Forráskód Böngészése

处理用户模型

罗俊辉 1 éve
szülő
commit
54950b69d5
1 módosított fájl, 228 hozzáadás és 0 törlés
  1. 228 0
      main_userupload.py

+ 228 - 0
main_userupload.py

@@ -0,0 +1,228 @@
+"""
+针对爬虫类型数据单独训练模型
+"""
+import os
+import sys
+import json
+import optuna
+
+from sklearn.linear_model import LogisticRegression
+
+sys.path.append(os.getcwd())
+
+import numpy as np
+import pandas as pd
+import lightgbm as lgb
+from sklearn.preprocessing import LabelEncoder
+from sklearn.metrics import accuracy_score
+
+
+class LightGBM(object):
+    """
+    LightGBM model for classification
+    """
+
+    def __init__(self, flag, dt):
+        self.label_encoder = LabelEncoder()
+        self.my_c = [
+            "uid",
+            "channel",
+            "fans",
+            "view_count_user_30days",
+            "share_count_user_30days",
+            "return_count_user_30days",
+            "rov_user",
+            "str_user",
+            "tag1",
+            "tag2",
+            "tag3"
+        ]
+        self.str_columns = ["channel", "uid", "tag1", "tag2", "tag3"]
+        self.float_columns = [
+            "fans",
+            "view_count_user_30days",
+            "share_count_user_30days",
+            "return_count_user_30days",
+            "rov_user",
+            "str_user",
+        ]
+        self.split_c = 0.7
+        self.yc = 0.8
+        self.model = "lightgbm_0326_user.bin"
+        self.flag = flag
+        self.dt = dt
+
+    def bays_params(self, trial):
+        """
+        Bayesian parameters for
+        :return: best parameters
+        """
+        # 定义搜索空间
+        param = {
+            'objective': 'binary',
+            'metric': 'binary_logloss',
+            'verbosity': -1,
+            'boosting_type': 'gbdt',
+            'num_leaves': trial.suggest_int('num_leaves', 20, 40),
+            'learning_rate': trial.suggest_loguniform('learning_rate', 1e-8, 1.0),
+            'feature_fraction': trial.suggest_uniform('feature_fraction', 0.4, 1.0),
+            'bagging_fraction': trial.suggest_uniform('bagging_fraction', 0.4, 1.0),
+            'bagging_freq': trial.suggest_int('bagging_freq', 1, 7),
+            'min_child_samples': trial.suggest_int('min_child_samples', 5, 100),
+            "num_threads": 16,  # 线程数量
+        }
+        X_train, X_test = self.generate_x_data()
+        Y_train, Y_test = self.generate_y_data()
+        train_data = lgb.Dataset(
+            X_train,
+            label=Y_train,
+            categorical_feature=["channel", "uid", "tag1", "tag2", "tag3"],
+        )
+        test_data = lgb.Dataset(X_test, label=Y_test, reference=train_data)
+        gbm = lgb.train(param, train_data, num_boost_round=100, valid_sets=[test_data])
+        preds = gbm.predict(X_test)
+        pred_labels = np.rint(preds)
+        accuracy = accuracy_score(Y_test, pred_labels)
+        return accuracy
+
+    def generate_x_data(self):
+        """
+        Generate data for feature engineering
+        :return:
+        """
+        with open("data/produce_data/x_data_total_return_{}_{}_user.json".format(self.flag, self.dt)) as f1:
+            x_list = json.loads(f1.read())
+        index_t = int(len(x_list) * self.split_c)
+        X_train = pd.DataFrame(x_list[:index_t], columns=self.my_c)
+        for key in self.str_columns:
+            X_train[key] = self.label_encoder.fit_transform(X_train[key])
+        for key in self.float_columns:
+            X_train[key] = pd.to_numeric(X_train[key], errors="coerce")
+        X_test = pd.DataFrame(x_list[index_t:], columns=self.my_c)
+        for key in self.str_columns:
+            X_test[key] = self.label_encoder.fit_transform(X_test[key])
+        for key in self.float_columns:
+            X_test[key] = pd.to_numeric(X_test[key], errors="coerce")
+        return X_train, X_test
+
+    def generate_y_data(self):
+        """
+        Generate data for label
+        :return:
+        """
+        with open("data/produce_data/y_data_total_return_{}_{}_user.json".format(self.flag, self.dt)) as f2:
+            y_list = json.loads(f2.read())
+        index_t = int(len(y_list) * self.split_c)
+        temp = sorted(y_list)
