|
@@ -0,0 +1,239 @@
|
|
|
+"""
|
|
|
+针对爬虫类型数据单独训练模型
|
|
|
+"""
|
|
|
+import os
|
|
|
+import sys
|
|
|
+import json
|
|
|
+import optuna
|
|
|
+
|
|
|
+from sklearn.linear_model import LogisticRegression
|
|
|
+
|
|
|
+sys.path.append(os.getcwd())
|
|
|
+
|
|
|
+import numpy as np
|
|
|
+import pandas as pd
|
|
|
+import lightgbm as lgb
|
|
|
+from sklearn.preprocessing import LabelEncoder
|
|
|
+from sklearn.metrics import accuracy_score
|
|
|
+
|
|
|
+
|
|
|
+class LightGBM(object):
|
|
|
+ """
|
|
|
+ LightGBM model for classification
|
|
|
+ """
|
|
|
+
|
|
|
+ def __init__(self, flag, dt):
|
|
|
+ self.label_encoder = LabelEncoder()
|
|
|
+ self.my_c = [
|
|
|
+ "channel",
|
|
|
+ "fans",
|
|
|
+ "view_count_user_30days",
|
|
|
+ "share_count_user_30days",
|
|
|
+ "return_count_user_30days",
|
|
|
+ "rov_user",
|
|
|
+ "str_user",
|
|
|
+ "out_user_id",
|
|
|
+ "mode",
|
|
|
+ "out_play_cnt",
|
|
|
+ "out_like_cnt",
|
|
|
+ "out_share_cnt",
|
|
|
+ "tag1",
|
|
|
+ "tag2",
|
|
|
+ "tag3"
|
|
|
+ ]
|
|
|
+ self.str_columns = ["uid", "type", "channel", "mode", "out_user_id", "tag1", "tag2", "tag3"]
|
|
|
+ self.float_columns = [
|
|
|
+ "fans",
|
|
|
+ "view_count_user_30days",
|
|
|
+ "share_count_user_30days",
|
|
|
+ "return_count_user_30days",
|
|
|
+ "rov_user",
|
|
|
+ "str_user",
|
|
|
+ "out_play_cnt",
|
|
|
+ "out_like_cnt",
|
|
|
+ "out_share_cnt",
|
|
|
+ "out_collection_cnt",
|
|
|
+ ]
|
|
|
+ self.split_c = 0.999
|
|
|
+ self.yc = 0.8
|
|
|
+ self.model = "lightgbm_0326.bin"
|
|
|
+ self.flag = flag
|
|
|
+ self.dt = dt
|
|
|
+
|
|
|
+ def bays_params(self, trial):
|
|
|
+ """
|
|
|
+ Bayesian parameters for
|
|
|
+ :return: best parameters
|
|
|
+ """
|
|
|
+ # 定义搜索空间
|
|
|
+ param = {
|
|
|
+ 'objective': 'binary',
|
|
|
+ 'metric': 'binary_logloss',
|
|
|
+ 'verbosity': -1,
|
|
|
+ 'boosting_type': 'gbdt',
|
|
|
+ 'num_leaves': trial.suggest_int('num_leaves', 20, 40),
|
|
|
+ 'learning_rate': trial.suggest_loguniform('learning_rate', 1e-8, 1.0),
|
|
|
+ 'feature_fraction': trial.suggest_uniform('feature_fraction', 0.4, 1.0),
|
|
|
+ 'bagging_fraction': trial.suggest_uniform('bagging_fraction', 0.4, 1.0),
|
|
|
+ 'bagging_freq': trial.suggest_int('bagging_freq', 1, 7),
|
|
|
+ 'min_child_samples': trial.suggest_int('min_child_samples', 5, 100),
|
|
|
+ "num_threads": 16, # 线程数量
|
|
|
+ }
|
|
|
+ X_train, X_test = self.generate_x_data()
|
|
|
+ Y_train, Y_test = self.generate_y_data()
|
|
|
+ train_data = lgb.Dataset(
|
|
|
+ X_train,
|
|
|
+ label=Y_train,
|
|
|
+ categorical_feature=["uid", "type", "channel", "mode", "out_user_id", "tag1", "tag2", "tag3"],
|
|
|
+ )
|
|
|
+ test_data = lgb.Dataset(X_test, label=Y_test, reference=train_data)
|
|
|
