|
@@ -158,14 +158,14 @@ class LightGBM(object):
|
|
|
x, y = self.read_data(path, yc=6)
|
|
|
print(type(x))
|
|
|
print(type(y))
|
|
|
- # true_label_df = DataFrame(list(y), columns=['ture_label'])
|
|
|
+ true_label_df = DataFrame([list(y)], columns=['ture_label'])
|
|
|
bst = lgb.Booster(model_file=self.model)
|
|
|
y_pred = bst.predict(x, num_iteration=bst.best_iteration)
|
|
|
- pred_label_df = DataFrame(list(y_pred), columns=['pred_label'])
|
|
|
+ pred_score_df = DataFrame([list(y_pred)], columns=['pred_score'])
|
|
|
temp = sorted(list(y_pred))
|
|
|
yuzhi = temp[int(len(temp) * 0.7) - 1]
|
|
|
y_pred_binary = [0 if i <= yuzhi else 1 for i in list(y_pred)]
|
|
|
-
|
|
|
+ pred_label_df = DataFrame([list(y_pred_binary)], columns=['pred_label'])
|
|
|
score_list = []
|
|
|
for index, item in enumerate(list(y_pred)):
|
|
|
real_label = y[index]
|
|
@@ -183,8 +183,8 @@ class LightGBM(object):
|
|
|
print(f"Accuracy: {accuracy}")
|
|
|
fw.close()
|
|
|
# 水平合并
|
|
|
- df_concatenated = pd.concat([x, true_label_df, pred_label_df], axis=1)
|
|
|
- df_concatenated.to_excel("data/predict_data/spider_predict_result_{}.excel".format(dt), index=False)
|
|
|
+ df_concatenated = pd.concat([x, true_label_df,pred_score_df, pred_label_df], axis=1)
|
|
|
+ df_concatenated.to_excel("data/predict_data/spider_predict_result_{}.xlsx".format(dt), index=False)
|
|
|
|
|
|
def feature_importance(self):
|
|
|
"""
|