+        yuzhi = temp[int(len(temp) * self.yc) - 1]
+        print("阈值是: {}".format(yuzhi))
+        y__list = [0 if i <= yuzhi else 1 for i in y_list]
+        y_train = np.array(y__list[:index_t])
+        y_test = np.array(y__list[index_t:])
+        return y_train, y_test
+
+    def train_model(self):
+        """
+        Load dataset
+        :return:
+        """
+        X_train, X_test = self.generate_x_data()
+        Y_train, Y_test = self.generate_y_data()
+        train_data = lgb.Dataset(
+            X_train,
+            label=Y_train,
+            categorical_feature=["channel", "uid", "tag1", "tag2", "tag3"],
+        )
+        test_data = lgb.Dataset(X_test, label=Y_test, reference=train_data)
+        params = {
+            'num_leaves': 25,
+            'learning_rate': 0.00435469653451866,
+            'feature_fraction': 0.8659696885542688,
+            'bagging_fraction': 0.4671847911224712,
+            'bagging_freq': 1,
+            # 'min_child_samples': 65,
+            "num_threads": 16,  # 线程数量
+        }
+        # 训练模型
+        num_round = 100
+        print("开始训练......")
+        bst = lgb.train(params, train_data, num_round, valid_sets=[test_data])
+        bst.save_model(self.model)
+        print("模型训练完成✅")
+
+    def evaluate_model(self):
+        """
+        评估模型性能
+        :return:
+        """
+        fw = open("summary_tag_03{}_user.txt".format(self.dt), "a+", encoding="utf-8")
+        # 测试数据
+        with open("data/produce_data/x_data_total_return_predict_{}_user.json".format(self.dt)) as f1:
+            x_list = json.loads(f1.read())
+
+        # 测试 label
+        with open("data/produce_data/y_data_total_return_predict_{}_user.json".format(self.dt)) as f2:
+            Y_test = json.loads(f2.read())
+
+        Y_test = [0 if i <= 19 else 1 for i in Y_test]
+        X_test = pd.DataFrame(x_list, columns=self.my_c)
+        for key in self.str_columns:
+            X_test[key] = self.label_encoder.fit_transform(X_test[key])
+        for key in self.float_columns:
+            X_test[key] = pd.to_numeric(X_test[key], errors="coerce")
+        bst = lgb.Booster(model_file=self.model)
+        y_pred = bst.predict(X_test, num_iteration=bst.best_iteration)
+        temp = sorted(list(y_pred))
+        yuzhi = temp[int(len(temp) * 0.7) - 1]
+        y_pred_binary = [0 if i <= yuzhi else 1 for i in list(y_pred)]
+        # 转换为二进制输出
+        score_list = []
+        for index, item in enumerate(list(y_pred)):
+            real_label = Y_test[index]
+            score = item
+            prid_label = y_pred_binary[index]
+            print(real_label, "\t", prid_label, "\t", score)
+            fw.write("{}\t{}\t{}\n".format(real_label, prid_label, score))
+            score_list.append(score)
+        print("预测样本总量: {}".format(len(score_list)))
+        data_series = pd.Series(score_list)
+        print("统计 score 信息")
+        print(data_series.describe())
+        # 评估模型
+        accuracy = accuracy_score(Y_test, y_pred_binary)
+        print(f"Accuracy: {accuracy}")
+        fw.close()
+
+    def feature_importance(self):
+        """
+        Get the importance of each feature
+        :return:
+        """
+        lgb_model = lgb.Booster(model_file=self.model)
+        importance = lgb_model.feature_importance(importance_type='split')
+        feature_name = lgb_model.feature_name()
+        feature_importance = sorted(zip(feature_name, importance), key=lambda x: x[1], reverse=True)
+
+        # 打印特征重要性
+        for name, imp in feature_importance:
+            print(name, imp)
+
+
+if __name__ == "__main__":
+    # i = int(input("输入 1 训练, 输入 2 预测:\n"))
+    # if i == 1:
+    #     f = "train"
+    #     dt = "whole"
+    #     L = LightGBM(flag=f, dt=dt)
+    #     L.train_model()
+    # elif i == 2:
+    #     f = "predict"
+    #     dt = int(input("输入日期, 16-21:\n"))
+    #     L = LightGBM(flag=f, dt=dt)
+    #     # L.evaluate_model()
+    #     L.feature_importance()
+    L = LightGBM("train", "whole")
+    study = optuna.create_study(direction='maximize')
+    study.optimize(L.bays_params, n_trials=100)
+    print('Number of finished trials:', len(study.trials))
+    print('Best trial:', study.best_trial.params)