+ gbm = lgb.train(param, train_data, num_boost_round=100, valid_sets=[test_data])
|
|
|
+ preds = gbm.predict(X_test)
|
|
|
+ pred_labels = np.rint(preds)
|
|
|
+ accuracy = accuracy_score(Y_test, pred_labels)
|
|
|
+ return accuracy
|
|
|
+
|
|
|
+ def generate_x_data(self):
|
|
|
+ """
|
|
|
+ Generate data for feature engineering
|
|
|
+ :return:
|
|
|
+ """
|
|
|
+ with open("data/produce_data/x_data_total_return_{}_{}.json".format(self.flag, self.dt)) as f1:
|
|
|
+ x_list = json.loads(f1.read())
|
|
|
+ index_t = int(len(x_list) * self.split_c)
|
|
|
+ X_train = pd.DataFrame(x_list[:index_t], columns=self.my_c)
|
|
|
+ for key in self.str_columns:
|
|
|
+ X_train[key] = self.label_encoder.fit_transform(X_train[key])
|
|
|
+ for key in self.float_columns:
|
|
|
+ X_train[key] = pd.to_numeric(X_train[key], errors="coerce")
|
|
|
+ X_test = pd.DataFrame(x_list[index_t:], columns=self.my_c)
|
|
|
+ for key in self.str_columns:
|
|
|
+ X_test[key] = self.label_encoder.fit_transform(X_test[key])
|
|
|
+ for key in self.float_columns:
|
|
|
+ X_test[key] = pd.to_numeric(X_test[key], errors="coerce")
|
|
|
+ return X_train, X_test
|
|
|
+
|
|
|
+ def generate_y_data(self):
|
|
|
+ """
|
|
|
+ Generate data for label
|
|
|
+ :return:
|
|
|
+ """
|
|
|
+ with open("data/produce_data/y_data_total_return_{}_{}.json".format(self.flag, self.dt)) as f2:
|
|
|
+ y_list = json.loads(f2.read())
|
|
|
+ index_t = int(len(y_list) * self.split_c)
|
|
|
+ temp = sorted(y_list)
|
|
|
+ yuzhi = temp[int(len(temp) * self.yc) - 1]
|
|
|
+ print("阈值是: {}".format(yuzhi))
|
|
|
+ y__list = [0 if i <= yuzhi else 1 for i in y_list]
|
|
|
+ y_train = np.array(y__list[:index_t])
|
|
|
+ y_test = np.array(y__list[index_t:])
|
|
|
+ return y_train, y_test
|
|
|
+
|
|
|
+ def train_model(self):
|
|
|
+ """
|
|
|
+ Load dataset
|
|
|
+ :return:
|
|
|
+ """
|
|
|
+ X_train, X_test = self.generate_x_data()
|
|
|
+ Y_train, Y_test = self.generate_y_data()
|
|
|
+ train_data = lgb.Dataset(
|
|
|
+ X_train,
|
|
|
+ label=Y_train,
|
|
|
+ categorical_feature=["uid", "type", "channel", "mode", "out_user_id", "tag1", "tag2", "tag3"],
|
|
|
+ )
|
|
|
+ test_data = lgb.Dataset(X_test, label=Y_test, reference=train_data)
|
|
|
+ params = {
|
|
|
+ "objective": "binary", # 指定二分类任务
|
|
|
+ "metric": "binary_logloss", # 评估指标为二分类的log损失
|
|
|
+ "num_leaves": 36, # 叶子节点数
|
|
|
+ "learning_rate": 0.08479152931388902, # 学习率
|
|
|
+ "bagging_fraction": 0.6588121592044218, # 建树的样本采样比例
|
|
|
+ "feature_fraction": 0.4572757903437793, # 建树的特征选择比例
|
|
|
+ "bagging_freq": 2, # k 意味着每 k 次迭代执行bagging
|
|
|
+ "num_threads": 16, # 线程数量
|
|
|
+ "mini_child_samples": 71
|
|
|
+ }
|
|
|
+ # 训练模型
|
|
|
+ num_round = 100
|
|
|
+ print("开始训练......")
