|
@@ -47,7 +47,7 @@ class LightGBM(object):
|
|
|
]
|
|
|
self.split_c = 0.7
|
|
|
self.yc = 0.8
|
|
|
- self.model = "lightgbm_0327_spider.bin"
|
|
|
+ self.model = "lightgbm_0327_spider_v2.bin"
|
|
|
self.flag = flag
|
|
|
self.dt = dt
|
|
|
|
|
@@ -210,20 +210,20 @@ class LightGBM(object):
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
- i = int(input("输入 1 训练, 输入 2 预测:\n"))
|
|
|
- if i == 1:
|
|
|
- f = "train"
|
|
|
- dt = "whole"
|
|
|
- L = LightGBM(flag=f, dt=dt)
|
|
|
- L.train_model()
|
|
|
- elif i == 2:
|
|
|
- f = "predict"
|
|
|
- dt = int(input("输入日期, 16-21:\n"))
|
|
|
- L = LightGBM(flag=f, dt=dt)
|
|
|
- L.evaluate_model()
|
|
|
- L.feature_importance()
|
|
|
- # L = LightGBM("train", "whole")
|
|
|
- # study = optuna.create_study(direction='maximize')
|
|
|
- # study.optimize(L.bays_params, n_trials=100)
|
|
|
- # print('Number of finished trials:', len(study.trials))
|
|
|
- # print('Best trial:', study.best_trial.params)
|
|
|
+ # i = int(input("输入 1 训练, 输入 2 预测:\n"))
|
|
|
+ # if i == 1:
|
|
|
+ # f = "train"
|
|
|
+ # dt = "whole"
|
|
|
+ # L = LightGBM(flag=f, dt=dt)
|
|
|
+ # L.train_model()
|
|
|
+ # elif i == 2:
|
|
|
+ # f = "predict"
|
|
|
+ # dt = int(input("输入日期, 16-21:\n"))
|
|
|
+ # L = LightGBM(flag=f, dt=dt)
|
|
|
+ # L.evaluate_model()
|
|
|
+ # L.feature_importance()
|
|
|
+ L = LightGBM("train", "whole")
|
|
|
+ study = optuna.create_study(direction='maximize')
|
|
|
+ study.optimize(L.bays_params, n_trials=100)
|
|
|
+ print('Number of finished trials:', len(study.trials))
|
|
|
+ print('Best trial:', study.best_trial.params)
|