBM(object):
|
|
|
for name, imp in feature_importance:
|
|
|
print(name, imp)
|
|
|
|
|
|
-
|
|
|
+# "cat summary_20240328.txt | awk -F "\t" '{print $1" "$3}'| /root/AUC/AUC/AUC"
|
|
|
+"""
|
|
|
+ ossutil64 cp /root/luojunhui/alg/data/predict_data/spider_predict_result_20240330.xlsx oss://art-pubbucket/0temp/
|
|
|
+"""
|
|
|
if __name__ == "__main__":
|
|
|
i = int(input("输入 1 训练, 输入 2 预测:\n"))
|
|
|
if i == 1:
|