|
|
|
+ bst = lgb.train(params, train_data, num_round, valid_sets=[test_data])
|
|
|
+ bst.save_model(self.model)
|
|
|
+ print("模型训练完成✅")
|
|
|
+
|
|
|
+ def evaluate_model(self):
|
|
|
+ """
|
|
|
+ 评估模型性能
|
|
|
+ :return:
|
|
|
+ """
|
|
|
+ fw = open("summary_tag_03{}.txt".format(self.dt), "a+", encoding="utf-8")
|
|
|
+ # 测试数据
|
|
|
+ with open("data/produce_data/x_data_total_return_predict_{}.json".format(self.dt)) as f1:
|
|
|
+ x_list = json.loads(f1.read())
|
|
|
+
|
|
|
+ # 测试 label
|
|
|
+ with open("data/produce_data/y_data_total_return_predict_{}.json".format(self.dt)) as f2:
|
|
|
+ Y_test = json.loads(f2.read())
|
|
|
+
|
|
|
+ Y_test = [0 if i <= 27 else 1 for i in Y_test]
|
|
|
+ X_test = pd.DataFrame(x_list, columns=self.my_c)
|
|
|
+ for key in self.str_columns:
|
|
|
+ X_test[key] = self.label_encoder.fit_transform(X_test[key])
|
|
|
+ for key in self.float_columns:
|
|
|
+ X_test[key] = pd.to_numeric(X_test[key], errors="coerce")
|
|
|
+ bst = lgb.Booster(model_file=self.model)
|
|
|
+ y_pred = bst.predict(X_test, num_iteration=bst.best_iteration)
|
|
|
+ temp = sorted(list(y_pred))
|
|
|
+ yuzhi = temp[int(len(temp) * 0.7) - 1]
|
|
|
+ y_pred_binary = [0 if i <= yuzhi else 1 for i in list(y_pred)]
|
|
|
+ # 转换为二进制输出
|
|
|
+ score_list = []
|
|
|
+ for index, item in enumerate(list(y_pred)):
|
|
|
+ real_label = Y_test[index]
|
|
|
+ score = item
|
|
|
+ prid_label = y_pred_binary[index]
|
|
|
+ print(real_label, "\t", prid_label, "\t", score)
|
|
|
+ fw.write("{}\t{}\t{}\n".format(real_label, prid_label, score))
|
|
|
+ score_list.append(score)
|
|
|
+ print("预测样本总量: {}".format(len(score_list)))
|
|
|
+ data_series = pd.Series(score_list)
|
|
|
+ print("统计 score 信息")
|
|
|
+ print(data_series.describe())
|
|
|
+ # 评估模型
|
|
|
+ accuracy = accuracy_score(Y_test, y_pred_binary)
|
|
|
+ print(f"Accuracy: {accuracy}")
|
|
|
+ fw.close()
|
|
|
+
|
|
|
+ def feature_importance(self):
|
|
|
+ """
|
|
|
+ Get the importance of each feature
|
|
|
+ :return:
|
|
|
+ """
|
|
|
+ lgb_model = lgb.Booster(model_file=self.model)
|
|
|
+ importance = lgb_model.feature_importance(importance_type='split')
|
|
|
+ feature_name = lgb_model.feature_name()
|
|
|
+ feature_importance = sorted(zip(feature_name, importance), key=lambda x: x[1], reverse=True)
|
|
|
+
|
|
|
+ # 打印特征重要性
|
|
|
+ for name, imp in feature_importance:
|
|
|
+ print(name, imp)
|
|
|
+
|
|
|
+
|
|
|
+if __name__ == "__main__":
|
|
|
+ i = int(input("输入 1 训练, 输入 2 预测:\n"))
|
|
|
+ if i == 1:
|
|
|
+ f = "train"
|
|
|
+ dt = "whole"
|
|
|
+ L = LightGBM(flag=f, dt=dt)
|
|
|
+ L.train_model()
|
|
|
+ elif i == 2:
|
|
|
+ f = "predict"
|
|
|
+ dt = int(input("输入日期, 16-21:\n"))
|
|
|
+ L = LightGBM(flag=f, dt=dt)
|
|
|
+ L.evaluate_model()
|
|
|
+ # study = optuna.create_study(direction='maximize')
|
|
|
+ # study.optimize(L.bays_params, n_trials=100)
|
|
|
+ # print('Number of finished trials:', len(study.trials))
|
|
|
+ # print('Best trial:', study.best_trial.params)
|
|
|
+ # L.train_model()
|
|
|
+ # L.evaluate_model()
|
|
|
+ # L.feature_importance()
|